1
|
Arslan A, Batar B, Temiz E, Tozkir H, Koyuncu I, Bozgeyik E. Silencing of TP73-AS1 impairs prostate cancer cell proliferation and induces apoptosis via regulation of TP73. Mol Biol Rep 2022; 49:6859-6869. [PMID: 35138524 DOI: 10.1007/s11033-022-07141-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Prostate cancer is a malignant disease that severely affects the health and comfort of the male population. The long non-coding RNA TP73-AS1 has been shown to be involved in the malignant transformation of various human cancers. However, whether TP73-AS1 contributes to prostate cancer progression has not been reported yet. Accordingly, here we aimed to report the role of TP73-AS1 in the development and progression of prostate cancer and determine its relationship with TP73. METHODS AND RESULTS TP73-AS1-specific siRNA oligo duplexes were used to silence TP73-AS1 in DU-145 and PC-3 cells. Results indicated that TP73-AS1 was upregulated whereas TP73 was downregulated in prostate cancer cells compared to normal prostate cells and there was a negative correlation between them. Besides, loss of function experiments of TP73-AS1 in prostate cancer cells strongly induced cellular apoptosis, interfered with the cell cycle progression, and modulated related pro- and anti-apoptotic gene expression. Colony formation and migration capacities of TP73-AS1-silenced prostate cancer cells were also found to be dramatically reduced. CONCLUSIONS Our findings provide novel evidence that suggests a chief regulatory role for the TP73-TP73-AS1 axis in prostate cancer development and progression, suggesting that the TP73/TP73-AS1 axis can be a promising diagnostic and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Ahmet Arslan
- Department of Medical Genetics, Medical Faculty of Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Bahadir Batar
- Department of Medical Biology, Medical Faculty of Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Hilmi Tozkir
- Department of Medical Genetics, Medical Faculty of Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
2
|
Chen C, Wang J, Feng Y, Liang Y, Huang Y, Zou W. TP73-AS1 as a predictor of clinicopathological parameters and prognosis in human malignancies: a meta and bioinformatics analysis. BMC Cancer 2022; 22:581. [PMID: 35614413 PMCID: PMC9134685 DOI: 10.1186/s12885-022-09658-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Long non-coding RNA P73 antisense RNA 1 T (non-protein coding), also known as Lnc RNA TP73-AS1, is dysregulated in various tumors but the correlation between its expression and clinicopathological parameters and/or prognoses in cancer patients is inconclusive. Here, we performed a meta-analysis to evaluate the prognostic value of Lnc RNA TP73-AS1 for malignancies. Methods We systematically searched four online databases including PubMed, the Web of Science, Embase, and the Cochrane Library for eligible articles published up to June 29/2020. Odds ratios (ORs) and Pooled hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to assess the association of TP73-AS1 expression with prognostic and clinicopathological parameters. We further validated TP73-AS1 expression in various malignancies and its potential prognostic value using the GEPIA online database. We predicted potential biological processes and relevant signal mechanisms through the public databases. Results A total of 26 studies examining 14 cancers were analyzed to evaluate the relationship between TP73-AS1 expression, clinicopathological features and prognostic indicators. The results indicated that TP73-AS1 expression markedly correlates with TNM stage (OR = 3.27,95% CI:2.43–4.39, P < 0.00001), tumor size (OR = 3.00, 95%CI:2.08–4.35, P < 0.00001), lymph node metastasis (OR = 2.77, 95%CI:1.42–5.38,P < 0.00001) and distant metastasis (OR = 4.50,95%CI:2. 62–7.73,P < 0.00001). No correlation with age (OR = 1.12,95%CI:0.77–1.64, P > 0.05), gender (OR = 1.08, 95%CI:0.84–1.38, P > 0.05) or differentiation (OR = 1.39, 95%CI:0.71–2.70, P = 0.340) was observed. TP73-AS1 overexpression was a biomarker of poor Overall survival(OS)(HR = 1.85,95%CI:1.53–2.22, P < 0.00001) and Disease-Free-Survival (DFS) (HR = 1.57,95%CI:1.03–2.42, P < 0.05). Dysregulated TP73-AS1 expression and its prognostic value in various cancers was validated based on The Cancer Genome Atlas (TCGA). Further biological function predictions indicated that TP73-AS1 was involved in pro-oncogenic signaling. Conclusions The upregulation of Lnc RNA TP73-AS1 was related to detrimental clinicopathological parameters and can be considered an indicator of poor prognosis for cancer malignancies.
Collapse
Affiliation(s)
- Caizhi Chen
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Jingjing Wang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Yeqian Feng
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Ye Liang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Yan Huang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
3
|
Guo B, Yu L, Sun Y, Yao N, Ma L. Long Non-Coding RNA USP2-AS1 Accelerates Cell Proliferation and Migration in Ovarian Cancer by Sponging miR-520d-3p and Up-Regulating KIAA1522. Cancer Manag Res 2020; 12:10541-10550. [PMID: 33122952 PMCID: PMC7591011 DOI: 10.2147/cmar.s268863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/15/2020] [Indexed: 12/29/2022] Open
Abstract
Background Ovarian cancer is one of the malignant tumors attacking the female reproductive system. Currently, increasing studies have clearly determined the importance of long non-coding RNAs (lncRNAs) in various human cancers including ovarian cancer. However, the role and in-depth mechanism of ubiquitin specific peptidase 2 antisense RNA 1 (USP2-AS1) in ovarian cancer have been not reported yet. Purpose We were absorbed into exploring the character of USP2-AS1 in ovarian cancer. Methods RT-qPCR analysis reflected gene expression. The GEPIA database provided further evidences, and bioinformatics tools analyzed the potential molecules downstream USP2-AS1 in ovarian cancer. The changes on ovarian cancer cellular functions were assessed via EdU, TUNEL, JC-1 and transwell assays. RNA pull down, RIP and luciferase reporter assays estimated molecule interactions. Results USP2-AS1 was obviously up-regulated in ovarian cancer tissues and cell lines. Inhibiting USP2-AS1 had anti-proliferation, pro-apoptosis, and anti-migration effects on ovarian cancer cells. Furthermore, we confirmed that USP2-AS1 sequestered miR-520d-3p to enhance KIAA1522. In addition, miR-520d-3p silence reversed the effect of depleted USP2-AS1 on ovarian cancer cellular behaviors, while such reversion was then abolished by KIAA1522 knockdown. Conclusion USP2-AS1 facilitated ovarian cancer progression via miR-520d-3p/KIAA1522 axis, implying USP2-AS1 as a new perspective for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Bingqin Guo
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233030, Anhui, People's Republic of China
| | - Lan Yu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233030, Anhui, People's Republic of China
| | - Yanhong Sun
- Department of Obstetrics and Gynecology, Huangshan People's Hospital of Anhui Province, Huangshan, Anhui 245000, People's Republic of China
| | - Nan Yao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233030, Anhui, People's Republic of China
| | - Li Ma
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233030, Anhui, People's Republic of China
| |
Collapse
|
4
|
Zhong Y, Zhao M, Yu Y, Li Q, Wang F, Wu P, Zhang W, Miao L. Prognostic value and therapeutic potential of the long noncoding RNA TP73-AS1 in cancers: A systematic review and meta-analysis. Sci Rep 2020; 10:9053. [PMID: 32493915 PMCID: PMC7271165 DOI: 10.1038/s41598-020-65726-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
Studies published in recent years have demonstrated that abnormal long noncoding RNA (lncRNA) antisense RNA to TP73 gene (TP73-AS1) expression is markedly associated with tumorigenesis, cancer progression and the prognosis of cancer patients. We aimed to explore the prognostic value of TP73-AS1 in multiple cancers. We comprehensively searched PubMed, Embase, Web of Science and the Cochrane Library (up to February 21, 2019). Hazard ratios (HRs), odds ratios (ORs) and the corresponding 95% confidence intervals (95% CIs) were calculated to estimate the association of TP73-AS1 with survival and clinicopathological features. The potential targets and pathways of TP73-AS1 in multiple cancers were summarized. Nineteen studies that involved thirteen types of cancers and 1329 cancer patients were identified as eligible for this meta-analysis. The results showed that high TP73-AS1 expression was significantly correlated with shorter overall survival (OS) (HR = 1.962, 95% CI 1.630-2.362) and disease-free survival (DFS) (HR = 2.050, 95% CI 1.293-3.249). The summary HRs of OS were 2.101 (95% CI 1.516-2.911) for gastric cancer (GC) and 1.920 (95% CI 1.253-2.942) for osteosarcoma. Subgroup analysis of OS demonstrated that the differential expression of TP73-AS1 in cancer tissues was a potential source of heterogeneity. Furthermore, increased TP73-AS1 expression was markedly associated with larger tumor size (OR = 2.759, 95% CI 1.759-4.330), advanced histological grade (OR = 2.394, 95% CI 1.231-4.656), lymph node metastasis (OR = 2.687, 95% CI 1.211-5.962), distant metastasis (OR = 4.145, 95% CI 2.252-7.629) and advanced TNM stage (OR = 2.633, 95% CI 1.507-4.601). The results of Egger's test and sensitivity analysis verified the robustness of the original results. High TP73-AS1 expression can predict poor survival and poor clinicopathological features in cancer patients and TP73-AS1 might be a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuan Zhong
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Meng Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yang Yu
- Nantong Tumor Hospital, Nantong, 226300, China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Fei Wang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Peiyao Wu
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Wen Zhang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Lin Miao
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
5
|
Chen H, Tian X, Luan Y, Lu H. Downregulated Long Noncoding RNA DGCR5 Acts as a New Promising Biomarker for the Diagnosis and Prognosis of Ovarian Cancer. Technol Cancer Res Treat 2020; 18:1533033819896809. [PMID: 31868103 PMCID: PMC6928542 DOI: 10.1177/1533033819896809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence have indicated that dysregulated long noncoding ribonucleic acids act as a novel diagnostic and therapeutic target in the progression of ovarian cancer. Long noncoding RNA DiGeorge syndrome critical region gene 5 has been reported to participate in some types of human cancer progresses, but its clinical roles in ovarian cancer had been rarely reported. This study aimed to explore the expression, clinicopathological features, diagnostic, and prognostic values of DiGeorge syndrome critical region gene 5 in ovarian cancer. The total levels of DiGeorge syndrome critical region gene 5 transcript variant 1 (NR_002733.2) and 2 (NR_045121.1) in patients with ovarian cancer were determined by quantitative reverse transcription polymerase chain reaction. The correlation of DiGeorge syndrome critical region gene 5 expression with clinicopathological factors was statistically analyzed by χ2 test. Overall survival analysis was carried out with the Kaplan–Meier curves with the log-rank test. Univariate and multivariate Cox regression analyses were performed to identify the prognostic significance of DiGeorge syndrome critical region gene 5 expression. Receiver operating characteristic curves were constructed to estimate the diagnostic and prognostic usefulness of DiGeorge syndrome critical region gene 5 in ovarian cancer. Results showed that relative DiGeorge syndrome critical region gene 5 expression was reduced by 36.81% and 65.79% in ovarian cancer tissues of patients and Gene Expression Omnibus DataSets (GSE119056) in contrast to normal tissues, respectively. Patients with lymph node metastasis and distant metastasis exhibited lower levels of DiGeorge syndrome critical region gene 5 in contrast to those patients with non-lymph node metastasis and non-distant metastasis, respectively. Low expression of DiGeorge syndrome critical region gene 5 was significantly associated with large tumor size, more lymph node metastasis, present distant metastasis, advanced clinical stage, and short overall survival in patients with ovarian cancer. Low expression of DiGeorge syndrome critical region gene 5 was an independent unfavorable prognostic factor for overall survival in patients with ovarian cancer. Receiver operating characteristics curves for prognosis yielded significant area under curves for lymph node metastasis, clinical stage, and overall survival. In conclusion, our study demonstrated that downregulated DiGeorge syndrome critical region gene 5 may be a new promising biomarker for predicting clinical progression and prognosis in patients with ovarian cancer.
Collapse
Affiliation(s)
- Hongxiao Chen
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiufang Tian
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yajing Luan
- Teaching Center, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Lu
- Department of Gynaecology and Obstetrics, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
6
|
Zhou X, Gao W, Hua H, Ji Z. LncRNA-BLACAT1 Facilitates Proliferation, Migration and Aerobic Glycolysis of Pancreatic Cancer Cells by Repressing CDKN1C via EZH2-Induced H3K27me3. Front Oncol 2020; 10:539805. [PMID: 33072570 PMCID: PMC7538708 DOI: 10.3389/fonc.2020.539805] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the role of lncRNA-BLACAT1 in promoting H3K27 trimethylation of CDKN1C gene by recruiting EZH2 to regulate CCNE on glycolysis and mitochondrial oxidative phosphorylation of pancreatic cancer (PC) cells. METHODS Following bioinformatic prediction, EZH2 and BLACAT1 in PC cells were interfered, and cells proliferation, migration and invasion in each group were detected. Western blotting detected the expression of key proteins of mitochondrial complex. The sub-cellular localization of BLACAT1 was tested, followed by testing the binding of CDKN1C and BLACAT1 with EZH2, followed by in vivo verification. RESULTS Based on bioinformatic prediction, EZH2 and BLACAT1 were highly expressed in PC, while CDKN1C was lowly expressed (all P < 0.05). Interference with EZH2 and BLACAT1 inhibited cell proliferation, migration and aerobic glycolysis, and promoted mitochondrial oxidative phosphorylation (all P < 0.05). BLACAT1 promoted H3K27 trimethylation of CDKN1C through recruiting EZH2 (all P < 0.05). In vivo results showed that BLACAT1 interference inhibited tumor formation (all P < 0.05). CONCLUSION Interference with BLACAT1 inhibits H3K27 trimethylation of CDKN1C gene by blocking EZH2 recruitment to promote CDKN1C expression and inhibit CCNE expression, thus suppressing PC cell proliferation, migration and aerobic glycolysis, and promoting mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Oncology, Linyi People’s Hospital, Linyi, China
| | - Wei Gao
- Department of Clinical Laboratory, Linyi People’s Hospital, Linyi, China
| | - Huanhuan Hua
- Department of Obstetrics and Gynecology, Kuitun Hospital of Yili Kazak Autonomous Prefecture, Yili Kazak Autonomous Prefecture, Xinjiang, China
| | - Zhimin Ji
- Department of Oncology, Linyi People’s Hospital, Linyi, China
- *Correspondence: Zhimin Ji,
| |
Collapse
|
7
|
Liang M, Hu K. Involvement of lncRNA-HOTTIP in the Repair of Ultraviolet Light-Induced DNA Damage in Spermatogenic Cells. Mol Cells 2019; 42:794-803. [PMID: 31697875 PMCID: PMC6883981 DOI: 10.14348/molcells.2019.0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022] Open
Abstract
Ultraviolet light (UV)-induced cellular response has been studied by numerous investigators for many years. Long noncoding RNAs (lncRNAs) are emerging as new regulators of diverse cellular process; however, little is known about the role of lncRNAs in the cellular response to UV treatment. Here, we demonstrate that levels of lncRNA-HOTTIP significantly increases after UV stimulation and regulates the UV-mediated cellular response to UV through the coordinate activation of its neighboring gene Hoxa13 in GC-1 cells (spermatogonia germ cell line). UV-induced, G2/M-phase arrest and early apoptosis can be regulated by lncRNA-HOTTIP and Hoxa13. Furthermore, lncRNA-HOTTIP can up-regulate γ-H2AX and p53 expression via Hoxa13 in UV-irradiated GC-1 cells. In addition, p53 has the ability to regulate the expression of both lncRNA-HOTTIP and Hoxa13 in vitro and in vivo. Our results provide new data regarding the role lncRNAs play in the UV response in spermatogenic cells.
Collapse
Affiliation(s)
- Meng Liang
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu 233030,
China
| | - Ke Hu
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu 233030,
China
| |
Collapse
|
8
|
Guan MM, Rao QX, Huang ML, Wang LJ, Lin SD, Chen Q, Liu CH. Long Noncoding RNA TP73-AS1 Targets MicroRNA-329-3p to Regulate Expression of the SMAD2 Gene in Human Cervical Cancer Tissue and Cell Lines. Med Sci Monit 2019; 25:8131-8141. [PMID: 31663517 PMCID: PMC6842270 DOI: 10.12659/msm.916292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Worldwide, mortality from cervical cancer in women remains high. This study aimed to investigate the expression of long noncoding RNA (lncRNA) TP73-AS1, microRNA-329-3p (miRNA-329-3p), and the SMAD2 gene and their regulatory relationships in human cervical cancer tissue and cervical cancer cell lines. MATERIAL AND METHODS Cervical cancer tissue samples (n=30) and normal control cervical tissues were studied. Cell proliferation and migration were investigated in HeLa and SiHa human cervical cancer cells using the MTT assay, crystal violet staining, wound healing assay, and the transwell assay. Expression of lncRNA TP73-AS1 and the SMAD2 gene were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Enrichment of miR-329-3p was measured using the RNA immunoprecipitation assay (RIPA). Targeting relationships between TP73-AS1, miR-329-3p, and SMAD2 were identified using the dual-luciferase reporter assay. A subcutaneous xenograft model was established, tumor size was measured, and SMAD2 expression was detected using immunohistochemistry. RESULTS LncRNA TP73-AS1 was overexpressed in cervical cancer tissues and cells and was associated with reduced expression of miR-329-3p. Down-regulation of lncRNA TP73-AS1 inhibited cell proliferation, migration and invasion and increased miR-329-3p expression. Expression of SMAD2 down-regulated miR-329-3p and was associated with increased expression of TP73-AS1. LncRNA TP73-AS1 knockdown resulted in miR-329-3p silencing. In tumor xenografts, expression of TP73-AS1 reduced the tumor volume and down-regulated the expression levels of the SMAD2 gene. CONCLUSIONS LncRNA TP73-AS1 promoted proliferation of cervical cancer cell lines by targeting miR-329-3p to regulate the expression of the SMAD2 gene. A regulatory network was formed between lncRNA TP73-AS1, miR-329-3p, and SMAD2.
Collapse
|