1
|
Chen Q, Wang J, Sun L, Ba B, Shen D. Mechanism of Astragalus membranaceus (Huangqi, HQ) for treatment of heart failure based on network pharmacology and molecular docking. J Cell Mol Med 2024; 28:e18331. [PMID: 38780500 PMCID: PMC11114218 DOI: 10.1111/jcmm.18331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is a leading cause of death in the elderly. Traditional Chinese medicine, a verified alternative therapeutic regimen, has been used to treat heart failure, which is less expensive and has fewer adverse effects. In this study, a total of 15 active ingredients of Astragalus membranaceus (Huangqi, HQ) were obtained; among them, Isorhamnetin, Quercetin, Calycosin, Formononetin, and Kaempferol were found to be linked to heart failure. Ang II significantly enlarged the cell size of cardiomyocytes, which could be partially reduced by Quercetin, Isorhamnetin, Calycosin, Kaempferol, or Formononetin. Ang II significantly up-regulated ANP, BNP, β-MHC, and CTGF expressions, whereas Quercetin, Isorhamnetin, Calycosin, Kaempferol or Formononetin treatment partially downregulated ANP, BNP, β-MHC and CTGF expressions. Five active ingredients of HQ attenuated inflammation in Ang II-induced cardiomyocytes by inhibiting the levels of TNF-α, IL-1β, IL-18 and IL-6. Molecular docking shows Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol can bind with its target protein ESR1 in a good bond by intermolecular force. Quercetin, Calycosin, Kaempferol or Formononetin treatment promoted the expression levels of ESR1 and phosphorylated ESR1 in Ang II-stimulated cardiomyocytes; however, Isorhamnetin treatment had no effect on ESR1 and phosphorylated ESR1 expression levels. In conclusion, our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HQ against heart failure. Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol might be the primary active ingredients of HQ, dominating its cardioprotective effects against heart failure through regulating ESR1 expression, which provided a basis for the clinical application of HQ to regulate cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Qiuxiang Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan UniversityHubei Key Laboratory of CardiologyWuhanChina
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Juan Wang
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang medical UniversityUrumchiChina
| | - Lihua Sun
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang medical UniversityUrumchiChina
| | - Bayinsilema Ba
- Department of CardiologyThe Fifth Affiliated Hospital of Xinjiang medical UniversityUrumchiChina
| | - Difei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan UniversityHubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
2
|
Lim J, Lee H, Hong S, Lee J, Kim Y. Comparison of the Antioxidant Potency of Four Triterpenes of Centella asiatica against Oxidative Stress. Antioxidants (Basel) 2024; 13:483. [PMID: 38671930 PMCID: PMC11047496 DOI: 10.3390/antiox13040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
We comparatively evaluated the antioxidant properties of key triterpenes from Centella asiatica, including asiatic acid (AA), asiaticoside, madecassic acid, and madecassoside, in several cell types, including skin fibroblasts, macrophages, hepatocytes, and endothelial cells, under conditions promoting oxidative stress. AA conferred the highest viability on Hs68 cells exposed to ultraviolet B (UVB) irradiation. Triterpene pretreatment attenuated the UVB-induced generation of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as the UVB-induced depletion of glutathione (GSH) in skin fibroblasts. AA most potently inhibited UVB-induced MMP generation, resulting in increased intracellular collagen levels. Pretreatment with triterpenes, particularly AA, significantly improved cell viability and attenuated TBHP-induced levels of ROS, alanine aminotransferase, and aspartate aminotransferase in HepG2 cells. Triterpenes attenuated ROS levels and reduced MDA and GSH expression in EA.hy926 cells. In RAW264.7 macrophages, production of nitric oxide, tumor necrosis factor-α, and interleukin-6 (indicators of LPS-induced oxidative damage) was significantly reduced by treatment with any of the triterpenes. Statistical analyses of triterpene biological activities using principal component analysis and hierarchical clustering revealed that AA exerted the greatest overall influence and showed remarkable activity in Hs68 and HepG2 cells.
Collapse
Affiliation(s)
- Jinyeong Lim
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.L.); (H.L.); (S.H.)
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.L.); (H.L.); (S.H.)
| | - Seonghwa Hong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.L.); (H.L.); (S.H.)
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.L.); (H.L.); (S.H.)
| | - Younghwa Kim
- Department of Food Science and Biotechnology, Kyungsung University, Busan 48434, Republic of Korea
| |
Collapse
|
3
|
Maine A, Tamayo L, Leiva Á, González A, Ríos HE, Rojas-Romo C, Jara P, Araya-Durán I, González-Nilo F, Yazdani-Pedram M, Santana P, Leal M, González N, Briones X, Villalobos V, Urzúa M. Conformational Changes of Poly(Maleic Anhydride- alt-styrene) Modified with Amino Acids in an Aqueous Medium and Their Effect on Cytocompatibility and Hemolytic Response. ACS APPLIED BIO MATERIALS 2023; 6:5333-5348. [PMID: 38032020 DOI: 10.1021/acsabm.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The conformational changes of poly(maleic anhydride-alt-styrene) (PSMA) modified with different amino acids (PSMA-Aa) were studied in an aqueous medium as a function of ionic strength and pH. The specific viscosity of PSMA-Aa decreased with increasing salt concentration due to a more compact conformation. There was a decrease in surface tension with increasing concentrations of the modified polyelectrolyte having a greater effect for the PSMA modified with l-phenylalanine at pH 7.0, demonstrating a greater surface-active character. The conformational changes were also confirmed by molecular dynamics studies, indicating that PSMA-Aa exhibits a compact structure at pH 4.0 and a more extended structure at pH 7.0. On the other hand, the conformational changes of PSMA-Aa were related to its biological response, where the higher surface-active character of the PSMA modified with l-phenylalanine correlates very well with the higher hemolytic activity observed in red blood cells, in which the surface-active capacity supports lytic potency in erythrocytes. The cytocompatibility assays indicated that there were no significant cytotoxic effects of the PSMA-Aa. Additionally, in solvent-accessible surface area studies, it was shown that the carboxylate groups of the PSMA modified with l-phenylalanine are more exposed to the solvent at pH 7.0 and high salt concentrations, which correlates with lower fluorescence intensity, reflecting a loss of mitochondrial membrane potential. It is concluded that the study of the conformational changes in PE modified with amino acids is essential for their use as biomaterials and relevant to understanding the possible effects of PE modified with amino acids in biological systems.
Collapse
Affiliation(s)
- Arianne Maine
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Laura Tamayo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Ángel Leiva
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna N° 4860, Macul, Santiago 7821093, Chile
| | - Alex González
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Hernán E Ríos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Carlos Rojas-Romo
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Paul Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Ingrid Araya-Durán
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias para la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias para la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370146, Chile
| | - Mehrdad Yazdani-Pedram
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007 Santiago, Chile
| | - Paula Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910123, Chile
| | - Matías Leal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias para la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370146, Chile
| | - Nicolás González
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Ximena Briones
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos, 1007 Santiago, Chile
| | - Valeria Villalobos
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| | - Marcela Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago 7800003,Chile
| |
Collapse
|
4
|
Wang S, Shan Y, Zhang S, Zhang L, Jiao Y, Xue D, Zhang L, Yi H. Lactobacillus paracasei subsp. paracasei X12 Strain Induces Apoptosis in HT-29 Cells through Activation of the Mitochondrial Pathway. Nutrients 2023; 15:2123. [PMID: 37432295 DOI: 10.3390/nu15092123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 07/12/2023] Open
Abstract
L. paracasei subsp. paracasei X12 was obtained from traditional cheese produced in northwestern China. In this study, we showed that whole peptidoglycan (WPG), extracted from L. paracasei subsp. paracasei X12, inhibited proliferation and induced apoptosis in HT-29 cells in a dose-dependent manner. In addition, WPG-induced apoptosis was associated with the loss of mitochondrial membrane potential (Ψm), the release of cytochrome c (Cyto-C) from mitochondrialto cytosolic spaces, activation of Caspase 3, and accumulation of intracellular reactive oxygen species (ROS). Finally, semi-quantitative RT-PCR showed that these events were accompanied by upregulation of proapoptotic genes (Bax or Bad) and downregulation of antiapoptotic genes (Bcl-xl). Taken together, our results demonstrated that WPG induced apoptosis in HT-29 cells through activation of the mitochondrial pathway. WPG exerted only minor toxicity upon noncancerous cells and therefore might be used as a natural agent in the treatment of cancer in future.
Collapse
Affiliation(s)
- Shumei Wang
- College of Food Engineering, Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin 150086, China
| | - Yi Shan
- College of Food Engineering, Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin 150086, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yuehua Jiao
- Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dijia Xue
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| |
Collapse
|
5
|
Sha W, Zhao B, Wei H, Yang Y, Yin H, Gao J, Zhao W, Kong W, Ge G, Lei T. Astragalus polysaccharide ameliorates vascular endothelial dysfunction by stimulating macrophage M2 polarization via potentiating Nrf2/HO-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154667. [PMID: 36842218 DOI: 10.1016/j.phymed.2023.154667] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Oxidative stress and chronic non-infectious inflammation caused vascular endothelial dysfunction (VED) is a critical and initiating factor in Type 2 diabetes induced vascular complications, while macrophage polarization plays a regulatory role in VED. Astragalus polysaccharide (APS) has been widely used for treating diabetic vascular diseases, but its mechanisms of action have not been fully elucidated. PURPOSE This study aimed to investigate the modulatory effects of APS on macrophage polarization and to reveal the potential mechanisms of APS in LPS and HG stimulated macrophages and diabetic model rats. METHODS In vitro and in vivo studies were used to explore the mechanism of APS. The macrophage polarization and reactive oxygen species (ROS) release was monitored by flow cytometry and the associated inflammatory factors were detected by ELISA. For oxidative stress regulatory pathway detection, protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme oxygenase-1 (HO-1) was measured by Western blotting. The vascular endothelial functions were measured by transwell, tube formation assay, scratch assay, adhesion assay. The thoracic aorta pathological changes were evaluated by Haematoxylin-eosin and immunohistochemistry. RESULTS In vitro, APS inhibited the LPS/HG-stimulated THP-1 macrophage differentiated into macrophage M1, coupling with reduction in the ROS production and pro-inflammatory factors (TNF-α, IL-6, IL-12) release. Furthermore, endothelial cells proliferation and apoptosis were ameliorated after APS treatment. Meanwhile, APS-treated THP-1/macrophage occurred a differentiation into M2 polarization and anti-inflammatory factors (IL-4, IL-10, and Arg-1) release via enhancing Nrf2/HO-1 signaling pathway, which could be disturbed by using siNrf2. APS promoted the migration and angiogenesis of endothelial cells in co-cultured of HUVECs and macrophages under high glucose. Finally, similar results were observed in vivo, APS alleviated thoracic aorta complications of diabetic rats accompanied by a remarkable reduction in inflammation and an increased in the number of anti-inflammatory macrophage polarization. CONCLUSION Our results demonstrated that APS ameliorated vascular endothelial dysfunction in diabetes by stimulating macrophage polarization to M2 via enhancing the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Wenjun Sha
- Department of Endocrinology and Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huizhen Wei
- Department of Endocrinology and Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yunyi Yang
- Department of Endocrinology and Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hongping Yin
- Department of Endocrinology and Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jie Gao
- Department of Endocrinology and Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Weiwei Zhao
- Department of Endocrinology and Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wenwen Kong
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Tao Lei
- Department of Endocrinology and Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
6
|
Oh Y, Jung WK, Je JY. Protective effect of multifunctional peptides PIISVYWK and FSVVPSPK on oxidative stress-mediated HUVEC injury through antioxidant and anti-apoptotic action. Process Biochem 2023. [DOI: 10.1016/j.procbio.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Bai L, Xu D, Zhou YM, Zhang YB, Zhang H, Chen YB, Cui YL. Antioxidant Activities of Natural Polysaccharides and Their Derivatives for Biomedical and Medicinal Applications. Antioxidants (Basel) 2022; 11:2491. [PMID: 36552700 PMCID: PMC9774958 DOI: 10.3390/antiox11122491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Many chronic diseases such as Alzheimer's disease, diabetes, and cardiovascular diseases are closely related to in vivo oxidative stress caused by excessive reactive oxygen species (ROS). Natural polysaccharides, as a kind of biomacromolecule with good biocompatibility, have been widely used in biomedical and medicinal applications due to their superior antioxidant properties. In this review, scientometric analysis of the highly cited papers in the Web of Science (WOS) database finds that antioxidant activity is the most widely studied and popular among pharmacological effects of natural polysaccharides. The antioxidant mechanisms of natural polysaccharides mainly contain the regulation of signal transduction pathways, the activation of enzymes, and the scavenging of free radicals. We continuously discuss the antioxidant activities of natural polysaccharides and their derivatives. At the same time, we summarize their applications in the field of pharmaceutics/drug delivery, tissue engineering, and antimicrobial food additives/packaging materials. Overall, this review provides up-to-date information for the further development and application of natural polysaccharides with antioxidant activities.
Collapse
Affiliation(s)
- Lu Bai
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan-Ming Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yong-Bo Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yi-Bing Chen
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
8
|
Li YJ, Jin X, Li D, Lu J, Zhang XN, Yang SJ, Zhao YX, Wu M. New insights into vascular aging: Emerging role of mitochondria function. Biomed Pharmacother 2022; 156:113954. [DOI: 10.1016/j.biopha.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
9
|
Abdolmaleki S, Aliabadi A, Ghadermazi M. Two La(III) complexes containing pyridine-2,6-dicarboxylate as in vitro potent cytotoxic agents toward human lymphocyte cells. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Qiu H, Zhang L, He X, Wei Y, Wang M, Ma B, Hu D, Shi Z. Promotion of angiogenesis in vitro by Astragalus polysaccharide via activation of TLR4 signaling pathway. J Food Biochem 2022; 46:e14329. [PMID: 35867029 DOI: 10.1111/jfbc.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022]
Abstract
During the implantation of functional tissue-engineered constructs for treating bone defects, a functional vascular network is critical for the survival of the construct. One strategy to achieve rapid angiogenesis for this application is the co-culture of outgrowth endothelial cells (OECs) and primary human osteoblasts (POBs) within a scaffold prior to implantation. In the present study, we aim to investigate whether Astragalus polysaccharide (APS) promotes angiogenesis or vascularization via the TLR4 signaling pathway in a co-culture of OECs and POBs. The co-cultures were treated with various concentrations of APS for 24 h and, subsequently, another 7 days, followed by CD31 staining and analysis of micro-vessel-formation areas using software. Additionally, APS (0.4 mg/ml for 24 h) was added to monocultures of OECs or POBs for evaluating proliferation, apoptosis, angiogenesis, osteogenesis, TLR4 signaling pathway, and inflammatory cytokine release. We found that APS promoted angiogenesis in the co-culture at the optimal concentration of 0.4 mg/ml. TLR4 activation by APS up-regulated the expression level of TLR4/MyD88 and enhanced angiogenesis and osteogenesis in monocultures of OECs and POBs. The levels of E-selectin adhesion molecules, three cytokines (IL-6, TNF-α, and IFN-γ), and VEGF and PDGF-BB, which can induce angiogenesis, increased significantly (p < .05) following APS treatment. Therefore, APS appears to promote angiogenesis and ossification in the co-culture system via the TLR4 signaling pathway. PRACTICAL APPLICATIONS: This study demonstrates that APS may promote angiogenesis and osteocyte proliferation in OEC and POB co-culture systems through the MyD88-dependent TLR4 signaling pathway. APS might represent a potential therapeutic strategy in tissue-engineered bone implantation for the treatment of large bone defects; additionally, it has the advantage of safety, as it exhibits low or no side effects. In the future, it is expected to be used in vitro for the construction of tissue-engineered bone and in vivo after implantation in patients with bone defects for promoting rapid vascularization and ossification of tissue-engineered bone and early fusion with the recipient's bone. In addition, as a food additive, Astragalus membranaceus can be used as a tonic material in patients recovering from a fracture for promoting blood-vessel formation at the fracture site and fracture recovery. Combining traditional Chinese medicine with tissue engineering can provide further strategies for promoting the development of regenerative medicine.
Collapse
Affiliation(s)
- Huiqing Qiu
- Department of Geriatrics, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, People's Republic of China
| | - Liyan Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xinqi He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yusen Wei
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Miaoran Wang
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Bin Ma
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhongli Shi
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, People's Republic of China.,Central Laboratory, The First Hospital of Hebei Medical University, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
11
|
Pretreatment with Shenmai Injection Protects against Coronary Microvascular Dysfunction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8630480. [PMID: 35722150 PMCID: PMC9203227 DOI: 10.1155/2022/8630480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
Background The clinical treatment of coronary microvascular dysfunction (CMD) is mainly based on conventional medicine, but the mechanism of the medicine is single and the efficacy is different. Shenmai injection (SMI) has a variety of ingredients, but the effect of SMI on CMD has not been studied. This study investigated the effect of SMI on CMD and its possible mechanism. Methods The protective effect of SMI on CMD was evaluated in Sprague-Dawley (SD) rats and human umbilical vein endothelial cells (HUVECs). In vivo, forty-five male SD rats were randomly divided into control group (sham group), CMD group (model group), and SMI group (treatment group). Two weeks after SMI intervention, laurate was injected into the left ventricle of rats to construct a CMD model. Blood samples were collected to detect myocardial enzymes, oxidative stress, and inflammatory factors, and the hearts of rats were extracted for histopathological staining and western blot detection. In vitro, a hydrogen peroxide-induced endothelial injury model was established in HUVECs. After pretreatment with SMI, cell viability, oxidative stress, vasodilative factors, and apoptosis were detected. Results In vivo, pretreatment with SMI could effectively reduce the concentrations of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), endothelin-1 (ET-1), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and malondialdehyde (MDA) in the serum of rats. Meanwhile, the expression of bcl-2-associated X (Bax) and caspase-3 protein in the myocardium of rats was decreased in the SMI group. The levels of nitric oxide (NO) and superoxide dismutase (SOD) and the expression of B-cell lymphoma-2 (Bcl-2) were higher in the SMI group than in the CMD group. Pathological staining results showed that SMI could effectively reduce inflammatory infiltration and the formation of collagen fibers and microthrombus in the rat myocardium. In vitro, intervention with SMI could improve endothelial function in a dose-dependent manner as evidenced by increasing the activity of endothelial cells and the expression of NO, SOD, endothelial nitric oxide synthase (eNOS), and Bcl-2, while decreasing cell apoptosis and the levels of ET-1, MDA, Bax, and caspase-3. Conclusions Pretreatment with SMI could improve CMD by alleviating oxidative stress, inflammatory response, and apoptosis and then improving vascular endothelial function and microvascular structure.
Collapse
|
12
|
Wang Q, Yang X, Zhu C, Liu G, Han W, Sun Y, Qian L. Valorization of Polysaccharides From Benincasa hispida: Physicochemical, Moisturizing, and Antioxidant Skincare Properties. Front Pharmacol 2022; 13:912382. [PMID: 35784722 PMCID: PMC9247140 DOI: 10.3389/fphar.2022.912382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Benincasa hispida Cogn. (B. hispida) is a popular vegetable in China, and studies have been reported on B. hispida polysaccharides (BPS) preparation. However, few studies have been reported on its physicochemical and skincare properties. In this study, we analyzed the physicochemical properties of BPS, free radical scavenging capability, moisturizing and antioxidant activities in vitro and in vivo, respectively. Our results show that BPS was an inhomogeneous acidic polysaccharide that could scavenge a variety of free radicals. Also, BPS had a good moisturizing and antioxidant capability both in vitro and in vivo. Specifically, BPS could alter some key antioxidant enzyme activities and pro-inflammatory factor levels via activating the NRF2/HO-1 pathway, thereby preventing H2O2-induced reactive oxygen species (ROS) production and apoptosis of HDF-1 cells. Our results suggest that BPS exhibited favorable moisturizing and anti-aging properties and might be an attractive candidate for the development of anti-aging skincare products.
Collapse
Affiliation(s)
- Qian Wang
- College of Life and Health Sciences, Anhui Science and Technology University, Anhui, China
| | - Xiaoyan Yang
- College of Agriculture, Anhui Science and Technology University, Anhui, China
| | - Changwei Zhu
- College of Life and Health Sciences, Anhui Science and Technology University, Anhui, China
| | - Guodong Liu
- College of Life and Health Sciences, Anhui Science and Technology University, Anhui, China
| | - Weili Han
- College of Life and Health Sciences, Anhui Science and Technology University, Anhui, China
| | - Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Anhui, China
- *Correspondence: Yujun Sun, ; Lisheng Qian,
| | - Lisheng Qian
- College of Life and Health Sciences, Anhui Science and Technology University, Anhui, China
- *Correspondence: Yujun Sun, ; Lisheng Qian,
| |
Collapse
|
13
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
14
|
Sun KL, Gao M, Wang YZ, Li XR, Wang P, Wang B. Antioxidant Peptides From Protein Hydrolysate of Marine Red Algae Eucheuma cottonii: Preparation, Identification, and Cytoprotective Mechanisms on H 2O 2 Oxidative Damaged HUVECs. Front Microbiol 2022; 13:791248. [PMID: 35531284 PMCID: PMC9069057 DOI: 10.3389/fmicb.2022.791248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/10/2022] [Indexed: 01/02/2023] Open
Abstract
To screen, prepare, identify, and evaluate the activities of natural antioxidants for treating chronic diseases caused by oxidative stress. Two algal proteins, namely ZD10 and ZD60, precipitated with 10 and 60% (NH4)2SO4 were extracted from red algae Eucheuma cottonii (E. cottonii) and hydrolyzed using five proteolytic enzymes. The results showed that ZD60 played the most significant role in the enhancement of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH⋅) scavenging activity (25.91 ± 0.24%) among all protein hydrolysates. Subsequently, six antioxidant peptides (EP1-EP6) were isolated from the papain hydrolysate of ZD60 by ultrafiltration and chromatography methods. Their amino acid sequences were identified as Thr-Ala (EP1), Met-Asn (EP2), Tyr-Ser-Lys-Thr (EP3), Tyr-Ala-Val-Thr (EP4), Tyr-Leu-Leu (EP5), and Phe-Tyr-Lys-Ala (EP6) with molecular weights of 190.21, 263.33, 497.55, 452.51, 407.51, and 527.62 Da, respectively. Of which, EP3, EP4, EP5, and EP6 showed strong scavenging activities on DPPH⋅, hydroxyl radical (HO⋅), and superoxide anion radical (O- 2⋅). Moreover, EP4 and EP5 could significantly protect human umbilical vein endothelial cells (HUVECs) from H2O2-induced oxidative damage by increasing the levels of antioxidant enzyme systems including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to reduce the levels of reactive oxygen species (ROS) (60.51 and 51.74% of model group) and malondialdehyde (MDA) (75.36 and 64.45% of model group). In addition, EP4 and EP5 could effectively inhibit H2O2-induced apoptosis by preventing HUVECs from early apoptosis to late apoptosis. These results indicated that the antioxidant peptides derived from E. cottonii, especially EP4 and EP5, could serve as the natural antioxidants applied in pharmaceutical products to treat chronic cardiovascular diseases caused by oxidative damage, such as coronary heart disease, atherosclerosis, etc.
Collapse
Affiliation(s)
- Kun-Lai Sun
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Min Gao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yue-Zhen Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xue-Rong Li
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
15
|
Du Y, Wan H, Huang P, Yang J, He Y. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics. Pharmacotherapy 2022; 147:112654. [DOI: 10.1016/j.biopha.2022.112654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
|
16
|
Abdolmaleki S, Aslani A, Aliabadi A, Khazayel S, Amininasab SM, Izadi Z, Ghadermazi M, Motieiyan E, Marabello D, Rodrigues VHN. Study on a Ru(III) complex containing picolinate with potent inhibition effect against melanoma cell line. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2039916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sara Abdolmaleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azade Aslani
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Khazayel
- Department of Research and Technology of Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - S. Mojtaba Amininasab
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ghadermazi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Elham Motieiyan
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Domenica Marabello
- Dipartimento di Chimica, University of Torino, Torino, Italy
- Interdepartmental Centre for Crystallography, University of Torino, Italy
| | | |
Collapse
|
17
|
Cheng WJ, Chiang CC, Lin CY, Chen YL, Leu YL, Sie JY, Chen WL, Hsu CY, Kuo JJ, Hwang TL. Astragalus mongholicus Bunge Water Extract Exhibits Anti-inflammatory Effects in Human Neutrophils and Alleviates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice. Front Pharmacol 2021; 12:762829. [PMID: 34955833 PMCID: PMC8707293 DOI: 10.3389/fphar.2021.762829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are the primary immune cells in innate immunity, which are related to various inflammatory diseases. Astragalus mongholicus Bunge is a Chinese medicinal herb used to treat various oxidative stress-related inflammatory diseases. However, there are limited studies that elucidate the effects of Astragalus mongholicus Bunge in human neutrophils. In this study, we used isolated human neutrophils activated by various stimulants to investigate the anti-inflammatory effects of Astragalus mongholicus Bunge water extract (AWE). Cell-free assays were used to examine free radicals scavenging capabilities on superoxide anion, reactive oxygen species (ROS), and nitrogen-centered radicals. Imiquimod (IMQ) induced psoriasis-like skin inflammation mouse model was used for investigating anti-psoriatic effects. We found that AWE inhibited superoxide anion production, ROS generation, and elastase release in human neutrophils, which exhibiting a direct anti-neutrophil effect. Moreover, AWE exerted a ROS scavenging ability in the 2,2’-Azobis (2-amidinopropane) dihydrochloride assay, but not superoxide anion in the xanthine/xanthine oxidase assay, suggesting that AWE exhibited anti-oxidation and anti-inflammatory capabilities by both scavenging ROS and by directly inhibiting neutrophil activation. AWE also reduced CD11b expression and adhesion to endothelial cells in activated human neutrophils. Meanwhile, in mice with psoriasis-like skin inflammation, administration of topical AWE reduced both the affected area and the severity index score. It inhibited neutrophil infiltration, myeloperoxidase release, ROS-induced damage, and skin proliferation. In summary, AWE exhibited direct anti-inflammatory effects by inhibiting neutrophil activation and anti-psoriatic effects in mice with IMQ-induced psoriasis-like skin inflammation. Therefore, AWE could potentially be a pharmaceutical Chinese herbal medicine to inhibit neutrophilic inflammation for anti-psoriasis.
Collapse
Affiliation(s)
- Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Yu Sie
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Ling Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Yuan Hsu
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Jen Kuo
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
18
|
Qin D, Yang F, Hu Z, Liu J, Wu Q, Luo Y, Yang L, Han S, Luo F. Peptide T8 isolated from yak milk residue ameliorates H2O2-induced oxidative stress through Nrf2 signaling pathway in HUVEC cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Study on electrochemical behavior and in vitro anticancer effect of Co(II) and Zn(II) complexes containing pyridine-2,6-dicarboxylate. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Cao MX, Xie XD, Wang XR, Hu WY, Zhao Y, Chen Q, Ji L, Wei YY, Yu ML, Hu TJ. Separation, Purification, Structure Analysis, In Vitro Antioxidant Activity and circRNA-miRNA-mRNA Regulatory Network on PRV-Infected RAW264.7 Cells of a Polysaccharide Derived from Arthrospira platensis. Antioxidants (Basel) 2021; 10:1689. [PMID: 34829559 PMCID: PMC8615255 DOI: 10.3390/antiox10111689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
To investigate the structure of Arthrospira platensis polysaccharide (PAP) (intracellular polysaccharide) and the antioxidant activity of the first component of PAP (PAP-1) on pseudorabies virus (PRV) -infected RAW264.7 cells. The PAP was separated and purified by the Cellulose DE-52 chromatography column and Sephacryl S-200 high-resolution gel column to obtain PAP-1. The antioxidant activity and regulation of PAP-1 on PRV-infected RAW264.7 cells of circRNA-miRNA-mRNA network were investigated by chemical kit, Q-PCR, and ce-RNA seq. The results indicated that the molecular weight (Mw) of PAP-1, which was mainly composed of glucose and eight other monosaccharides, was 1.48 × 106 Da. The main glycosidic bond structure of PAP-1 was →4)-α-D-Glcp-(1→. PAP-1 may be increased the antioxidant capacity by regulating the circRNA-miRNA-mRNA network in PRV-infected RAW264.7 cells. This study provided a scientific foundation for further exploring the antioxidant activity of PAP-1 based on its structure.
Collapse
Affiliation(s)
- Mi-Xia Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Xiao-Dong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Xin-Rui Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Wen-Yue Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Qi Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Lu Ji
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Mei-Ling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (M.-X.C.); (X.-D.X.); (X.-R.W.); (Y.Z.); (Q.C.); (L.J.); (Y.-Y.W.); (M.-L.Y.)
| |
Collapse
|
21
|
Hou G, Jiang Y, Zheng Y, Zhao M, Chen Y, Ren Y, Wang C, Li W. Mechanism of Radix Astragali and Radix Salviae Miltiorrhizae Ameliorates Hypertensive Renal Damage. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5598351. [PMID: 33969119 PMCID: PMC8084651 DOI: 10.1155/2021/5598351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/01/2022]
Abstract
Hypertensive-induced renal damage (HRD) is an important public health and socioeconomic problem worldwide. The herb pair Radix Astragali- (RA-) Radix Salviae Miltiorrhizae (RS) is a common prescribed herbal formula for the treatment of HRD. However, the underlying mechanisms are unclear. The purpose of our study is to explore the mechanism of combination of Radix Astragali (RA) and Radix Salviae Miltiorrhizae (RS) ameliorating HRD by regulation of the renal sympathetic nerve. Thirty 24-week-old spontaneously hypertensive rats (SHRs) as the experimental group were randomly divided into the RA group, the RS group, the RA+RS group, the valsartan group, and the SHR group and six age-matched Wistar Kyoto rats (WKY) as the control group. After 4 weeks of corresponding drug administration, venipuncture was done to collect blood and prepare serum for analysis. A color Doppler ultrasound diagnostic instrument was used to observe renal hemodynamics. Enzyme-linked immunosorbent assay was used to detect norepinephrine (NE), epinephrine (E), angiotensin II (Ang II), and B-type brain natriuretic peptide (BNP). Simultaneously, the kidneys were removed immediately and observed under a transmission electron microscope to observe the ultrastructural changes. And the concentration of transforming growth factor-β1 (TGF-β1), angiotensin type 1 receptor (AT1), and nitric oxide (NO) was detected by immunohistochemistry. Our results showed that renal ultrasonography of rats showed no significant difference in renal size among groups. The RA+RS group had obviously decreased vascular resistance index. The levels of NE, E, BNP, Ang II, AT1, and TGF-β1 were decreased (P < 0.05), and the density of NO was increased. Pathological damage of the kidney was alleviated. In conclusion, the results of the present study suggested sympathetic overexpression in the pathogenesis of HRD. The combination of RA and RS may inhibit the hyperexcitability of sympathetic nerves and maintain the normal physiological structure and function of kidney tissue and has a protective effect on the cardiovascular system.
Collapse
Affiliation(s)
- Guangjian Hou
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Yuehua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yuekun Zheng
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Meng Zhao
- Rizhao Traditional Chinese Medicine Hospital, Rizhao 276826, China
| | - Yuanzhen Chen
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Yonghao Ren
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Congan Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Wei Li
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| |
Collapse
|
22
|
Hao Z, Li Z, Huo J, Li J, Liu F, Yin P. Effects of Chinese wolfberry and Astragalus extract on the antioxidant capacity of Tibetan pig liver. PLoS One 2021; 16:e0245749. [PMID: 33503027 PMCID: PMC7840052 DOI: 10.1371/journal.pone.0245749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
The objective of this study is to determine the effect of Chinese wolfberry (Lycium barbarum) and Astragalus (Astragalus membranaceus) extract (WAE) on the antioxidant capacity of Tibetan pig liver, and discussed the regulatory effect of WAE on the liver antioxidant mechanism. Twelve healthy 120-day-old Tibetan black pigs (35±2 kg) were divided randomly into two groups. The WAE group was fed a basal diet supplemented with 1% WAE for 90 days. The control group was fed the same diet, but without the WAE. We found that liver superoxide dismutase 1 (SOD1) activity (P<0.05), total antioxidative capacity (T-AOC) (P<0.05), and catalase (CAT) activity (P<0.01) significantly increased in the WAE group compared with the control group; malondialdehyde (MDA) content decreased, but this was not significant (P >0.05). Transcriptome sequencing analysis detected 106 differentially expressed genes (DEGs) related to oxidative stress. GO enrichment analysis showed these DEGs were involved in the positive regulation of reactive oxygen metabolism and biosynthesis, process regulation, and regulation of the oxidative stress response. KEGG Pathway enrichment analysis showed they were enriched in the PI3K-Akt, AMPK, Rap1, and peroxisome signaling pathways. The expression levels of key peroxisome biosynthesis genes (e.g., PEX3 and PEX11B) and key antioxidant genes (e.g., CAT and SOD1) were significantly higher in the WAE group than in the control group. The PRDX1 and PRDX5 content also was significantly higher in the WAE group. This study showed that the WAE regulated the antioxidant and anti-stress ability of Tibetan pig liver through a "peroxisome antioxidant-oxidant stress" signaling pathway.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhen Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jinjin Huo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiandong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Su HF, Shaker S, Kuang Y, Zhang M, Ye M, Qiao X. Phytochemistry and cardiovascular protective effects of Huang-Qi (Astragali Radix). Med Res Rev 2021; 41:1999-2038. [PMID: 33464616 DOI: 10.1002/med.21785] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/27/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Huang-Qi (Astragali Radix) is an herbal tonic widely used in China and many other countries. It is derived from the roots of Astragalus membranaceus and A. membranaceus var. mongholicus and shows potent cardiovascular protective effects. In this article, we comprehensively reviewed 189 small molecules isolated from the two Astragalus species and discussed the interspecies chemical differences. Moreover, we summarized the pharmacological activities and mechanisms of action of Huang-Qi and its major bioactive compounds for the treatment of cardiovascular diseases. This review covers 171 references published between February 1983 and March 2020.
Collapse
Affiliation(s)
- Hui-Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sharpkate Shaker
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
24
|
Xie Y, Guo Y, Cao S, Xue M, Fan Z, Gao C, Jin B. Hydroxysafflor Yellow A Attenuates Hydrogen Peroxide-Induced Oxidative Damage on Human Umbilical Vein Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8214128. [PMID: 33204292 PMCID: PMC7657673 DOI: 10.1155/2020/8214128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/28/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
Abstract
Oxidative stress of endothelial cells is thought to be a principal cause that induces many cardiovascular diseases. Hydroxysafflor yellow A (HSYA) is a major active component in traditional Chinese medicine safflower and has been used to cure ischemic cardiovascular diseases in China for many years. This study aims to investigate whether HSYA has a repairing effect on oxidative damage of human umbilical vein endothelial cells (HUVECs) induced by H2O2 and to provide a theoretical basis for the clinical treatment of cardiovascular diseases related to traditional Chinese medicine. Based on the establishment of an H2O2-induced HUVEC oxidative injury model, the cell viability and proliferation rate were measured by the MTT assay and EdU staining. The intracellular GSH/GSSG ratio and SOD activity were determined by kits. The ROS level was detected by flow cytometry. And the BAX, Bcl-2, PTEN, and AKT expressions were evaluated with western blotting methods. The results showed that HSYA treatment significantly attenuated the H2O2-induced HUVEC cell damage, increased the intracellular GSH/GSSG ratio and unit SOD activity also, and decreased the intracellular ROS levels. Furthermore, HSYA increased the expressions of AKT and Bcl-2 proteins and inhibited the expressions of BAX and PTEN proteins. These suggest that HSYA exerts repair effects on H2O2-induced oxidative damage in HUVECs, and the mechanisms may be related to the influence of BAX/Bcl-2 expression and AKT/PTEN signal pathway expression.
Collapse
Affiliation(s)
- Yuefeng Xie
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yan Guo
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- College of Basic Medicine & Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - ShiDong Cao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Miaomiao Xue
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - ZhaoYue Fan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - ChengXian Gao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Bo Jin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
25
|
The Antioxidant Capacity In Vitro and In Vivo of Polysaccharides From Bergenia emeiensis. Int J Mol Sci 2020; 21:ijms21207456. [PMID: 33050354 PMCID: PMC7589108 DOI: 10.3390/ijms21207456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
Polysaccharides from Bergenia emeiensis (PBE) showed a robust antioxidant ability on scavenging free radicals in vitro. However, the further antioxidant potential in cell level and in vivo was still unknown. Therefore, in this present study, the protective effect of PBE on human cervical carcinoma cell (Hela) cells and Caenorhabditis elegans against oxidative stress was evaluated. The results showed PBE could reduce the reactive oxygen species (ROS) level in Hela cells and promote the mitochondrial membrane potential. Then, the cell apoptosis was reduced. Moreover, PBE could enhance the survival of C. elegans under thermal stress to 13.44%, and significantly reduce the ROS level, which was connected with the overexpression of sod-3 and the increased nuclear localization of daf-16 transcription factor. Therefore, PBE exhibited a strong antioxidant capacity in the cellular level and for a whole organism. Thus, polysaccharides from B. emeiensis have natural potential to be a safe antioxidant.
Collapse
|
26
|
Exploring Molecular Mechanism of Huangqi in Treating Heart Failure Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6473745. [PMID: 32382301 PMCID: PMC7195658 DOI: 10.1155/2020/6473745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022]
Abstract
Heart failure (HF), a clinical syndrome with a high incidence due to various reasons, is the advanced stage of most cardiovascular diseases. Huangqi is an effective treatment for cardiovascular disease, which has multitarget, multipathway functions. Therefore, we used network pharmacology to explore the molecular mechanism of Huangqi in treating HF. In this study, 21 compounds of Huangqi, which involved 407 targets, were obtained and reconfirmed using TCMSP and PubChem databases. Moreover, we used Cytoscape 3.7.1 to construct compound-target network and screened the top 10 compounds. 378 targets related to HF were obtained from CTD and GeneCards databases and HF-target network was constructed by Cytoscape 3.7.1. The 46 overlapping targets of HF and Huangqi were gotten by Draw Venn Diagram. STRING database was used to set up a protein-protein interaction network, and MCODE module and the top 5 targets with the highest degree for overlapping targets were obtained. GO analysis performed by Metascape indicated that the overlapping targets were mainly enriched in blood vessel development, reactive oxygen species metabolic process, response to wounding, blood circulation, and so on. KEGG analysis analyzed by ClueGO revealed that overlapping targets were mainly enriched in AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, HIF-1 signaling pathway, c-type lectin receptor signaling pathway, relaxin signaling pathway, and so on. Finally, molecular docking showed that top 10 compounds of Huangqi also had good binding activities to important targets compared with digoxin, which was carried out in CB-Dock molecular docking server. In conclusion, Huangqi has potential effect on regulating overlapping targets and GE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, HIF-1 signaling pathway, and so on to be a latent multitarget, multipathway treatment for HF.
Collapse
|
27
|
Hashemi MS, Gharbi S, Jafarinejad-Farsangi S, Ansari-Asl Z, Dezfuli AS. Secondary toxic effect of graphene oxide and graphene quantum dots alters the expression of miR-21 and miR-29a in human cell lines. Toxicol In Vitro 2020; 65:104796. [PMID: 32070776 DOI: 10.1016/j.tiv.2020.104796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
For in vitro studies, non-toxic doses of nanomaterials are routinely selected by quantification of live cells after exposing to different concentrations of nanoparticles but considering only morphological changes or viability of cells is not sufficient to conclude that these nanomaterials are non-cytotoxic. Here we investigated if secondary toxicity is active in the cells exposed to non-toxic doses of graphene oxide (GO) and graphene quantum dots (GQDs). Non-cytotoxic dose of 15 μg mL-1 of GO (100 nm) and GQDs (50 nm) was selected according to MTT and Hoechst 33342/PI double staining assays. In order to investigate the secondary toxicity, the expression of miR-21, miR-29a and three genes at both mRNA and protein level were evaluated in MCF-7, HUVEC, KMBC/71 cells 4 and 24 h post exposure. Mitochondrial membrane potential (MMP) was assessed by Rhodamine 123 staining. According to our results, there was no significant decrease in viability of cells after exposure to the non-cytotoxic dose of GO and GQDs, but we observed significant alterations in the expression level of miR-21, miR-29a, Bax, Bcl2 and PTEN genes after treatment in all three cells. In addition to molecular changes, we observed alteration in mitochondrial activity at cellular level. However, we also observed that GO influenced the basal level of genes and MMP more compare to GQDs. Considering that all these genes are involved in breast tumor development and metastasis, the observed changes in miRNA expression and protein synthesis may alter cell fate and susceptibility and cause deviation in the desired outcome of GO and GQDs application in medical research.
Collapse
Affiliation(s)
- Mahnaz Sadat Hashemi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sedigheh Gharbi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zeinab Ansari-Asl
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | | |
Collapse
|
28
|
Activation of the NF- κB and MAPK Signaling Pathways Contributes to the Inflammatory Responses, but Not Cell Injury, in IPEC-1 Cells Challenged with Hydrogen Peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5803639. [PMID: 32411329 PMCID: PMC7204152 DOI: 10.1155/2020/5803639] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress can lead to intestinal cell injury as well as the induction of inflammation. It is not clear whether inflammation is an important factor leading to cell injury caused by oxidative stress. The purpose of this study was to investigate the role of inflammation in intestinal injury caused by hydrogen peroxide (H2O2). Our results revealed that H2O2 stimulation significantly decreased the viability of intestinal porcine epithelial cells (IPEC-1), increased lactate dehydrogenase (LDH) activity, and disrupted the distribution of the tight junction protein claudin-1. H2O2 significantly increased the mRNA expression of interleukin-6 (IL-6), IL-8, and tumor necrosis factor-α (TNF-α). H2O2 stimulation also led to increased phosphorylation of p38 and jun N-terminal kinase (JNK), and p65 NF-κB protein translocation into the nucleus of IPEC-1 cells. Cells treated with the NF-κB inhibitor (BAY11-7082), the p38 inhibitor (SB202190), or the JNK inhibitor (PD98059) significantly decreased mRNA and protein expression of IL-6, IL-8, and TNF-α. However, treatment with mitogen-activated protein kinase (MAPK) or NF-κB inhibitors did not prevent the damage effect on cell viability, LDH activity, or the distribution of claudin-1 in cells challenged with H2O2. In summary, our data demonstrate that activation of the NF-κB and MAPK signaling pathways can contribute to the inflammatory response, but not cell injury, in IPEC-1 cells challenged with H2O2.
Collapse
|
29
|
Astragalus Polysaccharide Attenuates Cisplatin-Induced Acute Kidney Injury by Suppressing Oxidative Damage and Mitochondrial Dysfunction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2851349. [PMID: 31998784 PMCID: PMC6970487 DOI: 10.1155/2020/2851349] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
Cisplatin is a widely used chemotherapeutic drug in the treatment of various solid tumors. However, the cisplatin-induced acute kidney injury remains a disturbing complication, which still lacks effective prevention. Cisplatin-induced oxidative damage and mitochondrial dysfunction are anticipated to be crucial in the occurrence of kidney injury. Astragalus polysaccharide (APS) has been reported to possess multiple biological activities including anti-inflammatory, antioxidant, and mitochondria protection. In this study, we investigated the potentially protective effect of APS against cisplatin-induced kidney injury both in vivo and in vitro. We found that APS pretreatment attenuated the cisplatin-induced renal dysfunction and histopathological damage in mice; in addition, it also protected the viability of HK-2 cells upon cisplatin exposure. APS attenuated the cisplatin-induced oxidative damage by reducing reactive oxygen species (ROS) generation and recovering the activities of total superoxide dismutase and glutathione peroxidase in mice kidney. In addition, electron microscope analysis indicated that cisplatin induced extensive mitochondrial vacuolization in mice kidney. However, APS administration reversed these mitochondrial morphology changes. In HK-2 cells, APS reduced the cisplatin-induced mitochondrial and intracellular ROS generation. Furthermore, APS protected the normal morphology of mitochondria, blocked the cisplatin-induced mitochondrial permeability transition pore opening, and reduced the cytochrome c leakage. Subsequently, APS reduced the cisplatin-induced apoptosis in mice renal and HK-2 cells. In conclusion, our data suggested that APS pretreatment might prevent cisplatin-induced kidney injury through attenuating oxidative damage, protecting mitochondria, and ameliorating mitochondrial-mediated apoptosis.
Collapse
|
30
|
Liu X, Wang B, Sun Y, Jia Y, Xu Z. Astragalus root extract inhibits retinal cell apoptosis and repairs damaged retinal neovascularization in retinopathy of prematurity. Cell Cycle 2019; 18:3147-3159. [PMID: 31564208 DOI: 10.1080/15384101.2019.1669998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Since the functions of Astragalus root extract in retinopathy remain to be unraveled, this study is performed to elucidate whether Astragalus root extract functions in retinal cell apoptosis and angiogenesis in retinopathy of prematurity (ROP). Newborn mice were selected for establishing mice models of oxygen-induced retinopathy (OIR), which were treated with high-, medium- or low-Astragalus root extract. Evans Blue (EB) was perfused to detect the blood retinal barrier. Additionally, the vascular morphology, number of endothelial cell nuclei of neovascularization, proliferation of blood vessels, ultrastructural changes were determined via a series of assays. Moreover, levels of reactive oxygen species (ROS), expression of other factors such as VEGF, PEDF, IGF-1, HIF-1α, Bax, Bcl-2, eNOS, nNOS, and iNOS were detected. Astragalus root extract was found to protect blood-retinal barrier in the OIR model mice through repairing the structure and morphology of retina, inhibiting ROS production, retinal cell apoptosis, as well as improving retinal vascular angiogenesis. Astragalus root extract was also found to decrease VEGF and HIF-1α expression, but enhance PEDF and IGF-1 expression in the OIR model mice, thereby protecting retinas in ROP. This study highlights that Astragalus root extract is able to suppress retinal cell apoptosis and repair damaged retinal neovascularization in ROP, which provides basis for ROP therapy.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Pediatrics, Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , PR. China
| | - Bin Wang
- Department of Pediatrics, Luoyang Women's and Children's Health Care Center , Luoyang , PR. China
| | - Yongfa Sun
- Department of Pediatrics, Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , PR. China
| | - Yutao Jia
- Department of Pediatrics, Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , PR. China
| | - Zhaoying Xu
- Department of Pediatrics, Luoyang Central Hospital Affiliated to Zhengzhou University , Luoyang , PR. China
| |
Collapse
|
31
|
Nie Q, Zhu L, Zhang L, Leng B, Wang H. Astragaloside IV protects against hyperglycemia-induced vascular endothelial dysfunction by inhibiting oxidative stress and Calpain-1 activation. Life Sci 2019; 232:116662. [PMID: 31323271 DOI: 10.1016/j.lfs.2019.116662] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
AIMS Vascular endothelial cells act as a selective barrier between circulating blood and vessel wall and play an important role in the occurrence and development of cardiovascular diseases. Astragaloside IV (As-IV) has a protective effect on vascular endothelial cells, but its underlying mechanism remains unclear. This study is aimed at investigating the effect of As-IV on endothelial dysfunction (ED). METHODS Male Sprague-Dawley (SD) were injected intraperitoneally with 65 mg/kg streptozotocin (STZ) to induce diabetes and then administered orally with As-IV (40, 80 mg/kg) for 8 weeks. Vascular function was evaluated by vascular reactivity in vivo and in vitro. The expression of calpain-1 and eNOS in the aorta of diabetic rats was examined by western blot. NO production was measured using nitrate reductase method. Oxidative stress was determined by measuring SOD, GSH-px and ROS. RESULTS Our results showed that As-IV administration significantly improved diabetes associated ED in vivo, and both NAC (an antioxidant) and MDL-28170 (calpain-1 inhibitor) significantly attenuated hyperglycemia-induced ED in vitro. Meanwhile, pretreatment with the inhibitor l-NAME nearly abolished vasodilation to ACh in all groups of rats. Furthermore, As-IV increased NO production and the expression of eNOS in the thoracic aorta of diabetic rats. In addition, the levels of ROS were significantly increased, and the activity of SOD and GSH-px were decreased in diabetic rats, while As-IV administration reversed this change in a concentration-dependent manner. CONCLUSION These results suggest that As-IV improves endothelial dysfunction in thoracic aortas from diabetic rats by reducing oxidative stress and calpain-1.
Collapse
Affiliation(s)
- Qu Nie
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China; The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Liping Zhu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Lijie Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Bin Leng
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Hongxin Wang
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
32
|
Tang C, Lu Z. Health promoting activities of probiotics. J Food Biochem 2019; 43:e12944. [PMID: 31368544 DOI: 10.1111/jfbc.12944] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
Abstract
In recent years, probiotics have received increasing attention and become one type of popular functional food because of their many biological functions. Among these desirable biological functions, the immune regulation, antioxidative activities, and antimicrobial effects are essential properties to maintain host health. Probiotics can regulate the immune system and improve the antioxidative system by producing microbial components and metabolites. Meanwhile, probiotics also possess antimicrobial abilities owing to their competition for nutrient requirements and mucus adherence, reducing pathogenic toxins, producing antimicrobial metabolites (short-chain fatty acids, bacteriocins, reuterin, linoleic acid, and secondary bile acids) and enhancing intestinal, or systemic immunity. Therefore, probiotics could be used to alleviate heavy metal toxicity and metabolic disorders by improving immunity, the antioxidative system, and intestinal micro-environment. This comprehensive review mainly highlights the potential health promoting activities of probiotics based on their antioxidative, antimicrobial, and immune regulatory effects. PRACTICAL APPLICATIONS: The antioxidative defense and the immune system are essential to maintain human health. However, many factors may result in microbial dysbiosis in the gut, which subsequently leads to pathogenic expansion, oxidative stress, and inflammatory responses. Therefore, it is important to explore beneficial foods to prevent or suppress these abnormal responses. Successful application of probiotics in the functional foods has attracted increasing attention due to their immune regulatory, antioxidative, and antimicrobial properties. The aim of this review is to introduce immune regulatory antioxidative and antimicrobial effects of probiotics, which provides some basic theories for scientific research and development of potential functional foods.
Collapse
Affiliation(s)
- Chao Tang
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Li D, Liu Y, Xu R, Jia X, Li X, Huo C, Wang X. RETRACTED ARTICLE: Astragalus polysaccharide alleviates H2O2-triggered oxidative injury in human umbilical vein endothelial cells via promoting KLF2. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2188-2195. [PMID: 31159593 DOI: 10.1080/21691401.2019.1621886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dongtao Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yan Liu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
34
|
Yang S, Zhang W, Xuan LL, Han FF, Lv YL, Wan ZR, Liu H, Ren LL, Gong LL, Liu LH. Akebia Saponin D inhibits the formation of atherosclerosis in ApoE mice by attenuating oxidative stress-induced apoptosis in endothelial cells. Atherosclerosis 2019; 285:23-30. [DOI: 10.1016/j.atherosclerosis.2019.04.202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/21/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
|
35
|
Zhang P, Hua L, Hou H, Du X, He Z, Liu M, Hu X, Yan N. Sphingomyelin synthase 2 promotes H2O2-induced endothelial dysfunction by activating the Wnt/β-catenin signaling pathway. Int J Mol Med 2018; 42:3344-3354. [PMID: 30272329 PMCID: PMC6202097 DOI: 10.3892/ijmm.2018.3888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS) is the primary cause of various cardiovascular and cerebrovascular diseases and has high morbidity and mortality rates. Oxidative stress-induced endothelial cells (ECs) dysfunction is the pathological basis of AS. In addition, sphingomyelin (SM) and the Wnt/β-catenin signaling pathway are considered to be closely associated with AS; however, the specific mechanism is not clear. Therefore, the present study investigated whether SM may induce ECs dysfunction through the Wnt/β-catenin signaling pathway. Firstly, a sphingomyelin synthase 2 (SMS2) overexpression cell model was constructed. It was identified that the expression of SMS2 was increased when ECs were treated with H2O2. In addition, these results demonstrated that SMS2 overexpression promoted apoptosis and macrophage adhesion of H2O2-induced ECs, thereby increasing the expression of β-catenin. Furthermore, SMS activity was inhibited with Dy105, combined with simultaneous treatment with LiCl or H2O2. This additionally confirmed that Dy105 significantly inhibited SMS activity and decreased the level of ECs dysfunction and β-catenin content; however, LiCl served a key role in activating the Wnt/β-catenin signaling pathway to promote ECs dysfunction. Collectively, these results suggested that SMS2 overexpression may promote ECs dysfunction by activating the Wnt/β-catenin signaling pathway, while Dy105 may inhibit the evolution of oxidative stress-induced dysfunction.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyue Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huan Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingyue Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Menghan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaojuan Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
36
|
Xiao J, Chen B, Wang Q, Yang L, Guo H. Paeonin extracted from potatoes protects gastric epithelial cells from H 2O 2-induced oxidative damage in vitro by PI3K/Akt-mediated Nrf2 signaling pathway. Sci Rep 2018; 8:10865. [PMID: 30022028 PMCID: PMC6052145 DOI: 10.1038/s41598-018-28772-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
In this study, it is aimed to investigate the antioxidant mechanism of new extracts from potatoes. Four pigments, namely, Petunin, Paeonin, Malvidin and Pelargonidin, were extracted from potatoes by high performance liquid chromatography (HPLC). Our results showed that the cellular morphology and cell viability were significantly altered in gastric mucosal epithelial cells (GES-1) treated with different hydrogen peroxide (H2O2) concentrations over time (P < 0.05). Paeonin presented the strongest anti-oxidative effects on H2O2-treated cells, in both a dose- and time-dependent manner, determined by ARE-luciferase activity and HO-1 mRNA expression. After pre-treatment with Paeonin in H2O2-exposed cells, Keap1, Nrf2, HO-1 and NQO1 protein expressions were remarkably up-regulated. Furthermore, immunostaining of Nrf2 expression was obviously elevated in the H2O2 + Paeonin group over time. The GSH content in the H2O2 + Paeonin group was notably lower than that in the H2O2 + Paeonin + GSK690693 group. Paeonin promoted cell cycle with augmented Cyclin D1 and p27 protein expressions. Moreover, Paeonin suppressed apoptosis with increased Bcl2, total Caspase3 and total Caspase8 protein expressions and decreased Bax, p-Caspase3 and p-Caspase8 protein expression in H2O2-treated cells. These results suggested that Paeonin might exert an anti-oxidative role by activating Nrf2 signaling pathway with the changes of cell cycle and apoptosis.
Collapse
Affiliation(s)
- Jiping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Bo Chen
- Experiment Center for Medical Science Research, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Qiong Wang
- College of Mechanical & Electrical Engineering, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Lijuan Yang
- Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
37
|
Zi Y, Zhang B, Jiang B, Yang X, Liang Z, Liu W, He C, Liu L. Antioxidant action and protective and reparative effects of lentinan on oxidative damage in HaCaT cells. J Cosmet Dermatol 2018; 17:1108-1114. [PMID: 29473282 DOI: 10.1111/jocd.12488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Lentinus edodes is one of the largest edible fungi. Lentinan, extracted from its fruiting body has clinically significant anticancer, antibacterial, antiviral, and anticoagulant effects; however, its preventive effects on skin oxidative damage are unclear. AIMS We aimed to evaluate the in vitro antioxidation capability of lentinan and its protective and reparative effects on a model of cell oxidative damage. METHODS We evaluated the in vitro antioxidant potential of lentinan by assessing its free-radical quenching ability using DPPH and ABTS and superoxide anions. Using the HaCaT cell line as the experimental system, we tested the protective and reparative effects of lentinan on a model of H2 O2 -induced cellular oxidative damage through assessment of cell survival rate, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity. RESULTS Lentinan displayed high antioxidant potential: DDPH and ABTS quenching rates were above 60%; superoxide anions, approximately 18%. Furthermore, lentinan could dose-dependently prevent the reduction of activity in HaCaT cells by H2 O2 , reduce MDA formation, and increase SOD activity. Moreover, lentinan showed not only a protective effect against oxidative damage but also reparative effects to a certain extent, in HaCaT cells. CONCLUSIONS Our findings demonstrated the ability of lentinan to enhance cellular tolerance to oxidative damage, stress resistance, and to have protective and reparative effects on damaged cells. Therefore, with L. edodes as a source for antiaging substances, cosmetics with homology to foods have great potential clinical applications.
Collapse
Affiliation(s)
- Yusha Zi
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Bo Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Biao Jiang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Xingyao Yang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Zilu Liang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Weiyi Liu
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| | - Lei Liu
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
38
|
Wang K, Wu J, Duan X, Wu J, Zhang D, Zhang X, Zhang B. Huangqi injection in the treatment of chronic heart failure: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e8167. [PMID: 28953668 PMCID: PMC5626311 DOI: 10.1097/md.0000000000008167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND To evaluate the clinical effectiveness and safety of Huangqi injection (HI) in treating chronic heart failure (CHF) systematically. METHODS A literature search was conducted for retrieving randomized controlled trials (RCTs) on CHF treated by HI in the Cochrane Library, PubMed, Embase, China Biology Medicine disc, China National Knowledge Infrastructure Database, China Science and Technology Journal Database, Wanfang Database up to June, 6, 2017, and then the included RCTs were assessed by the Cochrane Risk of Bias Assessment Tool. The clinical total effective rate, left ventricular ejection fraction (LVEF), and others outcomes were analyzed by Review Manager 5.3 in random-effect model, the funnel plot were depicted as well. Meanwhile, the sensitivity analysis was carried out by STATA 12.0. RESULTS Sixteen RCTs involved 1864 patients were included. The result of HI group was more efficient in the clinical total effective rate (RR = 1.19, 95% confidence intervals (95% CI) [1.14-1.26], P < .00001). In addition, HI plus western medicine (WM) could improve LVEF (MD = 4.64, 95% CI [3.52-5.75], P < .00001), and others cardiac indexes. Meanwhile, a combination of HI and WM also can perfect 6 minutes walk test (6MWT). Three RCTs reported no serious adverse drug events/adverse drug reactions occurred. CONCLUSION Compared with WM, a combination of HI and WM was more efficacious in improving the clinical total effective rate, and perfect patients' condition, but more evidence-based medicine researches needed to support this study further.
Collapse
|