1
|
Zhu J, Shen P, Xu Y, Zhang X, Chen Q, Gu K, Ji S, Yang B, Zhao Y. Ferroptosis: a new mechanism of traditional Chinese medicine for cancer treatment. Front Pharmacol 2024; 15:1290120. [PMID: 38292937 PMCID: PMC10824936 DOI: 10.3389/fphar.2024.1290120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, is a novel cellular death pathway characterized by the build-up of lipid peroxidation and reactive oxygen species (ROS) derived from lipids within cells. Recent studies demonstrated the efficacy of ferroptosis inducers in targeting malignant cells, thereby establishing a promising avenue for combating cancer. Traditional Chinese medicine (TCM) has a long history of use and is widely used in cancer treatment. TCM takes a holistic approach, viewing the patient as a system and utilizing herbal formulas to address complex diseases such as cancer. Recent TCM studies have elucidated the molecular mechanisms underlying ferroptosis induction during cancer treatment. These studies have identified numerous plant metabolites and derivatives that target multiple pathways and molecular targets. TCM can induce ferroptosis in tumor cells through various regulatory mechanisms, such as amino acid, iron, and lipid metabolism pathways, which may provide novel therapeutic strategies for apoptosis-resistant cancer treatment. TCM also influence anticancer immunotherapy via ferroptosis. This review comprehensively elucidates the molecular mechanisms underlying ferroptosis, highlights the pivotal regulatory genes involved in orchestrating this process, evaluates the advancements made in TCM research pertaining to ferroptosis, and provides theoretical insights into the induction of ferroptosis in tumors using botanical drugs.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Peipei Shen
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Yu Xu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Xiaojun Zhang
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Qingqing Chen
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Bo Yang
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Yutian Zhao
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Sheikh S, Dehghani H, Kazerani HR. Protective effect of ellagic acid against high-glucose-induced injury in human umbilical venous endothelial cells. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:138-141. [PMID: 38948172 PMCID: PMC11210693 DOI: 10.22038/ajp.2023.22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 07/02/2024]
Abstract
Objective There is escalating evidence suggesting the beneficial effects of ellagic acid (EA) on the cardiovascular system. The aim of the present study was to investigate the protective effect of EA in human umbilical vein endothelial cells (HUVECs) against high glucose (HG)- induced endothelial dysfunction and to study the potential roles of adropin and nitric oxide (NO) in this regard. Materials and Methods The experimental groups consisted of normal and HG (30 mM, 48 hr)-treated HUVECs incubated without or with 5 or 10 μM of EA (6 groups of at least 6 replicates, each). The cell count and viability were studied. Moreover, the markers of the redox state, including malondialdehyde (MDA), the activities of superoxide dismutase (SOD) and catalase enzymes, and ferric reducing anti-oxidant power (FRAP), were assayed. The levels of adropin and eNOS gene expression were also studied using RT-qPCR. Results A high concentration of glucose reduced cell count and caused lipid peroxidation, reduced anti-oxidant capacity of the cells, decreased NO levels, and downregulated the expression of NOS3 (encoding eNOS) and ENHO (encoding adropin) genes. Ellagic acid reversed all these effects. Conclusion These results suggest a significant protective effect for EA against HG-induced injury in HUVECs. The improved redox state and upregulation of NOS3 and ENHO genes seem to play critical roles in this regard.
Collapse
Affiliation(s)
- Somayeh Sheikh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Kazerani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Xu H, Yuan Q, Wu Z, Xu Y, Chen J. Integrative transcriptome and single-cell sequencing technology analysis of the potential therapeutic benefits of oleanolic acid in liver injury and liver cancer. Aging (Albany NY) 2023; 15:15267-15286. [PMID: 38127054 PMCID: PMC10781501 DOI: 10.18632/aging.205349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Oleanolic acid has important hepatoprotective effects and inhibits liver tissue carcinogenesis. The aim of this study was to investigate the mechanism of action of oleanolic acid in inhibiting liver injury and liver cancer. METHOD In this study, we applied differential gene analysis and gene enrichment analysis to identify the targets of oleanolic acid for the treatment of liver injury. And this study also applied Cibersort and GSVA methods to investigate the targets of oleanolic acid in liver injury. Based on oleanolic acid targets, we explored the major targets and further explored the role of the major targets in liver cancer. This study used the oncoPredict and the TIDE algorithm to predict the effect of oleanolic acid on drug resistance. Finally, the binding effect of oleanolic acid to relevant targets was explored using molecular docking techniques. RESULT In this study, oleanolic acid was found to inhibit liver injury and promote liver regeneration mainly by promoting elevated expression of HMOX1. Oleanolic acid can inhibit oxidative stress and promotes Ferroptosis in liver injury. In liver cancer, we identified that the main target of oleanolic acid is HMOX1 and HDAC1. And we determined that HMOX1 promotes Ferroptosis in liver cancer. This reduced the sensitivity of liver cancer to targeted therapies and immunotherapy. Molecular docking showed high binding of oleanolic acid to HDAC1 and HMOX1. CONCLUSIONS Oleanolic acid is an antioxidant by promoting high expression of HMOX1 and promotes the development of Ferroptosis in liver cancer and liver injury.
Collapse
Affiliation(s)
- Hongji Xu
- Department of Abdominal Surgery, Guiqian International General Hospital, Guiyang, Guizhou, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiqiang Wu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yingsong Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junhong Chen
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med 2023; 21:519. [PMID: 37533007 PMCID: PMC10394930 DOI: 10.1186/s12967-023-04361-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care, Changsha, People's Republic of China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
5
|
Zhou Y, Wang Y, Vong CT, Zhu Y, Xu B, Ruan CC, Wang Y, Cheang WS. Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:12064. [PMID: 36292919 PMCID: PMC9602750 DOI: 10.3390/ijms232012064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Jatrorrhizine (JAT) is one of the major bioactive protoberberine alkaloids found in rhizoma coptidis, which has hypoglycemic and hypolipidemic potential. This study aimed to evaluate the vasoprotective effects of JAT in diabetes and obesity and the underlying mechanism involved. Mouse aortas, carotid arteries and human umbilical cord vein endothelial cells (HUVECs) were treated with risk factors (high glucose or tunicamycin) with and without JAT ex vivo and in vitro. Furthermore, aortas were obtained from mice with chronic treatment: (1) control; (2) diet-induced obese (DIO) mice fed a high-fat diet (45% kcal% fat) for 15 weeks; and (3) DIO mice orally administered JAT at 50 mg/kg/day for the last 5 weeks. High glucose or endoplasmic reticulum (ER) stress inducer tunicamycin impaired acetylcholine-induced endothelium-dependent relaxations (EDRs) in mouse aortas, induced oxidative stress in carotid arteries and HUVECs, downregulated phosphorylations of Akt at Ser473 and eNOS at Ser1177 and enhanced ER stress in mouse aortas and HUVECs, and these impairments were reversed by cotreatment with JAT. JAT increased NO release in high-glucose-treated mouse aortas and HUVECs. In addition, chronic JAT treatment restored endothelial function with EDRs comparable to the control, increased Akt/eNOS phosphorylation, and attenuated ER stress and oxidative stress in aortas from DIO mice. Blood pressure, glucose sensitivity, fatty liver and its morphological change, as well as plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and plasma lipid profile, were also normalized by JAT treatment. Collectively, our data may be the first to reveal the vasoprotective effect of JAT that ameliorates endothelial dysfunction in diabetes and obesity through enhancement of the Akt/eNOS pathway and NO bioavailability, as well as suppression of ER stress and oxidative stress.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yuehan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200437, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
6
|
Cai SC, Li XP, Li X, Tang GY, Yi LM, Hu XS. Oleanolic Acid Inhibits Neuronal Pyroptosis in Ischaemic Stroke by Inhibiting miR-186-5p Expression. Exp Neurobiol 2021; 30:401-414. [PMID: 34983881 PMCID: PMC8752321 DOI: 10.5607/en21006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/19/2022] Open
Abstract
Ischaemic stroke is a common condition leading to human disability and death. Previous studies have shown that oleanolic acid (OA) ameliorates oxidative injury and cerebral ischaemic damage, and miR-186-5p is verified to be elevated in serum from ischaemic stroke patients. Herein, we investigated whether OA regulates miR-186-5p expression to control neuroglobin (Ngb) levels, thereby inhibiting neuronal pyroptosis in ischaemic stroke. Three concentrations of OA (0.5, 2, or 8 μM) were added to primary hippocampal neurons subjected to oxygen–glucose deprivation/reperfusion (OGD/R), a cell model of ischaemic stroke. We found that OA treatment markedly inhibited pyroptosis. qRT–PCR and western blot revealed that OA suppressed the expression of pyroptosis-associated genes. Furthermore, OA inhibited LDH and proinflammatory cytokine release. In addition, miR-186-5p was downregulated while Ngb was upregulated in OA-treated OGD/R neurons. MiR-186-5p knockdown repressed OGD/R-induced pyroptosis and suppressed LDH and inflammatory cytokine release. In addition, a dual luciferase reporter assay confirmed that miR-186-5p directly targeted Ngb. OA reduced miR-186-5p to regulate Ngb levels, thereby inhibiting pyroptosis in both OGD/R-treated neurons and MCAO mice. In conclusion, OA alleviates pyroptosis in vivo and in vitro by downregulating miR-186-5p and upregulating Ngb expression, which provides a novel theoretical basis illustrating that OA can be considered a drug for ischaemic stroke.
Collapse
Affiliation(s)
- Shi-Chang Cai
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, P.R. China
| | - Xiu-Ping Li
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, P.R. China
| | - Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, P.R. China
| | - Gen-Yun Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan Province, P.R. China
| | - Li-Ming Yi
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, P.R. China
| | - Xiang-Shang Hu
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, P.R. China
| |
Collapse
|
7
|
Wu Y, Gao LJ, Fan YS, Chen Y, Li Q. Network Pharmacology-Based Analysis on the Action Mechanism of Oleanolic Acid to Alleviate Osteoporosis. ACS OMEGA 2021; 6:28410-28420. [PMID: 34723038 PMCID: PMC8552458 DOI: 10.1021/acsomega.1c04825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 05/13/2023]
Abstract
Oleanolic acid (OA) is a triterpenoid commonly found in plants and has shown extensive pharmaceutical activities. This study aimed to investigate the underlying mechanism of antiosteoporosis (OP) action of OA by utilizing the network pharmacology approach and molecular docking methods. First, the targets of OA were identified using the GeneCards, Stitch, and Swisstarget databases, and the targets related to OP were mined using the NCBI, Genecards, and DisGeNet databases. The overlapped targets of OA and OP were regarded as candidate targets, and the String database was used to obtain the protein-protein interactions among the targets. Then, Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway enrichment pathways of the candidate targets were performed using the DAVID database. In addition, the top 16 targets in the protein interaction network were used for molecular docking. Finally, an animal model constructed using d-galactose-induced oxidative stress and a low-calcium diet with accelerated bone loss was used to verify the in vivo effects of OA on osteoporotic mice. A total of 42 candidate targets for OA to treat OP were obtained. According to the protein-protein interaction network, MAPK1 showed the highest connectivity with other proteins. Additionally, GO analysis identified the top 20 biological processes, 9 cellular components, and top 20 molecular functions. Moreover, the candidate targets were mainly involved in 13 signaling pathways such as TNF signaling pathway, insulin resistance, MAPK signaling pathway, apoptosis, and PI3K-Akt signaling pathways. Furthermore, molecular docking revealed that OA has a high degree of connections with 16 key proteins. In addition, the anti-OP effects of OA are further validated through the in vivo model. Altogether, our study elucidated the candidate targets for OA to alleviate OP, explored the protein-protein interactions and related signaling pathways of the targets, and validated the anti-OP effects of OA. It could provide a better understanding of the action mechanism in OA to treat OP.
Collapse
Affiliation(s)
- Yi Wu
- College
of Life Sciences and Food Engineering, Hebei
University of Engineering, 056038 Handan, China
| | - Li-Jie Gao
- College
of Animal Science and Technology, Hebei
Agricultural University, 071000 Baoding, China
| | - Ying-Sai Fan
- College
of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, 071000 Baoding, China
| | - Ye Chen
- College
of Life Sciences and Food Engineering, Hebei
University of Engineering, 056038 Handan, China
| | - Qin Li
- College
of Life Sciences and Food Engineering, Hebei
University of Engineering, 056038 Handan, China
| |
Collapse
|
8
|
Wu Y, Hu Y, Zhao Z, Xu L, Chen Y, Liu T, Li Q. Protective Effects of Water Extract of Fructus Ligustri Lucidi against Oxidative Stress-Related Osteoporosis In Vivo and In Vitro. Vet Sci 2021; 8:vetsci8090198. [PMID: 34564592 PMCID: PMC8473267 DOI: 10.3390/vetsci8090198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Fructus Ligustri Lucidi (FLL) is the fruit of Ligustrum lucidum Ait and is a component of many kidney-tonifying traditional Chinese medicine formulae for treating osteoporosis. Accumulating evidence has linked oxidative stress with the progression of bone diseases. The present study aimed to identify the effects of FLL on oxidative stress-related osteoporosis in vivo and in vitro. To construct animal models, we utilized d-galactose (D-gal) injection to induce oxidative stress combined with a low calcium (the exact percentage in the diet was 0.1%) diet. Thirteen-week-old Kunming female mice were gavaged with water extract of FLL for 20 days. Then, eight-month-old Kunming female mice were treated with FLL under standard administration and diet as the aged group. In vitro, MC3T3-E1 cells stimulated by H2O2 were treated with FLL for 24 h. The micro-CT results showed that the modeling approach combining oxidative stress with a low calcium diet caused low conversion type osteoporosis in mice. FLL exerted a prominent effect on preventing osteoporosis by inhibiting oxidative stress, increasing bone mineral density (BMD), improving bone microstructure, and promoting osteoblast proliferation and osteoprotegerin (OPG) protein expression; however, FLL had no therapeutic effect on bone loss in aged mice. In conclusion, FLL showed outstanding anti-bone loss ability both in vivo and in vitro and could probably be developed as a prophylactic agent for osteoporosis.
Collapse
Affiliation(s)
- Yi Wu
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Yusheng Hu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Zeguang Zhao
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Lina Xu
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Ye Chen
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Tongtong Liu
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
| | - Qin Li
- Department of Veterinary Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China; (Y.W.); (Z.Z.); (L.X.); (Y.C.); (T.L.)
- Correspondence:
| |
Collapse
|
9
|
Li K, Zhou P, Li S, Zheng S, Wang D. MicroRNA-29b reduces myocardial ischemia-reperfusion injury in rats via down-regulating PTEN and activating the Akt/eNOS signaling pathway. J Thromb Thrombolysis 2021; 53:123-135. [PMID: 34370169 DOI: 10.1007/s11239-021-02535-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 01/20/2023]
Abstract
Reperfusion may cause injuries to the myocardium in ischemia situation, which is called ischemia/reperfusion (I/R) injury. The study aimed to explore the roles of microRNA-29b (miR-29b) in myocardial I/R injury. Myocardial I/R injury rat model was established. Differentially expressed miRNAs between the model rats and the sham-operated rats were analyzed. miR-29b expression in myocardial tissues was measured. Gain-of-function of miR-29b was performed, and then the morphological changes, infarct size, myocardial function, oxidative stress, and the cell apoptosis in myocardial tissues were detected. The target relation between miR-29b and PTEN was detected through bio-information prediction and dual luciferase reporter gene assay. Activation of Akt/eNOS signaling was detected. H9C2 cells were subjected to hypoxia/reoxygenation treatment to perform in vitro experiments. I/R rats presented severe inflammatory infiltration, increased infarct size and cell apoptosis, increased oxidative stress and decreased myocardial function. miR-29b was downregulated in I/R rats, and up-regulation of miR-29b reversed the above changes. miR-29b directly bound to PTEN, and overexpression of miR-29b reduced PTEN expression level and increased the protein levels of p-Akt/Akt and p-eNOS/eNOS. In vivo results were confirmed in in vitro experiments. This study provided evidence that miR-29b could alleviate the myocardial I/R injury in vivo and in vitro by inhibiting PTEN expression and activating the Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, People's Republic of China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 515000, Guangdong Province, People's Republic of China
| | - Shiliang Li
- Department of Cardiac Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 515000, Guangdong Province, People's Republic of China.
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Zhao X, Huang J, Mo Z, Wei J, Zhong C, Teng H. Aralia armata (Wall.) Seem Improves Intimal Hyperplasia after Vascular Injury by Downregulating the Wnt3 α/Dvl-1/ β-Catenin Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6682525. [PMID: 34337044 PMCID: PMC8292040 DOI: 10.1155/2021/6682525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/02/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022]
Abstract
The aim of the study is to examine the mechanism of Aralia armata (Wall.) Seem (AAS) in improving intimal hyperplasia after vascular injury in rats. Rats with femoral artery injury were randomly divided into three groups: the model group, AAS low-dose group (40 mg/kg), and AAS high-dose group (80 mg/kg). The sham operation group was used as a control group. HE staining was used to observe the changes in femoral artery vessels. Immunohistochemistry was adopted to detect α-SMA, PCNA, GSK-3β, and β-catenin proteins in femoral artery tissue. The CCK-8 test and wound healing assay were employed to analyze the effect of AAS on proliferation and migration of vascular smooth muscle cells (VSMCs) cultured in vitro. Western blotting (WB) and polymerase chain reaction (PCR) assays were used to evaluate the molecular mechanism. AAS reduced the stenosis of blood vessels and the protein expressions of α-SMA, PCNA, GSK-3β, and β-catenin compared to the model group. In addition, AAS (0-15 μg/mL) effectively inhibited the proliferation and migration of VSMCs. Moreover, the results of WB and PCR showed that AAS could inhibit the activation of β-catenin induced by 15% FBS and significantly decrease the expression levels of Wnt3α, Dvl-1, GSK-3β, β-catenin, and cyclin D1 in the upstream and downstream of the pathway. AAS could effectively inhibit the proliferation and migration of neointima after vascular injury in rats by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiangpei Zhao
- Department of Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, China
| | - Jinchang Huang
- Department of Academic Affairs, Ruikang Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China
| | - Zhenyu Mo
- Department of Academic Affairs, Ruikang Clinical Medical College, Guangxi University of Traditional Chinese Medicine, Nanning 530200, China
| | - Jiangcun Wei
- Department of Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, China
| | - Chuanmei Zhong
- Department of Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, China
| | - Hongli Teng
- Department of Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, China
| |
Collapse
|
11
|
Yang J, Li X, Yang H, Long C. Oleanolic Acid Improves the Symptom of Renal Ischemia Reperfusion Injury via the PI3K/AKT Pathway. Urol Int 2020; 105:215-220. [PMID: 33291121 DOI: 10.1159/000506778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE The aim of this study was to investigate the therapeutic effect of oleanolic acid (OA) on the renal ischemia reperfusion injury (RIRI) and the possible mechanism. METHODS The RIRI model was successfully established in rats. OA, LY294002 (a PI3K inhibitor), and OA combined with LY294002 were dosed to rats in 3 therapeutic groups, respectively. The blood was collected to detect the concentration of Cr and BUN by ELISA. The kidney of each rat was collected to detect the concentration of renal injury factor (Kim-1) and the HE staining was performed. Western blot was used to detect the expression level of PI3K, p-AKT, AKT, PDK1, Skp2, and p27 in the renal tissue homogenate. RESULTS The symptom of vacuolar degeneration and interstitial edema was greatly improved in the rat kidney from the 3 therapeutic groups, compared with that from the RIRI model group. No significant difference was observed among the 3 therapeutic groups. The concentration of Cr in the 3 therapeutic groups was greatly lower than that in the RIRI model group. The expression level of p-AKT/AKT, PI3K, PDK1, Skp2, and p27 in OA group, LY294002 group, and OA combined with LY294002 group was significantly lower than that in the RIRI model group, respectively. CONCLUSION OA could improve the symptom of RIRI, possibly by inhibiting PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- JinRan Yang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China
| | - Xinchang Li
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China
| | - Hua Yang
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China
| | - Chenmei Long
- Department of Organ Transplantation, Jiangxi Provincial People's Hospital, Nanchang City, China,
| |
Collapse
|
12
|
Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases 2020; 8:1767-1792. [PMID: 32518769 PMCID: PMC7262697 DOI: 10.12998/wjcc.v8.i10.1767] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/27/2020] [Accepted: 04/30/2020] [Indexed: 02/05/2023] Open
Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and are naturally effective pentacyclic triterpenoid compounds with broad prophylactic and therapeutic roles in various diseases such as ulcerative colitis, multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers. This review assembles and presents the latest in vivo reports on the impacts of OA and OA derivatives from various plant sources and the biological mechanisms of OA activities. Thus, this review presents sufficient data proposing that OA and its derivatives are potential alternative and complementary therapies for the treatment and management of several diseases.
Collapse
Affiliation(s)
- Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Turkey
| |
Collapse
|
13
|
de Oliveira JR, Camargo SEA, de Oliveira LD. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci 2019; 26:5. [PMID: 30621719 PMCID: PMC6325740 DOI: 10.1186/s12929-019-0499-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Rosmarinus officinalis L. (rosemary) is a medicinal plant native to the Mediterranean region and cultivated around the world. Besides the therapeutic purpose, it is commonly used as a condiment and food preservative. R. officinalis L. is constituted by bioactive molecules, the phytocompounds, responsible for implement several pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, antiproliferative, antitumor and protective, inhibitory and attenuating activities. Thus, in vivo and in vitro studies were presented in this Review, approaching the therapeutic and prophylactic effects of R. officinalis L. on some physiological disorders caused by biochemical, chemical or biological agents. In this way, methodology, mechanisms, results, and conclusions were described. The main objective of this study was showing that plant products could be equivalent to the available medicines.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | | | - Luciane Dias de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|