1
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2024:1-14. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
2
|
Imenshahidi M, Roohbakhsh A, Hosseinzadeh H. Effects of telmisartan on metabolic syndrome components: a comprehensive review. Biomed Pharmacother 2024; 171:116169. [PMID: 38228033 DOI: 10.1016/j.biopha.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Telmisartan is an antagonist of the angiotensin II receptor used in the management of hypertension (alone or in combination with other antihypertensive agents. It belongs to the drug class of angiotensin II receptor blockers (ARBs). Among drugs of this class, telmisartan shows particular pharmacologic properties, including a longer half-life than any other angiotensin II receptor blockers that bring higher and persistent antihypertensive activity. In hypertensive patients, telmisartan has superior efficacy than other antihypertensive drugs (losartan, valsartan, ramipril, atenolol, and perindopril) in controlling blood pressure, especially towards the end of the dosing interval. Telmisartan has a partial PPARγ-agonistic effect whilst does not have the safety concerns of full agonists of PPARγ receptors (thiazolidinediones). Moreover, telmisartan has an agonist activity on PPARα and PPARδ receptors and modulates the adipokine levels. Thus, telmisartan could be considered as a suitable alternative option, with multi-benefit for all components of metabolic syndrome including hypertension, diabetes mellitus, obesity, and hyperlipidemia. This review will highlight the role of telmisartan in metabolic syndrome and the main mechanisms of action of telmisartan are discussed and summarized. Many studies have demonstrated the useful properties of telmisartan in the prevention and improving of metabolic syndrome and this well-tolerated drug can be greatly proposed in the treatment of different components of metabolic syndrome. However, larger and long-duration studies are needed to confirm these findings in long-term observational studies and prospective trials and to determine the optimum dose of telmisartan in metabolic syndrome.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Yang J, Jiang G, Huang L, Liu Z, Jiang R, Cao G, Cao J, Zhu H, Chen L, Chen X, Pei F. The Long non-coding RNA MALAT1 functions as a competing endogenous RNA to regulate vascular remodeling by sponging miR-145-5p/HK2 in hypertension. Clin Exp Hypertens 2023; 45:2284658. [PMID: 38010958 DOI: 10.1080/10641963.2023.2284658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Long non-coding RNAs (LncRNAs) have been found to play a regulatory role in the pathophysiology of vascular remodeling-associated illnesses through the lncRNA-microRNA (miRNA) regulation axis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is thought to be involved in proliferation, migration, apoptosis, and calcification of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the regulatory role of MALAT1 on vascular remodeling in hypertension. Our data indicate that the expression of MALAT1 is significantly upregulated in hypertensive aortic smooth muscle. Knockdown of MALAT1 inhibited the proliferation, migration, and phenotypic transition of VSMCs induced by Ang II. Bioinformatics analysis was used to predict the complementary binding of miR-145-5p to the 3'-untranslated region of MALAT1. Besides, the expressions of MALAT1 and miR-145-5p were negatively correlated, while luciferase reporter assays and RNA immunoprecipitation assay validated the interaction between miR-145-5p and MALAT1. The proliferation, migration and phenotypic transformation of VSMCs induced by overexpression of MALAT1 were reversed in the presence of miR-145-5p. Furthermore, we verified that miR-145-5p could directly target and bind to hexokinase 2 (HK2) mRNA, and that HK2 expression was negatively correlated with miR-145-5p in VSMCs. Knockdown of HK2 significantly inhibited the effects of overexpression of MALAT1 on Ang II-induced VSMCs proliferation, migration and phenotypic transformation. Taken together, the MALAT1/miR-145-5p/HK2 axis may play a critical regulatory role in the vascular remodeling of VSMCs in hypertension.
Collapse
Affiliation(s)
- Jiangyong Yang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Guojun Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ling Huang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Zhongyi Liu
- Department of Medical Research, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Rengui Jiang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Gang Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Hengqing Zhu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Lemei Chen
- Department of Medical Research, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Xiaoming Chen
- Department of Medical Research, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Fang Pei
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Zhu B, Han R, Ni Y, Guo H, Liu X, Li J, Wang L. Podocarpusflavone alleviated renal fibrosis in obstructive nephropathy by inhibiting Fyn/Stat3 signaling pathway. J Nat Med 2023; 77:464-475. [PMID: 36884159 DOI: 10.1007/s11418-023-01685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/04/2023] [Indexed: 03/09/2023]
Abstract
Tubulointerstitial fibrosis is a common pathological change in end-stage renal disease. However, limited treatment methods are developed, and unexplained potential mechanisms of renal diseases are urgent problems to be solved. In the present research, we first elucidated the role of podocarpusflavone (POD), a biflavone compound, in unilateral ureteral obstruction (UUO) in rodent model which is characterized by inflammation and fibrosis. The changes in histology and immunohistochemistry were observed that POD exerted renoprotective effects by retarding the infiltration of macrophage and aberrant deposition of ɑ-SMA, Col1a1, and fibronectin. Consistent with in vivo assay, POD treatment also ameliorated the process of fibrosis in TGF-β1-stimulated renal tubular epithelial cells and inflammation in LPS-induced RAW264.7 cells in vitro. In terms of mechanism, our results showed that treatment with POD inhibited the aggravated activation of Fyn in the UUO group, and weakened the level of phosphorylation of Stat3 which indicated that POD may alleviate the process of fibrosis by the Fyn/Stat3 signaling pathway. Furthermore, the gain of function assay by lentivirus-mediated exogenous forced expression of Fyn abrogated the therapeutic effect of the POD on renal fibrosis and inflammation. Collectively, it can be concluded that POD exerted a protective effect on renal fibrosis by mediating Fyn/Stat3 signaling pathway.
Collapse
Affiliation(s)
- Bingwen Zhu
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Rangyue Han
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yufang Ni
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Huaiying Guo
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- The Clinical Laboratory of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoheng Liu
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianchun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Gottsäter A, Nilsson PM. Are there additional benefits of blood pressure control in patients with abdominal aortic aneurysm besides cardiovascular risk reduction? Eur J Vasc Endovasc Surg 2022; 64:405-406. [DOI: 10.1016/j.ejvs.2022.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
|
6
|
Network Pharmacology and In Vivo Analysis of Dahuang-Huangqi Decoction Effectiveness in Alleviating Renal Interstitial Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4194827. [PMID: 35774743 PMCID: PMC9239803 DOI: 10.1155/2022/4194827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Dahuang and Huangqi are the most frequently prescribed treatment methods for chronic kidney disease in China. Our study aimed to clarify the pharmacological mechanism of action of Dahuang-Huangqi decoction (DHHQD) in renal interstitial fibrosis (RIF). The intersection of genes targeted by DHHQD active ingredients and RIF target genes was searched using network pharmacology to build a chemical ingredient and disease target network. For in vivo analysis, Sprague–Dawley rats with unilateral urethral obstruction (UUO) were administered DHHQD, and their kidney function-related indicators and pathological indices were determined. The expression of core targets was quantified using real-time polymerase chain reaction and western blotting. A total of 139 common targets for DHHQD and RIF in chronic kidney disease were detected. Compared with the untreated UUO rats, the DHHQD-treated rats showed reductions in the following: blood urea nitrogen and serum creatinine levels, kidney tubular atrophy and necrosis, interstitial fibrosis, hyperplasia and abnormal deposition of extracellular matrix, and microstructural changes in the mesangial matrix and glomerular basement membrane. DHHQD treatment significantly regulated the levels of renal core proteins, such as eNOS, IL-6, EGFR, and VEGF and reduced the mRNA and protein expression of the core targets involved in inflammation pathways, such as PI3K/AKT and TLR4/NF-κB. DHHQD treatment ameliorated the severity of RIF by potentially regulating the AKT/PI3K and TLR4/NF-κB signaling pathways. Our study findings provide insights into the mechanisms associated with DHHQD action and essential data for future research.
Collapse
|
7
|
Devan AR, Nair B, Kumar AR, Nath LR. An insight into the role of telmisartan as PPAR-γ/α dual activator in the management of nonalcoholic fatty liver disease. Biotechnol Appl Biochem 2022; 69:461-468. [PMID: 33578449 DOI: 10.1002/bab.2123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disease. It is rapidly emerging as the frequent cause for liver transplantation with the risk of disease recurrence, even after transplantation. Clinical evidence showed an abnormally altered expression of different peroxisome proliferator-activated receptor (PPAR) isotypes (PPAR-α/γ/δ) in NAFLD with an involvement in the induction of insulin resistance, hepatic steatosis, reactive oxygen species (ROS) formation, and hepatic inflammation. Recently, several dual PPAR-γ/α agonists were developed to simultaneously achieve the insulin-sensitizing effect of PPAR-γ as well as lipid catabolizing effect of PPAR-α. PPAR-α activation could counterbalance the steatogenic and adipogenic effects of PPAR-γ. But most of the drugs were ended in the initial level itself due to harmful adverse effects. In the present review, we discuss the possible mechanism of telmisartan, a typical angiotensin receptor blocker with excellent safety and pharmacokinetic profile, as a PPAR-γ/α dual agonist in the treatment of NAFLD.
Collapse
Affiliation(s)
- Aswathy R Devan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Ayana R Kumar
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
8
|
Study on the Potential Mechanism of Fructus Tribuli in the Treatment of Hypertensive Vascular Remodeling Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8862176. [PMID: 33505509 PMCID: PMC7810546 DOI: 10.1155/2021/8862176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 01/07/2023]
Abstract
Background Hypertensive vascular remodeling (HVR) is the pathophysiological basis of hypertension, which is also an important cause of vascular disease and target organ damage. Treatment with Fructus Tribuli (FT), a traditional Chinese medicine, has a positive effect on HVR. However, the pharmacological mechanisms of FT are still unclear. Therefore, this study aimed to reveal the potential mechanisms involved in the effects of FT on HVR based on network pharmacology and molecular docking. Materials and Methods We selected the active compounds and targets of FT according to the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Swiss Target Prediction database, and the targets of HVR were collected from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and DrugBank databases. The protein-protein interaction network (PPI) was established using the STRING database. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and network analysis were performed to further explore the potential mechanisms. Finally, molecular docking methods were used to evaluate the affinity between the active compounds and the main target. Results Seventeen active compounds of FT and 164 potential targets for the treatment of HVR were identified. Component-target and PPI networks were constructed, and 12 main active components and 33 main targets were identified by analyzing the topological parameters. Additionally, GO analysis indicated that the potential targets were enriched in 483 biological processes, 52 cellular components, and 110 molecular functions. KEGG analysis revealed that the potential targets were correlated with 122 pathways, such as the HIF-1 signaling pathway, ErbB signaling pathway, and VEGF signaling pathway. Finally, molecular docking showed that the 12 main active components had a good affinity for the top five main targets. Conclusion This study demonstrated the multiple compounds, targets, and pathway characteristics of FT in the treatment of HVR. The network pharmacology method provided a novel research approach to analyze potential mechanisms.
Collapse
|
9
|
Zhang W, Wang Q, Xing X, Yang L, Xu M, Cao C, Wang R, Li W, Niu X, Gao D. The antagonistic effects and mechanisms of microRNA-26a action in hypertensive vascular remodelling. Br J Pharmacol 2021; 178:1037-1054. [PMID: 33305374 DOI: 10.1111/bph.15337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Hypertensive vascular remodelling is responsible for end-organ damage and is the result of increased extracellular matrix accumulation and excessive vascular smooth muscle cell (VSMC) proliferation. MicroRNA-26a (miR-26a), a non-coding small RNA, is involved in several cardiovascular diseases. We aimed to validate the effect and mechanisms of miR-26a in hypertensive vascular remodelling. EXPERIMENTAL APPROACH Male spontaneously hypertensive rats (SHRs) were injected intravenously with recombinant adeno-associated virus-miR-26a. Samples of thoracic aorta were examined histologically with H&E staining. In vitro, angiotensin II (AngII)-induced VSMCs cultured from thoracic aortae of female Sprague-Dawley rats, were transfected with miR-26a mimic or inhibitor. Western blots, qRT-PCR and immunohistological methods were used, along with chromatin-immunoprecipitation and luciferase reporter assays. Specific siRNAs were used to silence Smad production in VSMCs KEY RESULTS: Levels of miR-26a were lower in the thoracic aorta and plasma of SHRs than in WKY rats. Overexpression of miR-26a inhibited extracellular matrix deposition by targeting connective tissue growth factor (CTGF) and decreased VSMC proliferation by regulating the enhancer of zeste homologue 2 (EZH2)/p21 pathway both in vitro and in vivo. AngII-mediated Smad3 activation suppressed miR-26a expression, which in turn promoted Smad3 activation via targeted regulation of Smad4, leading to further down-regulation of miR-26a. CONCLUSION AND IMPLICATIONS Our data show that AngII stimulated a Smads/miR-26a positive feedback loop, which further reduced expression of miR-26a, leading to collagen production and VSMC proliferation and consequently vascular remodelling. MiR-26a has an antagonistic effect on hypertensive vascular remodelling and can be a strategy for treating hypertensive vascular remodelling.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Qiaozhu Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xin Xing
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lijun Yang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Min Xu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Chunhui Cao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Rong Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Weicheng Li
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiaolin Niu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China.,Department of Cardiology, Meishan Branch of the Third Affiliated Hospital, Yanan University School of Medical, Meishan, P.R. China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
10
|
Martínez VR, Aguirre MV, Todaro JS, Lima AM, Stergiopulos N, Ferrer EG, Williams PA. Zinc complexation improves angiotensin II receptor type 1 blockade and in vivo antihypertensive activity of telmisartan. Future Med Chem 2021; 13:13-23. [PMID: 33243020 DOI: 10.4155/fmc-2020-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Angiotensin II receptor blockers were designed as therapeutic agents to block the binding site of the angiotensin II receptor type 1 (AT1R). Methodology: The structure of telmisartan was modified by coordination to the biometal Zn(II), resulting in the compound ZnTelm. Its antihypertensive activity and cellular mechanisms in comparison to telmisartan were studied. Results: Compared with telmisartan, ZnTelm displayed stronger binding to AT1R (binding studies on AT1R-transfected human embryonic kidney cells) and a greater reduction of reactive oxygen species and cytosolic calcium concentration induced by angiotensin II. The antihypertensive activity of the complex (assessed in an N(G)-Nitro-L-arginine methyl ester-induced hypertension model) was significantly higher. ZnTelm also reduced hypertrophy in aortic artery rings and tubular collagen deposition. Conclusion: ZnTelm enhances the AT1R blockade and consequently its antihypertensive effect.
Collapse
Affiliation(s)
- Valeria R Martínez
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), 120 no. 1465, La Plata, Argentina
| | - María V Aguirre
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Juan S Todaro
- Laboratorio de Investigaciones Bioquímicas, Facultad de Medicina, UNNE, Moreno 1240, Corrientes, Argentina
| | - Augusto Martins Lima
- Laboratory of Hemodynamics & Cardiovascular Technology (LHTC), Institute of Bioengineering (Bâtiment MED), Station 9, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Laboratory of Hemodynamics & Cardiovascular Technology (LHTC), Institute of Bioengineering (Bâtiment MED), Station 9, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), 120 no. 1465, La Plata, Argentina
| | - Patricia Am Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), 120 no. 1465, La Plata, Argentina
| |
Collapse
|
11
|
He L, Liao X, Zhu G, Kuang J. miR-126a-3p targets HIF-1α and alleviates obstructive sleep apnea syndrome with hypertension. Hum Cell 2020; 33:1036-1045. [PMID: 32779153 DOI: 10.1007/s13577-020-00404-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/18/2020] [Indexed: 11/24/2022]
Abstract
The obstructive sleep apnea syndrome (OSAS) is a common sleep-related breathing disorder and an important cause of refractory hypertension. MicroRNAs (miRNAs) are involved in the development of hypertension, but their role in OSAS with hypertension (OSAS-hypertension) has been little studied. Evidence indicates that miR-126a-3p expression is lower in patients with OSAS-hypertension compared with the patients with OSAS alone. However, its role in the pathogenesis of OSAS-hypertension remains unclear. Therefore, this study aims to investigate the role of miR-126a-3p in OSAS-hypertension and to determine whether HIF-1α is involved in this process. Sprague Dawley rats were exposed to chronic intermittent hypoxia (CIH) for 8 weeks to induce OSAS-hypertension. Rat aortic smooth muscle cells (A7r5) were cultured under hypoxia as an in vitro model. Our results showed that rats exposed to 8 week CIH exhibited decreased miR-126a-3p and increased HIF-1α expression. Furthermore, administration of recombinant adeno-associated virus expressing miR-126a-3p (rAAV-miR-126a) counteracted the CIH-induced systolic blood pressure upregulation, oxidase stress, inflammation, and heart and abdominal aorta vascular remodeling. Moreover, the mechanism was associated with its targeted suppression of HIF-1α. These findings suggest that miR-126a-3p might be a novel potential therapeutic target for the treatment of OSAS-hypertension.
Collapse
Affiliation(s)
- Lirong He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Jiangxi, 330006, China
| | - Xin Liao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Jiangxi, 330006, China
| | - Guofeng Zhu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Jiangxi, 330006, China
| | - Jiulong Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Jiangxi, 330006, China.
| |
Collapse
|
12
|
Investigation of the effects of tadalafil and telmisartan in bleomycin-induced pulmonary fibrosis on rats. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.780681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2082145. [PMID: 32774665 PMCID: PMC7396016 DOI: 10.1155/2020/2082145] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Oxidative stress (OS) has the ability to damage different molecules and cellular structures, altering the correct function of organs and systems. OS accumulates in the body by endogenous and exogenous mechanisms. Increasing evidence points to the involvement of OS in the physiopathology of various chronic diseases that require prolonged periods of pharmacological treatment. Long-term treatments may contribute to changes in systemic OS. In this review, we discuss the involvement of OS in the pathological mechanisms of some chronic diseases, the pro- or antioxidant effects of their pharmacological treatments, and possible adjuvant antioxidant alternatives. Diseases such as high blood pressure, arteriosclerosis, and diabetes mellitus contribute to the increased risk of cardiovascular disease. Antihypertensive, lipid-lowering, and hypoglycemic treatments help reduce the risk with an additional antioxidant benefit. Treatment with methotrexate in autoimmune systemic inflammatory diseases, such as rheumatoid arthritis, has a dual role in stimulating the production of OS and producing mitochondrial dysfunction. However, it can also help indirectly decrease the systemic OS induced by inflammation. Medicaments used to treat neurodegenerative diseases tend to decrease the mechanisms related to the production of reactive oxygen species (ROS) and balance OS. On the other hand, immunosuppressive treatments used in cancer or human immunodeficiency virus infection increase the production of ROS, causing significant oxidative damage in different organs and systems without widely documented exogenous antioxidant administration alternatives.
Collapse
|
14
|
Yang C, Wu X, Shen Y, Liu C, Kong X, Li P. Alamandine attenuates angiotensin II-induced vascular fibrosis via inhibiting p38 MAPK pathway. Eur J Pharmacol 2020; 883:173384. [PMID: 32707188 DOI: 10.1016/j.ejphar.2020.173384] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
Alamandine attenuates hypertension and cardiac remodeling in spontaneously hypertensive rats (SHRs). We examined whether alamandine attenuates vascular remodeling in mice, and regulates angiotensin II (Ang II)-induced fibrosis in rat vascular smooth muscle cells (VSMCs). Alamandine attenuated hypertension in mice induced by Ang II. Ang II increased the fibrosis of thoracic aorta in mice, which was attenuated by alamandine treatment. Increased levels of collagen I, transforming growth factor-β (TGF-β), and connective tissue growth factor (CTGF) levels in thoracic aortas after Ang II treatment in mice were inhibited by alamandine. Ang II-stimulated collagen I, TGF-β, and CTGF level increases were inhibited by alamandine in rat VSMCs. This could be reversed by Mas-related G protein-coupled receptor, member D (MrgD) antagonist D-Pro7-Ang-(1-7) but not Mas receptor antagonist A779. MrgD expression was increased in the thoracic aortas of mice or VSMCs treatment with Ang II. Ang II increased p-p38 and cAMP levels in rat VSMCs, and alamandine blocked Ang II-induced these increases. Cyclic adenosine monophosphate (cAMP) reversed the inhibitory effects of alamandine on the Ang II-induced increases in collagen I, TGF-β, and CTGF levels. These results demonstrate alamandine attenuates vascular fibrosis by stimulating MrgD expression and decreases arterial fibrosis by blocking p-p38 expression. Alamandine/MrgD axis is a potential target for the treatment of vascular remodeling.
Collapse
Affiliation(s)
- Chuanxi Yang
- Medical Department of Southeast University, Nanjing, China
| | - Xiaoguang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihui Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiangqing Kong
- Medical Department of Southeast University, Nanjing, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Inhibitory Effects of Roseoside and Icariside E4 Isolated from a Natural Product Mixture (No-ap) on the Expression of Angiotensin II Receptor 1 and Oxidative Stress in Angiotensin II-Stimulated H9C2 Cells. Molecules 2019; 24:molecules24030414. [PMID: 30678135 PMCID: PMC6384670 DOI: 10.3390/molecules24030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/12/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Hypertension is a major risk factor for the development of cardiovascular diseases. This study aimed to elucidate whether the natural product mixture No-ap (NA) containing Pine densiflora, Annona muricate, and Monordica charantia, or its single components have inhibitory effects on hypertension-related molecules in Angiotensin II (Ang II)-stimulated H9C2 cells. Individual functional components were isolated and purified from NA using various columns and solvents, and then their structures were analyzed using ESI–MS, 1H-NMR, and 13H-NMR spectra. H9C2 cells were stimulated with 300 nM Ang II for 7 h. NA, telmisartan, ginsenoside, roseoside (Roseo), icariside E4 (IE4), or a combination of two components (Roseo and IE4) were administered to the cells 1 h before Ang II stimulation. The expression and activity of hypertension-related molecules or oxidative molecules were determined using RT-PCR, western blot, and ELISA. Ang II stimulation increased the expression of Ang II receptor 1 (AT1), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), tumor growth factor-β (TGF-β) mRNA, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and the levels of hydrogen peroxide (H2O2) and superoxide anion (•O2−) and reduced anti-oxidant enzyme activity. NA significantly improved the expression or activities of all hypertension-related molecules altered in Ang II-stimulated cells. Roseo or IE4 pretreatment either decreased or increased the expression or activities of all hypertension-related molecules similar to NA, but to a lesser extent. The pretreatment with a combination of Roseo and IE4 (1:1) either decreased or increased the expression of all hypertension-related molecules, compared to each single component, revealing a synergistic action of the two compounds. Thus, the combination of single components could exert promising anti-hypertensive effects similar to NA, which should be examined in future animal and clinical studies.
Collapse
|
16
|
Zhang Q, Liu H, Yang J. Regulation of TGF-β1 on PI3KC3 and its role in hypertension-induced vascular injuries. Exp Ther Med 2018; 17:1717-1727. [PMID: 30783440 PMCID: PMC6364233 DOI: 10.3892/etm.2018.7128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to investigate the expression and role of transforming growth factor (TGF)-β1/phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3) in the peripheral blood in patients with hypertension. A total of 28 patients with primary hypertension and 20 healthy control subjects were included. Peripheral blood samples were collected. The mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell counting kit-8 assay, Transwell chamber assay and flow cytometry were performed to detect the cell proliferation, migration ability and cellular apoptosis, respectively. Laser scanning confocal microscopy was used to detect the intracellular autophagosomes. The expression of TGF-β1 was significantly elevated, whereas the expression of PI3KC3 was significantly downregulated in the patients with hypertension compared with controls. There was negative correlation between the TGF-β1 and PI3KC3 expression. Following treatment with TGF-β1, the protein expression of PI3KC3 was significantly decreased in human umbilical vein endothelial cells (HUVECs), and the autophagic activity was significantly decreased. Furthermore, following the treatment of TGF-β1 the proliferation of HUVECs was significantly reduced in the HUVECs, the hypoxia-induced apoptosis rates were significantly elevated and the number of penetrating cells were significantly declined (indicating declined migration ability). However, the overexpression of PI3KC3 significantly ameliorated the proliferation, migration ability and hypoxia tolerance of TGF-β1-treated HUVECs. In conclusion, the present results indicated that TGF-β1 expression was elevated in the peripheral blood in hypertensive patients and negatively correlated with the PI3KC3 expression; and that TGF-β1 regulates the PI3KC3 signaling pathway to inhibit the autophagic activity of vascular endothelial cells, and regulate the cell proliferation, migration and anti-apoptosis ability, thus aggregating the endothelial cell injuries in hypertension. The results of the current study revealed a novel mechanism of TGF-β1 in the regulation of endothelial cell injury in hypertension, which may provide a potential target for disease therapy.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Hu Liu
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - Jun Yang
- Department of Cardiology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| |
Collapse
|
17
|
Dou F, Liu Y, Liu L, Wang J, Sun T, Mu F, Guo Q, Guo C, Jia N, Liu W, Ding Y, Wen A. Aloe-Emodin Ameliorates Renal Fibrosis Via Inhibiting PI3K/Akt/mTOR Signaling Pathway In Vivo and In Vitro. Rejuvenation Res 2018; 22:218-229. [PMID: 30215298 DOI: 10.1089/rej.2018.2104] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibrosis is the major pathological feature of chronic kidney disease (CKD). Aloe-emodin (AE), one of the main active compounds in Rhubarb, is widely used for renal protection. However, mechanisms implied in the modulation of kidney fibrosis after AE treatment for CKD remain elusive. Here, we explored the protective effects of AE for renal fibrosis and the involved mechanisms in vivo and in vitro. The renal fibrosis mice model was established by unilateral ureteral obstruction (UUO). We found that AE administration significantly ameliorated UUO-induced impairment of kidney, evidenced by improved histopathological abnormalities, body weight, and abnormal renal function in mice model. Immunohistochemical staining showed that TGF-β1 and Fibronectin expressions were significantly decreased in UUO mice compared with sham group. Meanwhile, we found that AE suppressed the activation of the PI3K/Akt/mTOR pathway induced by TGF-β1 in vivo. AE improved cell survival and decreased the level of fibrosis-related proteins under TGF-β1-induced fibrosis in HK-2 cells as well as in vitro. Furthermore, both wortmannin, an inhibitor of PI3K, and short-hairpin RNAs of PI3K knockdown abrogated TGF-β1-induced phosphorylation of Akt and mTOR, and decreased the suppression of fibrosis. These findings indicated that AE alleviated fibrosis by inhibiting PI3K/Akt/mTOR pathway in vivo and in vitro, which may provide a potential therapeutic option for CKD.
Collapse
Affiliation(s)
- Fang Dou
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - YueTong Liu
- 2 Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Limin Liu
- 3 Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Jingwen Wang
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Ting Sun
- 4 Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Fei Mu
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Qiyan Guo
- 5 Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xian, China
| | - Chao Guo
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Na Jia
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Wenxin Liu
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Yi Ding
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | - Aidong Wen
- 1 Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, Xian, China
| |
Collapse
|