1
|
Bellagamba O, Guo AJ, Senthilkumar S, Lillevik SH, De Biase D, Lai K, Balakrishnan B. Assessment of Long-Term Safety and Efficacy of Purple Sweet Potato Color (PSPC) and Myo-Inositol (MI) Treatment for Motor Related and Behavioral Phenotypes in a Mouse Model of Classic Galactosemia. J Inherit Metab Dis 2025; 48:e70002. [PMID: 39894675 PMCID: PMC11788002 DOI: 10.1002/jimd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Classic galactosemia (CG) is a rare inherited metabolic disease caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase in galactose metabolism. The condition develops as a potentially fatal illness during the newborn period, but its acute clinical manifestations can be alleviated through a galactose restricted diet. Nonetheless, such dietary intervention is inadequate in preventing significant long-term consequences, including neurological impairments, growth restriction, cognitive delays, and, for most females, primary ovarian insufficiency. At present, no effective therapy exists to stop the progression of these complications, highlighting the urgent need for new treatment approaches to be developed. Supplements have been used in the treatment of other inborn errors of metabolism; however, they are not typically included in the clinical therapeutic regimen for CG. Recently, our research team has demonstrated that two generally recognized as safe supplements (purple weet potato color, PSPC and myo-inositol, MI) have been effective in partially restoring functions in the ovaries of our GalT-KO mouse model. However, the toxicological profile of both PSPC and MI has not been determined. In this study, we investigated the acute (30 days) and chronic (180 days) oral toxicities of PSPC and MI both in WT control and GalT-KO mice. Furthermore, our study aims to evaluate the effectiveness of oral feeding of PSPC and MI in correcting motor-related and behavioral phenotypes in GalT-KO mice. The long-term treatment of MI at a lower dose demonstrated promising improvements in motor deficit and anxiety driven hyperactivity in the mutant mice.
Collapse
Affiliation(s)
- Olivia Bellagamba
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Aaron j Guo
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Sandhya Senthilkumar
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | | | | | - Kent Lai
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative Physiology, College of HealthUniversity of UtahSalt Lake CityUtahUSA
| | - Bijina Balakrishnan
- Division of Medical Genetics, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
Zeng J, Cheong LYT, Lo CH. Therapeutic targeting of obesity-induced neuroinflammation and neurodegeneration. Front Endocrinol (Lausanne) 2025; 15:1456948. [PMID: 39897964 PMCID: PMC11781992 DOI: 10.3389/fendo.2024.1456948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Obesity is a major modifiable risk factor leading to neuroinflammation and neurodegeneration. Excessive fat storage in obesity promotes the progressive infiltration of immune cells into adipose tissue, resulting in the release of pro-inflammatory factors such as cytokines and adipokines. These inflammatory mediators circulate through the bloodstream, propagating inflammation both in the periphery and in the central nervous system. Gut dysbiosis, which results in a leaky intestinal barrier, exacerbates inflammation and plays a significant role in linking obesity to the pathogenesis of neuroinflammation and neurodegeneration through the gut-brain/gut-brain-liver axis. Inflammatory states within the brain can lead to insulin resistance, mitochondrial dysfunction, autolysosomal dysfunction, and increased oxidative stress. These disruptions impair normal neuronal function and subsequently lead to cognitive decline and motor deficits, similar to the pathologies observed in major neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Understanding the underlying disease mechanisms is crucial for developing therapeutic strategies to address defects in these inflammatory and metabolic pathways. In this review, we summarize and provide insights into different therapeutic strategies, including methods to alter gut dysbiosis, lifestyle changes, dietary supplementation, as well as pharmacological agents derived from natural sources, that target obesity-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
| | - Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
3
|
Mi W, Hu Z, Zhao S, Wang W, Lian W, Lu P, Shi T. Purple sweet potato anthocyanins normalize the blood glucose concentration and restore the gut microbiota in mice with type 2 diabetes mellitus. Heliyon 2024; 10:e31784. [PMID: 38845993 PMCID: PMC11153189 DOI: 10.1016/j.heliyon.2024.e31784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Background This study investigated the effects of purple sweet potato anthocyanins (PSPA) in a type 2 diabetes mellitus (T2DM) mouse model. Methods Sixty-five male mice were randomly divided into one control group and four experimental groups, which were fed with a high-fat diet and intraperitoneally injected with streptozotocin (STZ) to induce T2DM. The model mice were treated with 0 (M), 227.5 (LP), 455 (MP), or 910 (HP) mg/kg PSPA for ten days. ELISA, 16S rRNA sequencing, and hematoxylin and eosin staining were used to assess blood biochemical parameters, gut microbial composition, and liver tissue structure, respectively. Results The FBG concentration was significantly decreased in the LP (6.32 ± 1.05 mmol/L), MP (6.32 ± 1.05 mmol/L), and HP (5.65 ± 0.83 mmol/L) groups; the glycosylated hemoglobin levels were significantly decreased in the HP group (14.43 ± 7.12 pg/mL) compared with that in the M group (8.08 ± 1.04 mmol/L; 27.20 ± 7.72 pg/mL; P < 0.05). The PSPA treated groups also increased blood glutathione levels compared with M. PSPA significantly affected gut microbial diversity. The Firmicutes/Bacteroidetes ratio decreased by 38.9 %, 49.2 %, and 15.9 % in the LP, MP, and HP groups compared with that in the M group (0.62). The PSPAs treated groups showed an increased relative abundance of Lachnospiraceae_Clostridium, Butyricimonas, and Akkermansia and decreased abundance of nine bacterial genera, including Staphylococcus. Conclusion PSPA reduced blood glucose levels, increased serum antioxidant enzymes, and optimized the diversity and structure of the gut microbiota in mice with T2DM.
Collapse
Affiliation(s)
| | | | - Shuying Zhao
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Wei Wang
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Wu Lian
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Peng Lu
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Tala Shi
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Zhang N, Jing P. Red Cabbage Anthocyanins Attenuate Cognitive Impairment By Attenuating Neuroinflammation and Regulating Gut Microbiota in Aging Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15064-15072. [PMID: 37781995 DOI: 10.1021/acs.jafc.3c03183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Red cabbage anthocyanins may provide health benefits that may be associated with antiaging. The protection of red cabbage anthocyanin-rich extract (ARE) and cyanidin-3-diglucoside-5-glucoside-rich extract (CY3D5G) against age-related cognitive dysfunction was investigated in normal aging mice (male C57BL/6J, 12 months old) administered orally for 12 weeks. Behavioral tests showed that ARE and CY3D5G significantly decreased cognitive impairment (p < 0.05) and had no effect on motor disorder. ARE and CY3D5G increased superoxide dismutase activity by 29.18 and 23.09% and decreased malondialdehyde by 15.74 and 10.05%, respectively, compared to the control. Histological staining showed that ARE and CY3D5G treatment reduced hippocampal neuronal damage and brain-derived neurotrophic factor degeneration. ARE and CY3D5G significantly reduced IL-1β and IL-6 levels in serum and brain (p < 0.05) by promoting the MAPK signaling pathway while enriching the abundance of butyrate-producing bacteria and altering the functional profile of the microbial community. In conclusion, ARE and CY3D5G may attenuate age-related cognitive dysfunction by reducing neuroinflammation and regulating the gut-brain axis.
Collapse
Affiliation(s)
- Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Laveriano-Santos EP, López-Yerena A, Jaime-Rodríguez C, González-Coria J, Lamuela-Raventós RM, Vallverdú-Queralt A, Romanyà J, Pérez M. Sweet Potato Is Not Simply an Abundant Food Crop: A Comprehensive Review of Its Phytochemical Constituents, Biological Activities, and the Effects of Processing. Antioxidants (Basel) 2022; 11:antiox11091648. [PMID: 36139723 PMCID: PMC9495970 DOI: 10.3390/antiox11091648] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, sweet potato (Ipomoea batata L.; Lam.) is considered a very interesting nutritive food because it is rich in complex carbohydrates, but as a tubercle, contains high amounts of health-promoting secondary metabolites. The aim of this review is to summarize the most recently published information on this root vegetable, focusing on its bioactive phytochemical constituents, potential effects on health, and the impact of processing technologies. Sweet potato is considered an excellent source of dietary carotenoids, and polysaccharides, whose health benefits include antioxidant, anti-inflammatory and hepatoprotective activity, cardiovascular protection, anticancer properties and improvement in neurological and memory capacity, metabolic disorders, and intestinal barrier function. Moreover, the purple sweet potato, due to its high anthocyanin content, represents a unique food option for consumers, as well as a potential source of functional ingredients for healthy food products. In this context, the effects of commercial processing and domestic cooking techniques on sweet potato bioactive compounds require further study to understand how to minimize their loss.
Collapse
Affiliation(s)
- Emily P. Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Carolina Jaime-Rodríguez
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Johana González-Coria
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
| | - Joan Romanyà
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Biology, Health, and Environment, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (J.R.); (M.P.)
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XIA, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (J.R.); (M.P.)
| |
Collapse
|
6
|
Hagen-Lillevik S, Johnson J, Siddiqi A, Persinger J, Hale G, Lai K. Harnessing the Power of Purple Sweet Potato Color and Myo-Inositol to Treat Classic Galactosemia. Int J Mol Sci 2022; 23:8654. [PMID: 35955788 PMCID: PMC9369367 DOI: 10.3390/ijms23158654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Classic Galactosemia (CG) is a devastating inborn error of the metabolism caused by mutations in the GALT gene encoding the enzyme galactose-1 phosphate uridylyltransferase in galactose metabolism. Severe complications of CG include neurological impairments, growth restriction, cognitive delays, and, for most females, primary ovarian insufficiency. The absence of the GALT enzyme leads to an accumulation of aberrant galactose metabolites, which are assumed to be responsible for the sequelae. There is no treatment besides the restriction of dietary galactose, which does not halt the development of the complications; thus, additional treatments are sorely needed. Supplements have been used in other inborn errors of metabolism but are not part of the therapeutic regimen for CG. The goal of this study was to test two generally recognized as safe supplements (purple sweet potato color (PSPC) and myo-inositol (MI)) that may impact cellular pathways contributing to the complications in CG. Our group uses a GalT gene-trapped mouse model to study the pathophysiology in CG, which phenocopy many of the complications. Here we report the ability of PSPC to ameliorate dysregulation in the ovary, brain, and liver of our mutant mice as well as positive results of MI supplementation in the ovary and brain.
Collapse
Affiliation(s)
- Synneva Hagen-Lillevik
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84108, USA
| | - Joshua Johnson
- Division of Reproductive Sciences, Aurora, CO 80045, USA
- Division of Reproductive Endocrinology and Infertility, Aurora, CO 80045, USA
- Department of Obstetrics and Gynecology, Aurora, CO 80045, USA
| | - Anwer Siddiqi
- College of Medicine, University of Florida, Jacksonville, FL 32209, USA
| | - Jes Persinger
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80302, USA
| | - Gillian Hale
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kent Lai
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|
7
|
Escobar-Puentes AA, Palomo I, Rodríguez L, Fuentes E, Villegas-Ochoa MA, González-Aguilar GA, Olivas-Aguirre FJ, Wall-Medrano A. Sweet Potato (Ipomoea batatas L.) Phenotypes: From Agroindustry to Health Effects. Foods 2022; 11:foods11071058. [PMID: 35407143 PMCID: PMC8997864 DOI: 10.3390/foods11071058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Sweet potato (SP; Ipomoea batatas (L.) Lam) is an edible tuber native to America and the sixth most important food crop worldwide. China leads its production in a global market of USD 45 trillion. SP domesticated varieties differ in specific phenotypic/genotypic traits, yet all of them are rich in sugars, slow digestible/resistant starch, vitamins, minerals, bioactive proteins and lipids, carotenoids, polyphenols, ascorbic acid, alkaloids, coumarins, and saponins, in a genotype-dependent manner. Individually or synergistically, SP’s phytochemicals help to prevent many illnesses, including certain types of cancers and cardiovascular disorders. These and other topics, including the production and market diversification of raw SP and its products, and SP’s starch as a functional ingredient, are briefly discussed in this review.
Collapse
Affiliation(s)
- Alberto A. Escobar-Puentes
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Anillo envolvente del Pronaf y Estocolmo s/n, Ciudad Juárez 32300, Chihuahua, Mexico; or
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22427, Baja California, Mexico
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (I.P.); (L.R.); (E.F.)
| | - Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (I.P.); (L.R.); (E.F.)
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; (I.P.); (L.R.); (E.F.)
| | - Mónica A. Villegas-Ochoa
- Center for Research on Food and Development, Carretera al ejido la Victoria Km 0.6, Hermosillo 83304, Sonora, Mexico; (M.A.V.-O.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Center for Research on Food and Development, Carretera al ejido la Victoria Km 0.6, Hermosillo 83304, Sonora, Mexico; (M.A.V.-O.); (G.A.G.-A.)
| | - Francisco J. Olivas-Aguirre
- Department of Health Sciences, University of Sonora (Campus Cajeme), Blvd. Bordo Nuevo s/n, 7 Ejido Providencia, Cd. Obregón 85199, Sonora, Mexico
- Correspondence: (F.J.O.-A.); (A.W.-M.); Tel.: +52-(656)-3058685 (F.J.O.-A.); +52-(656)-3052344 (A.W.-M.)
| | - Abraham Wall-Medrano
- Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Anillo envolvente del Pronaf y Estocolmo s/n, Ciudad Juárez 32300, Chihuahua, Mexico; or
- Correspondence: (F.J.O.-A.); (A.W.-M.); Tel.: +52-(656)-3058685 (F.J.O.-A.); +52-(656)-3052344 (A.W.-M.)
| |
Collapse
|
8
|
Salas-Venegas V, Flores-Torres RP, Rodríguez-Cortés YM, Rodríguez-Retana D, Ramírez-Carreto RJ, Concepción-Carrillo LE, Pérez-Flores LJ, Alarcón-Aguilar A, López-Díazguerrero NE, Gómez-González B, Chavarría A, Konigsberg M. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front Integr Neurosci 2022; 16:798995. [PMID: 35422689 PMCID: PMC9002268 DOI: 10.3389/fnint.2022.798995] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overweight and obesity are now considered a worldwide pandemic and a growing public health problem with severe economic and social consequences. Adipose tissue is an organ with neuroimmune-endocrine functions, which participates in homeostasis. So, adipocyte hypertrophy and hyperplasia induce a state of chronic inflammation that causes changes in the brain and induce neuroinflammation. Studies with obese animal models and obese patients have shown a relationship between diet and cognitive decline, especially working memory and learning deficiencies. Here we analyze how obesity-related peripheral inflammation can affect central nervous system physiology, generating neuroinflammation. Given that the blood-brain barrier is an interface between the periphery and the central nervous system, its altered physiology in obesity may mediate the consequences on various cognitive processes. Finally, several interventions, and the use of natural compounds and exercise to prevent the adverse effects of obesity in the brain are also discussed.
Collapse
Affiliation(s)
- Verónica Salas-Venegas
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Rosa Pamela Flores-Torres
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Diego Rodríguez-Retana
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Luis Edgar Concepción-Carrillo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Laura Josefina Pérez-Flores
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Norma Edith López-Díazguerrero
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Beatriz Gómez-González
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Mina Konigsberg
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
- *Correspondence: Mina Konigsberg,
| |
Collapse
|
9
|
Shen H, Han J, Liu C, Cao F, Huang Y. Grape Seed Proanthocyanidins Exert a Radioprotective Effect on the Testes and Intestines Through Antioxidant Effects and Inhibition of MAPK Signal Pathways. Front Med (Lausanne) 2022; 8:836528. [PMID: 35141259 PMCID: PMC8818786 DOI: 10.3389/fmed.2021.836528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022] Open
Abstract
The testes and intestines are highly sensitive to ionizing radiation. Low-dose radiation can cause infertility and enteritis. However, there is a lack of safe and efficient radioprotective agents. This study aims to investigate the radioprotective effects of grape seed proanthocyanidins (GSPs) on testicular and intestinal damage induced by ionizing radiation. In vitro, GSPs reduced the apoptosis and proliferation inhibition of mouse testicular stromal cells TM3 and human small intestinal crypt epithelial cells HIEC induced by ionizing radiation, and alleviated DNA double-strand breaks. In vivo, GSPs ameliorated the pathological damage of the testes and intestines induced by ionizing radiation, and protected the endocrine function of the testes and the barrier function of the intestines. In addition, we preliminarily proved that the radioprotective effect of GSPs is related to its antioxidant effect and inhibition of MAPK signaling pathways. Our results indicate that GSPs are expected to be a safe and effective radioprotective drug.
Collapse
Affiliation(s)
- Hui Shen
- Department of Central Laboratory, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Han
- Department of Radiology, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chunlei Liu
- Department of Radiation Oncology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Fei Cao
- Department of Radiotherapy, Changhai Hospital of Shanghai, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yijuan Huang
- Department of Radiology, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
10
|
Wang M, Yoon G, Song J, Jo J. Exendin-4 improves long-term potentiation and neuronal dendritic growth in vivo and in vitro obesity condition. Sci Rep 2021; 11:8326. [PMID: 33859286 PMCID: PMC8050263 DOI: 10.1038/s41598-021-87809-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome, which increases the risk of obesity and type 2 diabetes has emerged as a significant issue worldwide. Recent studies have highlighted the relationship between metabolic imbalance and neurological pathologies such as memory loss. Glucagon-like peptide 1 (GLP-1) secreted from gut L-cells and specific brain nuclei plays multiple roles including regulation of insulin sensitivity, inflammation and synaptic plasticity. Although GLP-1 and GLP-1 receptor agonists appear to have neuroprotective function, the specific mechanism of their action in brain remains unclear. We investigated whether exendin-4, as a GLP-1RA, improves cognitive function and brain insulin resistance in metabolic-imbalanced mice fed a high-fat diet. Considering the result of electrophysiological experiments, exendin-4 inhibits the reduction of long term potentiation (LTP) in high fat diet mouse brain. Further, we identified the neuroprotective effect of exendin-4 in primary cultured hippocampal and cortical neurons in in vitro metabolic imbalanced condition. Our results showed the improvement of IRS-1 phosphorylation, neuronal complexity, and the mature of dendritic spine shape by exendin-4 treatment in metabolic imbalanced in vitro condition. Here, we provides significant evidences on the effect of exendin-4 on synaptic plasticity, long-term potentiation, and neural structure. We suggest that GLP-1 is important to treat neuropathology caused by metabolic syndrome.
Collapse
Affiliation(s)
- Ming Wang
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea
| | - Gwangho Yoon
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Juhyun Song
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea.
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| | - Jihoon Jo
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea.
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.
- Department of Neurology, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
11
|
Xu Y, Huang Y, Chen Y, Cao K, Liu Z, Wan Z, Liao Z, Li B, Cui J, Yang Y, Xu X, Cai J, Gao F. Grape Seed Proanthocyanidins play the roles of radioprotection on Normal Lung and radiosensitization on Lung Cancer via differential regulation of the MAPK Signaling Pathway. J Cancer 2021; 12:2844-2854. [PMID: 33854585 PMCID: PMC8040900 DOI: 10.7150/jca.49987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
Radiation-induced lung injury (RILI) is a common serious complication and dose-limiting factor caused by radiotherapy for lung cancer. This study was to investigate radioprotective effects of grape seed proanthocyanidins (GSP) on normal lung as well as radiosensitizing effects on lung cancer. In vitro, we demonstrated radioprotective effects of GSP on normal alveolar epithelial cells (MLE-12 and BEAS/2B) and radiosensitizing effects on lung cancer cells (LLC and A549). In vivo, we confirmed these two-way effects in tumor-bearing mice. The results showed that GSP inhibited tumor growth, and played a synergistic killing effect with radiotherapy on lung cancer. Meanwhile, GSP reduced radiation damage to normal lung tissues. The two-way effects related to the differential regulation of the MAPK signaling pathway by GSP on normal lung and lung cancer. Moreover, GSP regulated secretion of cytokines IL-6 and IFN-γ and expression of p53 and Ki67 on normal lung and lung cancer. Our findings suggest that GSP is expected to be an ideal radioprotective drug for lung cancer patients who are treated with radiotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433.,Department of Radiology, Xizang Military General Hospital, 66 Niangre North Road, Lhasa City, Tibet, China, 850000
| | - Yijuan Huang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433.,Department of Radiology, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, Zhejiang, 314000
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| | - Zhe Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| | - Zhijie Wan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| | - Zebin Liao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| | - Jianguo Cui
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| | - Xiaohua Xu
- Department of Nuclear Radiation, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Shanghai, China, 200433
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, China, 200433
| |
Collapse
|
12
|
Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020; 25:E3809. [PMID: 32825684 PMCID: PMC7504512 DOI: 10.3390/molecules25173809] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetables. Dietary sources of anthocyanins include red and purple berries, grapes, apples, plums, cabbage, or foods containing high levels of natural colorants. Cyanidin, delphinidin, malvidin, peonidin, petunidin, and pelargonidin are the six common anthocyanidins. Following consumption, anthocyanin, absorption occurs along the gastrointestinal tract, the distal lower bowel being the place where most of the absorption and metabolism occurs. In the intestine, anthocyanins first undergo extensive microbial catabolism followed by absorption and human phase II metabolism. This produces hybrid microbial-human metabolites which are absorbed and subsequently increase the bioavailability of anthocyanins. Health benefits of anthocyanins have been widely described, especially in the prevention of diseases associated with oxidative stress, such as cardiovascular and neurodegenerative diseases. Furthermore, recent evidence suggests that health-promoting effects attributed to anthocyanins may also be related to modulation of gut microbiota. In this paper we attempt to provide a comprehensive view of the state-of-the-art literature on anthocyanins, summarizing recent findings on their chemistry, biosynthesis, nutritional value and on their effects on human health.
Collapse
Affiliation(s)
- Roberto Mattioli
- Department of Sciences, RomaTre University, v.le G. Marconi 446, 00146 Rome, Italy;
| | - Antonio Francioso
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, p.le Aldo Moro, 5, 00185 Rome, Italy;
| | - Paula Silva
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira n°228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Singh A, Yau YF, Leung KS, El-Nezami H, Lee JCY. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain-Liver-Gut Axis. Antioxidants (Basel) 2020; 9:antiox9080669. [PMID: 32722619 PMCID: PMC7465954 DOI: 10.3390/antiox9080669] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress plays an important role in the onset as well as the progression of inflammation. Without proper intervention, acute inflammation could progress to chronic inflammation, resulting in the development of inflammatory diseases. Antioxidants, such as polyphenols, have been known to possess anti-oxidative properties which promote redox homeostasis. This has encouraged research on polyphenols as potential therapeutics for inflammation through anti-oxidative and anti-inflammatory pathways. In this review, the ability of polyphenols to modulate the activation of major pathways of inflammation and oxidative stress, and their potential to regulate the activity of immune cells are examined. In addition, in this review, special emphasis has been placed on the effects of polyphenols on inflammation in the brain–liver–gut axis. The data derived from in vitro cell studies, animal models and human intervention studies are discussed.
Collapse
|
14
|
Petropoulos SA, Sampaio SL, Di Gioia F, Tzortzakis N, Rouphael Y, Kyriacou MC, Ferreira I. Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants (Basel) 2019; 8:E617. [PMID: 31817206 PMCID: PMC6943509 DOI: 10.3390/antiox8120617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023] Open
Abstract
During the last few decades, the food and beverage industry faced increasing demand for the design of new functional food products free of synthetic compounds and artificial additives. Anthocyanins are widely used as natural colorants in various food products to replenish blue color losses during processing and to add blue color to colorless products, while other compounds such as carotenoids and betalains are considered as good sources of other shades. Root vegetables are well known for their broad palette of colors, and some species, such as black carrot and beet root, are already widely used as sources of natural colorants in the food and drug industry. Ongoing research aims at identifying alternative vegetable sources with diverse functional and structural features imparting beneficial effects onto human health. The current review provides a systematic description of colored root vegetables based on their belowground edible parts, and it highlights species and/or cultivars that present atypical colors, especially those containing pigment compounds responsible for hues of blue color. Finally, the main health effects and antioxidant properties associated with the presence of coloring compounds are presented, as well as the effects that processing treatments may have on chemical composition and coloring compounds in particular.
Collapse
Affiliation(s)
- Spyridon A. Petropoulos
- Crop Production and Rural Environment, Department of Agriculture, University of Thessaly, 38446 Nea Ionia, Greece
| | - Shirley L. Sampaio
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus;
| | - Isabel Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| |
Collapse
|
15
|
Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease. Antioxidants (Basel) 2019; 8:antiox8090333. [PMID: 31443476 PMCID: PMC6770078 DOI: 10.3390/antiox8090333] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are characterized by the death of neurons within specific regions of the brain or spinal cord. While the etiology of many neurodegenerative diseases remains elusive, several factors are thought to contribute to the neurodegenerative process, such as oxidative and nitrosative stress, excitotoxicity, endoplasmic reticulum stress, protein aggregation, and neuroinflammation. These processes culminate in the death of vulnerable neuronal populations, which manifests symptomatically as cognitive and/or motor impairments. Until recently, most treatments for these disorders have targeted single aspects of disease pathology; however, this strategy has proved largely ineffective, and focus has now turned towards therapeutics which target multiple aspects underlying neurodegeneration. Anthocyanins are unique flavonoid compounds that have been shown to modulate several of the factors contributing to neuronal death, and interest in their use as therapeutics for neurodegeneration has grown in recent years. Additionally, due to observations that the bioavailability of anthocyanins is low relative to that of their metabolites, it has been proposed that anthocyanin metabolites may play a significant part in mediating the beneficial effects of an anthocyanin-rich diet. Thus, in this review, we will explore the evidence evaluating the neuroprotective and therapeutic potential of anthocyanins and their common metabolites for treating neurodegenerative diseases.
Collapse
|