1
|
Moldogazieva NT, Zavadskiy SP, Astakhov DV, Sologova SS, Margaryan AG, Safrygina AA, Smolyarchuk EA. Differentially expressed non-coding RNAs and their regulatory networks in liver cancer. Heliyon 2023; 9:e19223. [PMID: 37662778 PMCID: PMC10474437 DOI: 10.1016/j.heliyon.2023.e19223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
The vast majority of human transcriptome is represented by various types of small RNAs with little or no protein-coding capability referred to as non-coding RNAs (ncRNAs). Functional ncRNAs include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which are expressed at very low, but stable and reproducible levels in a variety of cell types. ncRNAs regulate gene expression due to miRNA capability of complementary base pairing with mRNAs, whereas lncRNAs and circRNAs can sponge miRNAs off their target mRNAs to act as competitive endogenous RNAs (ceRNAs). Each miRNA can target multiple mRNAs and a single mRNA can interact with several miRNAs, thereby creating miRNA-mRNA, lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks. Over the past few years, a variety of differentially expressed miRNAs, lncRNAs, and circRNAs (DEMs, DELs, and DECs, respectively) have been linked to cancer pathogenesis. They can exert both oncogenic and tumor suppressor roles. In this review, we discuss the recent advancements in uncovering the roles of DEMs, DELs, and DECs and their networks in aberrant cell signaling, cell cycle, transcription, angiogenesis, and apoptosis, as well as tumor microenvironment remodeling and metabolic reprogramming during hepatocarcinogenesis. We highlight the potential and challenges in the use of differentially expressed ncRNAs as biomarkers for liver cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Sergey P. Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Dmitry V. Astakhov
- Department of Biochemistry, Institute of Biodesign and Complex Systems Modelling, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Susanna S. Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Arus G. Margaryan
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Anastasiya A. Safrygina
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Elena A. Smolyarchuk
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| |
Collapse
|
2
|
Qi Y, Song Y, Cai M, Li J, Yu Z, Li Y, Huang J, Jiang Y, Peng C, Jiang B, Liu S. Vascular endothelial growth factor A is a potential prognostic biomarker and correlates with immune cell infiltration in hepatocellular carcinoma. J Cell Mol Med 2023; 27:538-552. [PMID: 36729917 PMCID: PMC9930434 DOI: 10.1111/jcmm.17678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/30/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths among cancer patients. Vascular endothelial growth factor A (VEGFA) is involved in regulating biological processes, such as angiogenesis and vascular permeability, and is very closely related to the pathogenesis of various tumours, especially vascular-rich, solid tumours. Clinical data of patients with HCC and other tumours were analysed through public databases, such as the TCGA database, Gene Expression Omnibus database, Human Protein Atlas database, STRING, Tumour Immune Estimation Resource and Kaplan-Meier Plotter. The tumour tissues and adjacent normal tissues of patients with HCC from Hunan Provincial People's Hospital were collected to verify the expression of VEGFA by immunohistochemistry, immunofluorescence, Western blotting and qPCR. VEGFA expression is elevated in multiple tumour types and correlates with the prognosis of tumour patients. VEGFA is involved in regulating the tumour microenvironment and immune cell function in tumour development. Inhibition of VEGFA reduces proliferation, invasion, and migration and promotes apoptosis in HCC cells. VEGFA is a potential predictive biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Yuchen Qi
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
- Department of CardiologyXiangdong Hospital Affiliated to Hunan Normal UniversityLilingChina
- Central Laboratory of Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Yinghui Song
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
- Central Laboratory of Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Mengting Cai
- Department of Nuclear MedicineHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Jianwen Li
- Department of CardiologyXiangdong Hospital Affiliated to Hunan Normal UniversityLilingChina
| | - Zhangtao Yu
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Yuhang Li
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Junkai Huang
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Yu Jiang
- Institute of Emergency Medicine/Hunan Provincial Key Laboratory of Emergency and Critical Care MetabonomicsHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Chuang Peng
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Bo Jiang
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Sulai Liu
- Department of Hepatobiliary SurgeryHunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
- Central Laboratory of Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| |
Collapse
|
3
|
Clinical significance of cylindromatosis expression in primary hepatocellular carcinoma. Arab J Gastroenterol 2023; 24:58-64. [PMID: 36720665 DOI: 10.1016/j.ajg.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND STUDY AIM There is currently a lack of sensitive biomarkers for the diagnosis of hepatocellular carcinoma (HCC). Low expression of cylindromatosis (CYLD), a tumor suppressor gene that encodes a deubiquitinase, is associated with the development of HCC. The present study, therefore, aimed to determine the clinical utility of measuring CYLD expression in the early diagnosis of HCC. PATIENTS AND METHODS The present study comprised 257 patients from the Affiliated Hospital of Qingdao University including 90 patients with HCC, 41 patients with liver cirrhosis (LC), 46 patients with hepatitis B (HB), and 80 healthy controls. qPCR was used to measure the amounts of CYLD mRNA in stored blood samples. The sensitivity and specificity of CYLD mRNA in diagnosing HCC was analyzed using receiver operator characteristic (ROC) curves. We also obtained HCC data from the Oncomine database to further verify our results. RESULTS The relative levels of CYLD mRNA in peripheral blood from patients with HCC (median, 0.060; interquartile range [IQR], 0.019-0.260) was significantly lower than in blood from patients with LC (median, 3.732; IQR, 0.648-14.573), HB (median, 0.419; IQR, 0.255-1.809) and healthy controls (median, 1.262; IQR, 0.279-3.537; P < 0.05). CYLD mRNA levels in peripheral blood were significantly higher in patients with LC compared to healthy controls and patients with HB. Oncomine data demonstrated that CYLD mRNA expression levels in HCC tissues were significantly lower than in normal liver tissues. ROC analysis demonstrated that the combined use of peripheral blood levels of CYLD and AFP had the greatest diagnostic accuracy for HCC (area under the curve (AUC), 0.897; 95 % confidence interval [CI], 0.853-0.942). CYLD had utility as a supplementary marker to AFP for diagnosing HCC. CONCLUSION Circulating levels of CYLD mRNA are significantly decreased in patients with HCC, indicating CYLD may have utility as a biomarker of HCC. Combined measurement of CYLD mRNA and AFP protein had the greatest diagnostic accuracy.
Collapse
|
4
|
Systems Pharmacology-Based Strategy to Investigate the Mechanism of Ruangan Lidan Decoction for Treatment of Hepatocellular Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2940654. [PMID: 36578460 PMCID: PMC9791079 DOI: 10.1155/2022/2940654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022]
Abstract
epatocellular carcinoma (HCC) is one of the leading contributors to cancer mortality worldwide. Currently, the prevention and treatment of HCC remains a major challenge. As a traditional Chinese medicine (TCM) formula, Ruangan Lidan decoction (RGLD) has been proved to own the effect of relieving HCC symptoms. However, due to its biological effects and complex compositions, its underlying mechanism of actions (MOAs) have not been fully clarified yet. In this study, we proposed a pharmacological framework to systematically explore the MOAs of RGLD against HCC. We firstly integrated the active ingredients and potential targets of RGLD. We next highlighted 25 key targets that played vital roles in both RGLD and HCC disease via a protein-protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Furthermore, an ingredient-target network of RGLD consisting of 216 ingredients with 306 targets was constructed, and multilevel systems pharmacology analyses indicated that RGLD could act on multiple biological processes related to the pathogenesis of HCC, such as cellular response to hypoxia and cell proliferation. Additionally, integrated pathway analysis of RGLD uncovered that RGLD might treat HCC through regulating various pathways, including MAPK signaling pathway, PI3K/Akt signaling pathway, TNF signaling pathway, and ERBB signaling pathway. Survival analysis results showed that HCC patients with low expression of VEGFA, HIF1A, CASP8, and TOP2A were related with a higher survival rate than those with high expression, indicating the potential clinical significance for HCC. Finally, molecular docking results of core ingredients and targets further proved the feasibility of RGLD in the treatment of HCC. Overall, this study indicates that RGLD may treat HCC through multiple mechanisms, which also provides a potential paradigm to investigate the MOAs of TCM prescription.
Collapse
|
5
|
Chi Y, Gong Z, Xin H, Wang Z, Liu Z. microRNA-206 prevents hepatocellular carcinoma growth and metastasis via down-regulating CREB5 and inhibiting the PI3K/AKT signaling pathway. Cell Cycle 2022; 21:2651-2663. [PMID: 36003063 PMCID: PMC9704407 DOI: 10.1080/15384101.2022.2108275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 04/22/2022] [Accepted: 07/26/2022] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and has continued to increase in incidence worldwide. Moreover, the involvement of microRNAs (miRs) has been reported in the development and progression of HCC. Here, we investigated the role of miR-206 in HCC growth and metastasis. HCC-related microarray datasets were harvested to screen differentially expressed miRNAs in HCC samples followed by prediction of downstream target genes. The dual-luciferase reporter assay verified the target-binding relationship between miR-206 and CREB5. The human HCC cell line MHCC97-H was cultured in vitro and transfected with miR-206 mimic/inhibitor or sh-/oe-CREB5 for analyzing MHCC97-H cell biological functions. The orthotopic xenograft model of HCC mice was constructed to observe the tumorigenic ability of HCC cells in vivo. Bioinformatics analysis found that miR-206 may be involved in HCC growth and metastasis by targeting CREB5 and regulating PI3K/AKT signaling pathway. In vivo animal experiments found that CREB5 was significantly overexpressed in mouse HCC tissues. In HCC cells, miR-206 can target down-regulate the expression of CREB5, thereby inhibiting the activation of PI3K/AKT signaling pathway. Furthermore, in vitro cell experiments confirmed that overexpression of miR-206 could inhibit the PI3K/AKT signaling pathway by down-regulating CREB5 expression, thereby inhibiting the proliferation, migration and invasion of HCC cells. In conclusion, our results revealed that miR-206 could down-regulate the expression of CREB5 and inhibit the activation of PI3K/AKT signaling pathway, thereby preventing HCC growth and metastasis.Abbreviations: HCC: hepatocellular carcinoma; HBV or HCV: hepatitis B or C virus; miRNAs: microRNAs; CREB: cAMP response element-binding protein; CRE: cAMP response elements.
Collapse
Affiliation(s)
- Yuan Chi
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| | - Zheng Gong
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| | - He Xin
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| | - Ziwen Wang
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, ShenyangP.R. China
| |
Collapse
|
6
|
Zhou Y, Liu F, Ma C, Cheng Q. Involvement of microRNAs and their potential diagnostic, therapeutic, and prognostic role in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24673. [PMID: 36036748 PMCID: PMC9551129 DOI: 10.1002/jcla.24673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/01/2022] [Accepted: 08/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) accounts for 85%-90% of primary liver cancer. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by targeting the 3'UTR of mRNA. Abnormal expression and regulation of miRNAs are involved in the occurrence and progression of HCC, and miRNAs can also play a role in the diagnosis and treatment of HCC as oncogenes or tumor suppressors. METHODS In the past decades, a large number of studies have shown that miRNAs play an essential regulatory role in HCC and have potential as biomarkers for HCC. We reviewed the literature to summarize these studies. RESULTS By reviewing the literature, we retrospected the roles of miRNAs in the development, diagnosis, treatment, and prognosis of HCC, and put forward prospects for the further research on miRNAs in the precision treatment of HCC. CONCLUSION MicroRNAs are important regulators and biomarkers in the occurrence, progression, outcome, and treatment of HCC, and can provide new targets and strategies for improving the therapeutic effect of HCC.
Collapse
Affiliation(s)
- Yilong Zhou
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Fan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunyang Ma
- Department of Surgery, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
7
|
Zheng J, Guo Z, Wen Z, Chen H. ZNF561 antisense RNA 1 contributes to angiogenesis in hepatocellular carcinoma through upregulation of platelet-derived growth Factor-D. CHINESE J PHYSIOL 2022; 65:258-265. [DOI: 10.4103/0304-4920.359795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Zhang Y, Su W, Zhang B, Ling Y, Kim WK, Zhang H. Comprehensive analysis of coding and non-coding RNA transcriptomes related to hypoxic adaptation in Tibetan chickens. J Anim Sci Biotechnol 2021; 12:60. [PMID: 33934713 PMCID: PMC8091548 DOI: 10.1186/s40104-021-00582-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Tibetan chickens, a unique native breed in the Qinghai-Tibet Plateau of China, possess a suite of adaptive features that enable them to tolerate the high-altitude hypoxic environment. Increasing evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play roles in the hypoxic adaptation of high-altitude animals, although their exact involvement remains unclear. RESULTS This study aimed to elucidate the global landscape of mRNAs, lncRNAs, and miRNAs using transcriptome sequencing to construct a regulatory network of competing endogenous RNAs (ceRNAs) and thus provide insights into the hypoxic adaptation of Tibetan chicken embryos. In total, 354 differentially expressed genes (DE genes), 389 differentially expressed lncRNAs (DE lncRNAs), and 73 differentially expressed miRNAs (DE miRNAs) were identified between Tibetan chickens (TC) and control Chahua chickens (CH). GO and KEGG enrichment analysis revealed that several important DE miRNAs and their target DE lncRNAs and DE genes are involved in angiogenesis (including blood vessel development and blood circulation) and energy metabolism (including glucose, carbohydrate, and lipid metabolism). The ceRNA network was then constructed with the predicted DE gene-DE miRNA-DE lncRNA interactions, which further revealed the regulatory roles of these differentially expressed RNAs during hypoxic adaptation of Tibetan chickens. CONCLUSIONS Analysis of transcriptomic data revealed several key candidate ceRNAs that may play high-priority roles in the hypoxic adaptation of Tibetan chickens by regulating angiogenesis and energy metabolism. These results provide insights into the molecular mechanisms of hypoxic adaptation regulatory networks from the perspective of coding and non-coding RNAs.
Collapse
Affiliation(s)
- Ying Zhang
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Woyu Su
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Yao Ling
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA, 30602, USA.
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Plateau Animal Genetic Resources Center, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China.
| |
Collapse
|
9
|
Meng WJ, Pathak S, Zhang X, Adell G, Jarlsfelt I, Holmlund B, Wang ZQ, Zhang AS, Zhang H, Zhou ZG, Sun XF. Expressions of miR-302a, miR-105, and miR-888 Play Critical Roles in Pathogenesis, Radiotherapy, and Prognosis on Rectal Cancer Patients: A Study From Rectal Cancer Patients in a Swedish Rectal Cancer Trial of Preoperative Radiotherapy to Big Database Analyses. Front Oncol 2020; 10:567042. [PMID: 33123477 PMCID: PMC7573294 DOI: 10.3389/fonc.2020.567042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Differential expressions and functions of various micoRNAs (miRNAs) have been intensively studied in both colon and rectal cancers. However, the importance of miRNAs on radiotherapy (RT) response and clinical outcome in rectal cancer patients remains unclear. In this study, we used real-time polymerase chain reaction to examine the expressions of miR-302a, miR-105, and miR-888 in normal mucosa and cancer tissue from rectal cancer patients with and without preoperative RT. The biological function of miR-302a, miR-105, and miR-888 expression was further analyzed and identified through the public databases: TCGA (The Cancer Genome Atlas) and GEPIA (Gene Expression Profiling Interactive Analysis). The results showed that the expression of miR-105 in rectal cancer was higher than that in normal mucosa in RT (P = 0.042) and non-RT patients (P = 0.003) and was associated with mucinous histological type (P = 0.004), COX-2 (P = 0.042), and p73 expression (P = 0.030). The expression of miR-302a was shown more frequently in cancers with necrosis (P = 0.033) and with WRAP53 expression (P = 0.015), whereas miR-888 expression occurred more frequently in tumors with protein the expression of survivin (P = 0.015), AEG-1 (astrocyte elevated gene-1) (P = 0.003), and SATB1 (special AT-rich sequence binding protein 1) (P = 0.036). Moreover, TargetScan also predicted AEG-1 and SATB1 as putative targets for miR-888. The miRNA-gene network analysis showed that ABI2 was associated with all the three miRNAs, with lower expression and good diagnostic value in rectal cancers. The TCGA database demonstrated the association of miR-105 expression with high carcinoembryonic antigen level (P = 0.048). RT reduced the expressions of miR-302a, miR-105, and miR-888. Prognostic analysis showed that miR-888 expression was independently associated with worse survival of patients without RT [overall survival, P = 0.001; disease-free survival, P = 0.009]. Analysis of biological function revealed that the protein serine/threonine kinase activity and PI3K-AKT signaling pathway were the most significantly enriched functions and pathways, respectively. Our findings suggest that miR-105 is involved in rectal cancer pathogenesis and miR-888 is associated with prognosis. MiR-302a, miR-105, and miR-888 have potential influence on the pathogenesis, RT, and prognosis of rectal cancer.
Collapse
Affiliation(s)
- Wen-Jian Meng
- Department of Oncology and Department of Biomedical and Clinical Sciences, University of Linköping, Linköping, Sweden.,Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Surajit Pathak
- Department of Oncology and Department of Biomedical and Clinical Sciences, University of Linköping, Linköping, Sweden.,Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Xueli Zhang
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
| | - Gunnar Adell
- County Council of Östergötland, University of Linköping, Linköping, Sweden
| | | | - Birgitta Holmlund
- Department of Oncology and Department of Biomedical and Clinical Sciences, University of Linköping, Linköping, Sweden
| | - Zi-Qiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Alexander S Zhang
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Hong Zhang
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, University of Linköping, Linköping, Sweden
| |
Collapse
|
10
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in post-transcriptional regulation of various genes, and their deregulation can lead to tumorigenesis. They may play the role of oncogenes or tumor suppressors by regulating different genes involved in cellular processes. One of the genes regulated by the miRNAs is the vascular endothelial growth factor A (VEGFA), which is responsible for angiogenesis. Angiogenesis is the process of formation of new blood vessels from pre-existing ones. This process plays an important role in tumor development, since it is responsible for the transport of nutrients required for tumor growth. Several studies have shown an increased expression of VEGFA in various cancers. Another gene regulated by miRNAs, the nuclear factor erythroid 2-like-2 (NFE2L2/NRF2), has a cytoprotective function and regulates cellular defense against oxidative stress. The NFE2L2 is the major regulator of cytoprotective agents and their oxidative damage to cells, which is down-regulated by Kelch-like ECH-associated protein 1 (KEAP1) at the post-transcriptional level. Regulation of the VEGFA and NFE2L2 by miRNAs has been observed in hepatocellular carcinoma and breast, lung, esophageal, endometrial, gastric, and ovarian cancer. This review highlights the role of miRNAs in the regulation of VEGFA and NFE2L2 and their relevance as therapeutic targets in various cancers.
Collapse
|
11
|
miR302a and 122 are deregulated in small extracellular vesicles from ARPE-19 cells cultured with H 2O 2. Sci Rep 2019; 9:17954. [PMID: 31784665 PMCID: PMC6884596 DOI: 10.1038/s41598-019-54373-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Age related macular degeneration (AMD) is a common retina-related disease leading to blindness. Little is known on the origin of the disease, but it is well documented that oxidative stress generated in the retinal pigment epithelium and choroid neovascularization are closely involved. The study of circulating miRNAs is opening new possibilities in terms of diagnosis and therapeutics. miRNAs can travel associated to lipoproteins or inside small Extracellular Vesicles (sEVs). A number of reports indicate a significant deregulation of circulating miRNAs in AMD and experimental approaches, but it is unclear whether sEVs present a significant miRNA cargo. The present work studies miRNA expression changes in sEVs released from ARPE-19 cells under oxidative conditions (i.e. hydrogen peroxide, H2O2). H2O2 increased sEVs release from ARPE-19 cells. Moreover, 218 miRNAs could be detected in control and H2O2 induced-sEVs. Interestingly, only two of them (hsa-miR-302a and hsa-miR-122) were significantly under-expressed in H2O2-induced sEVs. Results herein suggest that the down regulation of miRNAs 302a and 122 might be related with previous studies showing sEVs-induced neovascularization after oxidative challenge in ARPE-19 cells.
Collapse
|
12
|
Sun L, Fang Y, Wang X, Han Y, Du F, Li C, Hu H, Liu H, Liu Q, Wang J, Liang J, Chen P, Yang H, Nie Y, Wu K, Fan D, Coffey RJ, Lu Y, Zhao X, Wang X. miR-302a Inhibits Metastasis and Cetuximab Resistance in Colorectal Cancer by Targeting NFIB and CD44. Am J Cancer Res 2019; 9:8409-8425. [PMID: 31754405 PMCID: PMC6857048 DOI: 10.7150/thno.36605] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Metastasis and drug resistance contribute substantially to the poor prognosis of colorectal cancer (CRC) patients. However, the epigenetic regulatory mechanisms by which CRC develops metastatic and drug-resistant characteristics remain unclear. This study aimed to investigate the role of miR-302a in the metastasis and molecular-targeted drug resistance of CRC and elucidate the underlying molecular mechanisms. Methods: miR-302a expression in CRC cell lines and patient tissue microarrays was analyzed by qPCR and fluorescence in situ hybridization. The roles of miR-302a in metastasis and cetuximab (CTX) resistance were evaluated both in vitro and in vivo. Bioinformatic prediction algorithms and luciferase reporter assays were performed to identify the miR-302a binding regions in the NFIB and CD44 3'-UTRs. A chromatin immunoprecipitation assay was performed to examine NFIB occupancy in the ITGA6 promoter region. Immunoblotting was performed to identify the EGFR-mediated pathways altered by miR-302a. Results: miR-302a expression was frequently reduced in CRC cells and tissues, especially in CTX-resistant cells and patient-derived xenografts. The decreased miR-302a levels correlated with poor overall CRC patient survival. miR-302a overexpression inhibited metastasis and restored CTX responsiveness in CRC cells, whereas miR-302a silencing exerted the opposite effects. NFIB and CD44 were identified as novel targets of miR-302a. miR-302a inhibited the metastasis-promoting effect of NFIB that physiologically activates ITGA6 transcription. miR-302a restored CTX responsiveness by suppressing CD44-induced cancer stem cell-like properties and EGFR-mediated MAPK and AKT signaling. These results are consistent with clinical observations indicating that miR-302a expression is inversely correlated with the expression of its targets in CRC specimens. Conclusions: Our findings show that miR-302a acts as a multifaceted regulator of CRC metastasis and CTX resistance by targeting NFIB and CD44, respectively. Our study implicates miR-302a as a candidate prognostic predictor and a therapeutic agent in CRC.
Collapse
|
13
|
Wang M, Lv G, Jiang C, Xie S, Wang G. miR-302a inhibits human HepG2 and SMMC-7721 cells proliferation and promotes apoptosis by targeting MAP3K2 and PBX3. Sci Rep 2019; 9:2032. [PMID: 30765768 PMCID: PMC6375964 DOI: 10.1038/s41598-018-38435-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/28/2018] [Indexed: 01/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and has a poor prognosis. miR-302a is an important regulator of tumor occurrence and deterioration, while MAP3K2 and PBX3 genes are involved in cancer cell proliferation and apoptosis. In this study, the expression of miR-302a and MAP3K2/PBX3 were evaluated by qPCR in liver cancer cell lines. Next, the target relationship between miR-302a and MAP3K2/PBX3 was verified using luciferase assays. Meanwhile, the expression correlation between miR-302a and target genes was analyzed in cancer tissue and para-cancerous tissue. In addition, an increased miR-302a level in HepG2 cells and SMMC-7721 cells were achieved through transfection with miR-302a mimics, and the effects on HepG2 cell and SMMC-7721 cell proliferation, apoptosis and MAPK pathways were determined using MTT, flow cytometry, qPCR and western blot assays. The results showed that liver cancer cell lines exhibited low miR-302a expression and MAP3K2 and PBX3 were confirmed to be the target genes of miR-302a. Meanwhile, the HE results showed that cells became enlarged with loose cytoplasm and formed balloon-like lesions in HCC specimens and we found a significant negative correlation between miR-302a and MAP3K2/PBX3 expression. In addition, treatment with miR-302a mimics inhibited HepG2 cells and SMMC-7721 cells proliferation and increased the apoptosis rate. Further research revealed that the MAPK key factors p-p38, p-ERK1/2 and p-JNK were significantly reduced in miR-302a transfected cells and MAP3K2/PBX3 silenced cells. Besides, MAP3K2 and PBX3 overexpression in miR-302a mimics-treated cells exerted the opposite effects. In conclusion, miR-302a inhibited proliferation and promoted apoptosis in human hepatoma cells by targeting MAP3K2 and PBX3.
Collapse
Affiliation(s)
- Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Chao Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Shuli Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
14
|
Chu A, Liu J, Yuan Y, Gong Y. Comprehensive Analysis of Aberrantly Expressed ceRNA network in gastric cancer with and without H.pylori infection. J Cancer 2019; 10:853-863. [PMID: 30854091 PMCID: PMC6400797 DOI: 10.7150/jca.27803] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Objective: This study mainly focused on revealing ceRNA network in gastric cancer (GC) with Hp infection after comparing with GC without Hp infection and exploring the biological function and prognostic relevance of related molecules. Methods: The RNA expression profile data of GC patients with or without Hp infection were extracted from TCGA GDC data portal, including 20 GC cases with Hp infection and 168 GC cases without Hp infection. Differentially expressed lncRNAs, miRNAs and mRNAs were unveiled by package edgeR of R, and lncRNA-miRNA-mRNA ceRNA network was constructed by integrating the miRNA target information and the expression data of lncRNAs, miRNAs and mRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of aberrantly expressed mRNAs were performed to identify the related biological functions and pathologic pathways, and protein-protein interaction (PPI) network was constructed by STRING database. The overall survival (OS) of aberrantly expression lncRNAs and miRNAs were analyzed by package survival of R. A total of 30 gastric cancer tissues were used to validate the bioinformatics analysis results by real-time PCR. Results: Among the 32 differentially expressed miRNAs, 27 differentially expressed lncRNAs and 257 differentially expressed mRNAs were identified by comparing GC patients with and without Hp infection. Totally 10 miRNA, 11 lncRNA, 219 mRNA were included to build ceRNA network. GO and KEGG analysis revealed that differentially expressed mRNAs involved in the ceRNA network were mainly involved in extracellular exosomes, structural molecular activities, proteolysis and P13K-Akt signaling pathways. And PPI analysis obtained six hub genes of NTS, APOC3, OTX2, KRT13, CALCA, GNG4. Survival analysis showed that four lncRNAs (LINC01254, LINC01287, LINC01524, U95743.1) and four miRNAs (miR-302a, miR-302b, miR-1286, miR-378g) were associated with overall survival of GC with Hp infection. The real-time PCR results showed that, the levels of LINCO1254, LINCO1287, LINCO1524, U95743.1 were significantly higher in Hp positive GC patients than Hp negative patients (P=0.02, 0.048, 0.04, 0.036, respectively). Conclusion: Using TCGA database for data mining, we have successfully constructed a ceRNA regulatory network of GC with Hp infection, consisting of 10 lncRNAs, 11 miRNAs and 219 mRNAs. These findings might provide critical clues for the regulatory role of ceRNA network in the development of GC with Hp infection.
Collapse
Affiliation(s)
- Aining Chu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
15
|
Cao J, Li L, Han X, Cheng H, Chen W, Qi K, Chen C, Wu Q, Niu M, Zeng L, Xu K. miR-302 cluster inhibits angiogenesis and growth of K562 leukemia cells by targeting VEGFA. Onco Targets Ther 2019; 12:433-441. [PMID: 30662269 PMCID: PMC6329480 DOI: 10.2147/ott.s190146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background miR-302 cluster has been reported as a tumor suppressor in many human cancers; yet, its function in chronic myeloid leukemia (CML) tumorigenesis remains largely unclear. The study was aimed to explore the functional roles of miR-302 cluster in CML progression. Materials and methods Quantitative reverse transcriptase PCR and Western blot were performed to evaluate miR-302 cluster and vascular endothelial growth factor A (VEGFA) expression levels. Cell Counting Kit-8 assay, colony formation assay and human umbilical vein endothelial cell line capillary tube formation were used to determine the influence of miR-302 cluster on the growth and angiogenesis of K562 cells, respectively. Luciferase reporter assay was employed to confirm the direct target interaction between miR-302 cluster and VEGFA. Results This study demonstrated that miR-302 cluster was frequently downregulated in CML samples and cell lines and high level of miR-302 cluster was significantly associated with good prognosis of CML patients. Compared with miRNA negative control, miR-302 cluster mimics obviously suppressed cell growth, colony formation and angiogenesis. Further studies revealed that VEGFA was a direct target gene of miR-302 cluster. Moreover, overexpression of VEGFA dramatically abated the inhibition of miR-302 cluster on cell growth and angiogenesis. Conclusion The present study, for the first time, identified miR-302 cluster as a tumor suppressor, and overexpression of miR-302 cluster inhibited growth and angiogenesis in K562 cells. miR-302 cluster may be a potential therapeutic target in CML to develop the adjuvant antiangiogenic therapy based on VEGFA.
Collapse
Affiliation(s)
- Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Li Li
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiao Han
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Hai Cheng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Chong Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Qingyun Wu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Mingshan Niu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Lingyu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China,
| |
Collapse
|
16
|
Ma J, Li D, Kong FF, Yang D, Yang H, Ma XX. miR-302a-5p/367-3p-HMGA2 axis regulates malignant processes during endometrial cancer development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:19. [PMID: 29391048 PMCID: PMC5796297 DOI: 10.1186/s13046-018-0686-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Metastasis is one of the main reasons for treatment failure in endometrial cancer. Notably, high mobility group AT-hook 2 (HMGA2) has been recognized as a driving factor of tumour metastasis. microRNAs (miRNAs) are powerful posttranscriptional regulators of HMGA2. METHODS The binding sites of miR-302a-5p and miR-367-3p on HMGA2 mRNA were identified using bioinformatics prediction software and were validated via luciferase assay. The expression levels of miR-302a-5p and miR-367-3p were detected using quantitative real-time PCR and in situ hybridization. Western blotting and immunohistochemistry were used to detect the levels of HMGA2 and epithelial-mesenchymal transition pathway-related proteins. Co-immunoprecipitation was used to detect protein interactions. The roles of miR-302a-5p and miR-367-3p in the regulation of HMGA2 during the progression of endometrial cancer were investigated using both in vitro and in vivo assays. RESULTS In the present study, high HMGA2 expression was correlated with poor clinical outcomes in endometrial cancer. The binding sites of miRNAs on HMGA2 mRNA were identified using bioinformatics prediction software and were validated via luciferase assay. In the endometrial cancer cell lines Ishikawa and HEC-1A, the overexpression of miR-302a-5p/367-3p significantly inhibited the expression of HMGA2 mRNA. In endometrial cancer tissues, we showed that miR-302a-5p and miR-367-3p were significantly downregulated and thus inversely correlated with HMGA2. The miR-302a-5p and miR-367-3p expression levels were closely correlated with FIGO stage and lymph node metastasis. High expression of miR-302a-5p/367-3p was correlated with high survival rates in endometrial cancer. In addition, miR-302a-5p/367-3p suppressed the malignant behaviour of endometrial carcinoma cells via the inhibition of HMGA2 expression. CONCLUSION Our findings indicate that miR-302a-5p/367-3p-mediated expression of HMGA2 regulates the malignant behaviour of endometrial carcinoma cells, which suggests that the miR-302a-5p/367-3p-HMGA2 axis may be a predictive biomarker of endometrial cancer metastasis and patient survival and a potential therapeutic target in metastatic endometrial cancer.
Collapse
Affiliation(s)
- Jian Ma
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Da Li
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fan-Fei Kong
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Di Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiao-Xin Ma
- Department of Obstetrics and Gynecology, Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|