1
|
Zhou X, Lin S. HOXC10 promotes hypertrophic scar fibroblast fibrosis through the regulation of STMN2 and the TGF-β/Smad signaling pathway. Histochem Cell Biol 2024; 162:403-413. [PMID: 39152325 DOI: 10.1007/s00418-024-02317-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
The pathophysiology of hypertrophic scar (HS) shares similarities with cancer. HOXC10, a gene significantly involved in cancer development, exhibits higher expression levels in HS than in normal skin (NS), suggesting its potential role in HS regulation. And the precise functions and mechanisms by which HOXC10 influences HS require further clarification. Gene and protein expressions were analyzed using raeal-time quantitative polymerase chain reaction (RT-qPCR) and western blot techniques. Cell proliferation and migration were evaluated using EdU proliferation assays, CCK-8 assays, scratch assays, and Transwell assays. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were conducted to investigate the interactions between HOXC10 and STMN2. HOXC10 and STMN2 expression levels were significantly higher in HS tissues compared with NS tissues. Silencing HOXC10 led to decreased activation, proliferation, migration, and fibrosis in hypertrophic scar fibroblasts (HSFs). Our findings also indicate that HOXC10 directly targets STMN2. The promotional effects of HOXC10 knockdown on HSF activation, proliferation, migration, and fibrosis were reversed by STMN2 overexpression. We further demonstrated that HOXC10 regulates HSF activity through the TGF-β/Smad signaling pathway. HOXC10 induces the activation and fibrosis of HSFs by promoting the transcriptional activation of STMN2 and engaging the TGF-β/Smad signaling pathway. This study suggests that HOXC10 could be a promising target for developing treatments for HS.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Medical Cosmetology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15, Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China
| | - Song Lin
- Department of Medical Cosmetology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15, Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
2
|
Liu Y, Xiong X, Cao N, Zhao Y. Diagnosis and Treatment of Keloid: Method Summary and Effect Evaluation. Clin Cosmet Investig Dermatol 2023; 16:3775-3783. [PMID: 38170138 PMCID: PMC10759814 DOI: 10.2147/ccid.s446018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Keloid is a prevalent skin disorder characterized by the abnormal growth of keloid tissue, which usually occurs following wound healing or surgical incisions. It typically progresses through several stages: the inflammatory stage, the proliferative stage, collagen remodeling, and ultimately the formation of keloid. This review aims to summarize the diagnostic and therapeutic methods for keloid, and evaluate their effectiveness. The diagnosis of keloid is usually based on medical history and clinical manifestations such as pain, itching, erythema, and induration. Other commonly used diagnostic methods include tissue biopsy and ultrasound examination. Various treatment options for keloid exist, including physical therapy, medication, surgical treatment, and radiation therapy. Physical therapy includes pressure therapy, laser therapy, such as silicone sheets, elastic bandages, and laser irradiation. Medication treatment mainly involves the application of topical medications or intralesional injections, such as topical corticosteroids, 5-fluorouracil, and others. Radiation therapy can be administered using applicators and superficial radiation therapy, among other methods. The treatment outcomes of keloid vary from person to person and recurrence is common. Therefore, a comprehensive treatment approach may be the most effective strategy. Individualized treatment plans should consider factors such as the patient's age, gender, medical history, and the severity of the condition. In conclusion, the diagnosis and treatment of keloid require consideration of multiple factors and the implementation of individualized treatment plans. Future research should focus on identifying the molecular mechanisms underlying the occurrence and progression of keloid in order to develop more effective treatment methods.
Collapse
Affiliation(s)
- Yu Liu
- Nuclear Medicine Department, Jilin University Second Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Xiaoliang Xiong
- Nuclear Medicine Department, Jilin University Second Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Nan Cao
- Nuclear Medicine Department, Jilin University Second Hospital, Changchun, Jilin Province, People’s Republic of China
| | - Yinlong Zhao
- Nuclear Medicine Department, Jilin University Second Hospital, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
3
|
Parry D, Allison K. Is the future scarless? - Fibroblasts as targets for scarless wound healing: a narrative review. Scars Burn Heal 2022; 8:20595131221095348. [PMID: 36082315 PMCID: PMC9445533 DOI: 10.1177/20595131221095348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Scarless healing is the ideal outcome of wound healing and is exhibited in some species. This narrative review assembles the current understanding of fibroblast heterogenicity along with the latest fibroblast-related targets for scar reduction therapies. Human regenerative wound healing is deemed possible due to the wound regeneration already seen in the early gestation foetus. Methods: This literature narrative review was undertaken by searching PubMed and Web of Science databases and Google Scholar to find articles concerning the fibroblast involvement in wound healing. We evaluated and collated these articles to form a consensus of the current understanding of the field. Discussion: This article describes current understanding of fibroblast heterogenicity and involvement in wound healing, focusing on the role of fibroblasts during physiological scarring. We also present the current most promising targets involving fibroblasts in the reduction of scarring and how we can manipulate the behaviour of fibroblasts to mimic the wound regeneration models in the human foetus. These targets include the pro-fibrotic EN1 positive fibroblast lineage, TGFβ1 inhibition, and genetic therapies utilising miRNAs and siRNAs. Conclusion: No therapies are currently available to eradicate scarring; however, treatment options are available to reduce the appearance of scarring. Further research into the heterogenicity and interactions of fibroblasts in both the foetus and adult is needed, and this may lead to the development of novel treatments against scarring.
Collapse
Affiliation(s)
- Dylan Parry
- Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Keith Allison
- South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| |
Collapse
|
4
|
Xu L, Sun N, Li G, Liu L. LncRNA H19 promotes keloid formation through targeting the miR-769-5p/EIF3A pathway. Mol Cell Biochem 2021; 476:1477-1487. [PMID: 33389493 DOI: 10.1007/s11010-020-04024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Keloid is a skin disease characterized by fibrous hyperplasia, which is often difficult to cure. Long non-coding RNAs (lncRNAs) have been shown to be associated with the development of many diseases. However, the role and mechanism of lncRNA H19 in keloid has been less studied. Our study found that lncRNA H19 expression was increased in keloid tissues and fibroblasts. Besides, H19 knockdown hindered the proliferation, migration, invasion, extracellular matrix (ECM) deposition, and enhanced the apoptosis of keloid fibroblasts. Further experiments showed that microRNA (miR)-769-5p could be sponged by H19, and its knockdown reversed the suppression effect of H19 knockdown on keloid formation. Eukaryotic initiation factor 3A (EIF3A) was found to be a target of miR-769-5p, and its overexpression inverted the inhibition effect of miR-769-5p overexpression on keloid formation. Moreover, the expression of EIF3A was regulated by H19 and miR-769-5p in keloid fibroblasts. Collectively, LncRNA H19 might play an active role in keloid formation, which might provide a new target for the treatment of keloid.
Collapse
Affiliation(s)
- Lingang Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Sun
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangshuai Li
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linbo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Chen T, Sun L, Yao B, Wang L, Wang Y, Niu Y, Liu R, Mo H, Liu Z, Tu K, Liu Q. MicroRNA‑875‑5p inhibits tumor growth and metastasis of hepatocellular carcinoma by targeting eukaryotic translation initiation factor 3 subunit a. Oncol Rep 2020; 44:2067-2079. [PMID: 33000235 PMCID: PMC7551348 DOI: 10.3892/or.2020.7743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/08/2020] [Indexed: 01/27/2023] Open
Abstract
Accumulating evidence has demonstrated that aberrant microRNA (miRNA) expression is involved in hepatocellular carcinoma (HCC) progression. Previous findings suggested that miRNA (miR)‑875‑5p participates in the development of various types of cancer. However, the expression and function of miR‑875‑5p in HCC remains largely unclear. The analysis of clinical samples in the present study demonstrated that miR‑875‑5p expression was downregulated in HCC tissues compared to adjacent non‑tumor tissues, which was associated with a large tumor size, venous infiltration, advanced tumor‑node‑metastasis stage and unfavorable overall survival. In vitro experiments revealed that ectopic expression of miR‑875‑5p suppressed, whereas inhibition of miR‑875‑5p promoted HCC cell proliferation, migration, invasion and epithelial‑to‑mesenchymal transition (EMT) progression. Overexpression of miR‑875‑5p restrained HCC tumor growth and metastasis in vivo. Mechanistically, eukaryotic translation initiation factor 3 subunit a (eIF3a) was identified as the downstream target of miR‑875‑5p in HCC. Further experiments demonstrated that the expression of eIF3a was upregulated and negatively correlated with that of miR‑875‑5p in HCC tissues. In addition, miR‑875‑5p negatively regulated the luciferase activity of wild‑type, but not mutant 3'‑untranslated region (3'UTR) of eIF3a mRNA. miR‑875‑5p suppressed eIF3a expression at the mRNA and protein level in HCC cells. Additionally, eIF3a exerted an oncogenic role, and knockdown of eIF3a inhibited the proliferation, motility and EMT of HCC cells. In addition, eIF3a overexpression abolished the inhibitory effects of miR‑875‑5p on the proliferation, motility and EMT in HCC cells. In conclusion, miR‑875‑5p, which was downregulated in HCC, may inhibit tumor growth and metastasis by eIF3a downregulation via targeting its 3'UTR and may be a promising prognostic and therapeutic strategy in HCC.
Collapse
Affiliation(s)
- Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huanye Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Jin J, Zhai HF, Jia ZH, Luo XH. Long non-coding RNA HOXA11-AS induces type I collagen synthesis to stimulate keloid formation via sponging miR-124-3p and activation of Smad5 signaling. Am J Physiol Cell Physiol 2019; 317:C1001-C1010. [PMID: 31411918 DOI: 10.1152/ajpcell.00319.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Keloid, characterized by exuberant collagen deposition and invasive growth beyond original wound margins, results from abnormal wound healing. A recent microarray analysis identified homeobox (HOX) A11 antisense (HOXA11-AS) as a keloid-specific long non-coding RNA, although its potential role in keloid formation remains elusive. In this study, hematoxylin-eosin, Masson, and immunohistochemical staining of type I collagen (ColI) revealed abnormal arrangement and hyperplasia of fibers in keloid tissues along with increased ColI level. qRT-PCR and Western blot showed that HOXA11-AS and ColI were significantly upregulated, while miR-124-3p was decreased in both keloid tissues and human keloid fibroblasts (HKFs). Knockdown of HOXA11-AS inhibited cell proliferation (by CCK-8 and immunofluorescence staining of Ki67) and cell migration (by wound healing and transwell assays). Mechanistic experiments verified that HOXA11-AS acted as a sponge of micro-RNA (miR)-124-3p and Smad5 was a target of miR-124-3p. miR-124-3p sufficiently reversed the regulatory effects of HOXA11-AS, and Smad5 was involved in miR-124-3p-mediated biological functions. Furthermore, HOXA11-AS induced ColI synthesis via sponging miR-124-3p-mediated Smad5 signaling, thus promoting keloid formation. Overall, our study implied that HOXA11-AS induces ColI synthesis to promoted keloid formation via sponging miR-124-3p-mediated Smad5 signaling, which might offer a novel target for developing the therapy of keloid formation.
Collapse
Affiliation(s)
- Jun Jin
- Department of Plastic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Hong-Feng Zhai
- Department of Plastic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Zhen-Hua Jia
- Department of Plastic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Xiao-Hua Luo
- Department of Plastic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
7
|
|