1
|
Liu D, Che X, Wu G. Deciphering the role of neddylation in tumor microenvironment modulation: common outcome of multiple signaling pathways. Biomark Res 2024; 12:5. [PMID: 38191508 PMCID: PMC10773064 DOI: 10.1186/s40364-023-00545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Neddylation is a post-translational modification process, similar to ubiquitination, that controls several biological processes. Notably, it is often aberrantly activated in neoplasms and plays a critical role in the intricate dynamics of the tumor microenvironment (TME). This regulatory influence of neddylation permeates extensively and profoundly within the TME, affecting the behavior of tumor cells, immune cells, angiogenesis, and the extracellular matrix. Usually, neddylation promotes tumor progression towards increased malignancy. In this review, we highlight the latest understanding of the intricate molecular mechanisms that target neddylation to modulate the TME by affecting various signaling pathways. There is emerging evidence that the targeted disruption of the neddylation modification process, specifically the inhibition of cullin-RING ligases (CRLs) functionality, presents a promising avenue for targeted therapy. MLN4924, a small-molecule inhibitor of the neddylation pathway, precisely targets the neural precursor cell-expressed developmentally downregulated protein 8 activating enzyme (NAE). In recent years, significant advancements have been made in the field of neddylation modification therapy, particularly the integration of MLN4924 with chemotherapy or targeted therapy. This combined approach has demonstrated notable success in the treatment of a variety of hematological and solid tumors. Here, we investigated the inhibitory effects of MLN4924 on neddylation and summarized the current therapeutic outcomes of MLN4924 against various tumors. In conclusion, this review provides a comprehensive, up-to-date, and thorough overview of neddylation modifications, and offers insight into the critical importance of this cellular process in tumorigenesis.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
2
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
3
|
Preparation and Evaluation of Intraperitoneal Long-Acting Oxaliplatin-Loaded Multi-Vesicular Liposomal Depot for Colorectal Cancer Treatment. Pharmaceutics 2020; 12:pharmaceutics12080736. [PMID: 32764318 PMCID: PMC7466130 DOI: 10.3390/pharmaceutics12080736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer with peritoneal metastasis has a poor prognosis because of inadequate responses to systemic chemotherapy. Cytoreductive surgery followed by intraperitoneal (IP) chemotherapy using oxaliplatin has attracted attention; however, the short half-life of oxaliplatin and its rapid clearance from the peritoneal cavity limit its clinical application. Here, a multivesicular liposomal (MVL) depot of oxaliplatin was prepared for IP administration, with an expected prolonged effect. After optimization, a combination of phospholipids, cholesterol, and triolein was used based on its ability to produce MVL depots of monomodal size distribution (1–20 µm; span 1.99) with high entrapment efficiency (EE) (92.16% ± 2.17%). An initial burst release followed by a long lag phase of drug release was observed for the MVL depots system in vitro. An in vivo pharmacokinetic study mimicking the early postoperative IP chemotherapy regimen in rats showed significantly improved bioavailability, and the mean residence time of oxaliplatin after IP administration revealed that slow and continuous erosion of the MVL particles yielded a sustained drug release. Thus, oxaliplatin-loaded MVL depots presented in this study have potential for use in the treatment of colorectal cancer.
Collapse
|
4
|
Nuţă I, Badea M, Chifiriuc MC, Bleotu C, Popa M, Daniliuc C, Olar R. Synthesis, physico‐chemical characterization and bioevaluation of Ni(II), Pd(II), and Pt(II) complexes with 1‐(
o
‐tolyl)biguanide: Antimicrobial and antitumor studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ileana Nuţă
- Faculty of ChemistryUniversity of Bucharest 90‐92 Panduri Str. Bucharest 050663 Romania
| | - Mihaela Badea
- Faculty of ChemistryUniversity of Bucharest 90‐92 Panduri Str. Bucharest 050663 Romania
| | - Mariana Carmen Chifiriuc
- Faculty of BiologyUniversity of Bucharest 1‐3 Aleea Portocalelor Str. Bucharest 60101 Romania
- Life, Environment and Earth Sciences Department, Spl. Independentei 91‐95Research Institute of the University of Bucharest Bucharest Romania
| | - Coralia Bleotu
- Stefan S Nicolau Institute of Virology 285 Mihai Bravu Ave Bucharest Romania
| | - Marcela Popa
- Faculty of BiologyUniversity of Bucharest 1‐3 Aleea Portocalelor Str. Bucharest 60101 Romania
| | - Constantin‐Gabriel Daniliuc
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität Münster Corrensstrasse 40 Münster 48149 Germany
| | - Rodica Olar
- Faculty of ChemistryUniversity of Bucharest 90‐92 Panduri Str. Bucharest 050663 Romania
| |
Collapse
|
5
|
Zhang R, Song XQ, Liu RP, Ma ZY, Xu JY. Fuplatin: An Efficient and Low-Toxic Dual-Prodrug. J Med Chem 2019; 62:4543-4554. [PMID: 31002510 DOI: 10.1021/acs.jmedchem.9b00128] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As FDA-approved chemotherapeutic agents, cisplatin, oxaliplatin, and 5-fluorouracil are widely used in clinic but limited by severe side-effects. To ameliorate their respective defects, a series of "dual-prodrug" by linking oxoplatin and 5-FU were designed and synthesized. The assembled compounds 10-17, named Fuplatin, exhibited much higher cytotoxicity against the tested cancer cells while lower cytotoxicity toward the human normal lung cells than free drugs or their combinations. Among them, 14 enhanced cellular accumulation with 62- and 825-fold amount of oxaliplatin and 8 at 9 h, respectively, significantly induced DNA damage and cell apoptosis, and inhibited migration and invasion in HCT-116 cells. Compound 14 arrested the cell cycle at S and G2 phases and up-regulated thymidylate synthase and p53, consistent with the results of the combination, suggesting 14 adopted a collaborative mode of 5-FU and oxaliplatin to kill cancer cells. In vivo, compound 14 showed high antitumor effect and no observable toxicity in NOD/SCID mice bearing HCT-116 tumors.
Collapse
Affiliation(s)
- Ran Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Rui-Ping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| |
Collapse
|
6
|
Yang Z, Zhang J, Lin X, Wu D, Li G, Zhong C, Fang L, Jiang P, Yin L, Zhang L, Bie P, Xie CM. Inhibition of neddylation modification by MLN4924 sensitizes hepatocellular carcinoma cells to sorafenib. Oncol Rep 2019; 41:3257-3269. [PMID: 31002342 PMCID: PMC6489087 DOI: 10.3892/or.2019.7098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Sorafenib remains the standard care for patients with hepatocellular carcinoma (HCC) even though it has low antitumor efficacy. Protein neddylation is abnormally activated in many types of human cancer. However, whether dysregulation of neddylation is involved in HCC progression and whether targeting neddylation sensitizes HCC cells to sorafenib need to be ascertained. In the present study, it was demonstrated that high expression of neddylation components, neural precursor cell expressed, developmentally downregulated 8 (NEDD8) and NEDD8-activating enzyme 1 (NAE1), were associated with poor survival of patients with HCC. Inhibition of neddylation by MLN4924, a small-molecule inhibitor of NAE1, significantly inhibited HCC growth, reduced clonogenic survival, increased apoptosis, and decreased migration capacity. Sorafenib alone exhibited minimal anticancer efficacy. However, a combination of sorafenib with MLN4924 at a low concentration significantly enhanced the inhibition of cell proliferation and migration as well as the induction of apoptosis induced by sorafenib. In vivo HCC xenograft mouse models also showed that MLN4924 increased the antitumor efficacy of sorafenib. Mechanistically, MLN4924 enhanced the antitumor activity of sorafenib in HCC cells via upregulation of cullin-RING E3 ubiquitin ligase (CRL)/Skp1-Cullin1-F box (SCF) E3 ubiquitin ligase substrates p21, p27, Deptor and IκBɑ. Taken together, these findings suggest that combination therapy of MLN4924 with sorafenib appears to present an additive effect with a maximal in the treatment of HCC.
Collapse
Affiliation(s)
- Zelong Yang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Xiaotong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Guixi Li
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Chunlian Zhong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Peng Jiang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Liangyu Yin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Leida Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Ping Bie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Shapingba, Chongqing 400038, P.R. China
| |
Collapse
|
7
|
Lv Y, Li B, Han K, Xiao Y, Yu X, Ma Y, Jiao Z, Gao J. The Nedd8-activating enzyme inhibitor MLN4924 suppresses colon cancer cell growth via triggering autophagy. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:617-625. [PMID: 30402022 PMCID: PMC6205944 DOI: 10.4196/kjpp.2018.22.6.617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 01/21/2023]
Abstract
Neddylation is a post-translational protein modification process. MLN4924 is a newly discovered pharmaceutical neddylation inhibitor that suppresses cancer growth with several cancer types. In our study, we first investigated the effect of MLN4924 on colon cancer cells (HCT116 and HT29). MLN4924 significantly inhibited the neddylation of cullin-1 and colon cancer cell growth in a time and dose-dependent manner. MLN4924 induced G2/M cell cycle arrest and apoptosis in HCT116 and HT29 cells. Moreover, MLN4924 also triggered autophagy in HCT116 and HT29 cells via suppressing the PI3K/AKT/mTOR pathway. Inhibiting autophagy by autophagy inhibitor 3-MA or ATG5 knockdown reversed the function of MLN4924 in suppressing colon cancer cell growth and cell death. Interestingly, MLN4924 suppresses colon cell growth in a xenograft model. Together, our finding revealed that blocking neddylation is an attractive colon cancer therapy strategy, and autophagy might act as a novel anti-cancer mechanism for the treatment of colon cancer by MLN4924.
Collapse
Affiliation(s)
- Yongzhu Lv
- Department of General Surgery, 210 Hospital of Chinese People's Liberation Army, Dalian 116021, China
| | - Bing Li
- Department of General Surgery, 210 Hospital of Chinese People's Liberation Army, Dalian 116021, China
| | - Kunna Han
- Department of General Surgery, 210 Hospital of Chinese People's Liberation Army, Dalian 116021, China
| | - Yang Xiao
- Department of Gynecology and Obstetrics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xianjun Yu
- Department of General Surgery, 210 Hospital of Chinese People's Liberation Army, Dalian 116021, China
| | - Yong Ma
- Department of General Surgery, 210 Hospital of Chinese People's Liberation Army, Dalian 116021, China
| | - Zhan Jiao
- Department of General Surgery, 210 Hospital of Chinese People's Liberation Army, Dalian 116021, China
| | - Jianjun Gao
- Department of General Surgery, 210 Hospital of Chinese People's Liberation Army, Dalian 116021, China
| |
Collapse
|
8
|
Cabana-Domínguez J, Arenas C, Cormand B, Fernàndez-Castillo N. MiR-9, miR-153 and miR-124 are down-regulated by acute exposure to cocaine in a dopaminergic cell model and may contribute to cocaine dependence. Transl Psychiatry 2018; 8:173. [PMID: 30166527 PMCID: PMC6117282 DOI: 10.1038/s41398-018-0224-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022] Open
Abstract
Cocaine is one of the most used psychostimulant drugs worldwide. MicroRNAs are post-transcriptional regulators of gene expression that are highly expressed in brain, and several studies have shown that cocaine can alter their expression. In a previous study, we identified several protein-coding genes that are differentially expressed in a dopaminergic neuron-like model after an acute exposure to cocaine. Now, we used the prediction tool WebGestalt to identify miRNA molecules potentially involved in the regulation of these genes. Using the same cellular model, we found that seven of these miRNAs are down-regulated by cocaine: miR-124-3p, miR-124-5p, miR-137, miR-101-3p, miR-9-5p, miR-369-3p and miR-153-3p, the last three not previously related to cocaine. Furthermore, we found that three of the miRNA genes that are differentially expressed in our model (hsa-miR-9-1, hsa-miR-153-1 and hsa-miR-124-3) are nominally associated with cocaine dependence in a case-control study (2,085 cases and 4,293 controls). In summary, we highlighted novel miRNAs that may be involved in those cocaine-induced changes of gene expression that underlie addiction. Moreover, we identified genetic variants that contribute to cocaine dependence in three of these miRNA genes, supporting the idea that genes differentially expressed under cocaine may play an important role in the susceptibility to cocaine dependence.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|