1
|
Menounos S, Shen H, Tipirneni S, Bhaskar SMM. Decoding the Nexus: Cellular and Molecular Mechanisms Linking Stroke and Neurotoxic Microenvironments in Brain Cancer Patients. Biomolecules 2024; 14:1507. [PMID: 39766214 PMCID: PMC11673144 DOI: 10.3390/biom14121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025] Open
Abstract
Stroke is an often underrecognized albeit significant complication in patients with brain cancer, arising from the intricate interplay between cancer biology and cerebrovascular health. This review delves into the multifactorial pathophysiological framework linking brain cancer to elevated stroke risk, with particular emphasis on the crucial role of the neurotoxic microenvironment (NTME). The NTME, characterized by oxidative stress, neuroinflammation, and blood-brain barrier (BBB) disruption, creates a milieu that promotes and sustains vascular and neuronal injury. Key pathogenic factors driving brain cancer-related stroke include cancer-related hypercoagulability, inflammatory and immunological mechanisms, and other tumor-associated processes, including direct tumor compression, infection-related sequelae, and treatment-related complications. Recent advances in genomic and proteomic profiling present promising opportunities for personalized medicine, enabling the identification of biomarkers-such as oncogenes and tumor suppressor genes-that predict stroke susceptibility and inform individualized therapeutic strategies. Targeting the NTME through antioxidants to alleviate oxidative stress, anti-inflammatory agents to mitigate neuroinflammation, and therapies aimed at reinforcing the BBB could pave the way for more effective stroke prevention and management strategies. This integrative approach holds the potential to reduce both the incidence and severity of stroke, ultimately improving clinical outcomes and quality of life for brain cancer patients. Further research and well-designed clinical trials are essential to validate these strategies and integrate them into routine clinical practice, thereby redefining the management of stroke risk in brain cancer patients.
Collapse
Affiliation(s)
- Spiro Menounos
- Global Health Neurology Lab, Sydney, NSW 2150, Australia; (S.M.); (H.S.); (S.T.)
- School of Clinical Medicine, Medicine & Health, University of New South Wales (UNSW), St George and Sutherland Clinical Campuses, Sydney, NSW 2150, Australia
| | - Helen Shen
- Global Health Neurology Lab, Sydney, NSW 2150, Australia; (S.M.); (H.S.); (S.T.)
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW 2170, Australia
| | - Shraddha Tipirneni
- Global Health Neurology Lab, Sydney, NSW 2150, Australia; (S.M.); (H.S.); (S.T.)
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW 2170, Australia
| | - Sonu M. M. Bhaskar
- Global Health Neurology Lab, Sydney, NSW 2150, Australia; (S.M.); (H.S.); (S.T.)
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW 2170, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW 2170, Australia
- Ingham Institute for Applied Medical Research, Clinical Sciences Stream, Liverpool, NSW 2170, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital and South West Sydney Local Health District, Liverpool, NSW 2150, Australia
- National Cerebral and Cardiovascular Center (NCVC), Department of Neurology, Division of Cerebrovascular Medicine and Neurology, Suita 564-8565, Osaka, Japan
| |
Collapse
|
2
|
Zhang Q, Zhang L, Lin G, Luo F. The protective role of vagus nerve stimulation in ischemia-reperfusion injury. Heliyon 2024; 10:e30952. [PMID: 38770302 PMCID: PMC11103530 DOI: 10.1016/j.heliyon.2024.e30952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) encompasses the damage resulting from the restoration of blood supply following tissue ischemia. This phenomenon commonly occurs in clinical scenarios such as hemorrhagic shock, severe trauma, organ transplantation, and thrombolytic therapy. Despite its prevalence, existing treatments exhibit limited efficacy against IRI. Vagus nerve stimulation (VNS) is a widely utilized technique for modulating the autonomic nervous system. Numerous studies have demonstrated that VNS significantly reduces IRI in various organs, including the heart, brain, and liver. This article reviews the pathological processes during IRI and summarizes the role and possible mechanisms of VNS in IRI of different organs. Furthermore, this review addresses the current challenges of VNS clinical applications, providing a novel perspective on IRI treatment.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guoqiang Lin
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanyan Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
3
|
Albaqami FF, Abdel-Rahman RF, Althurwi HN, Alharthy KM, Soliman GA, Aljarba TM, Ogaly HA, Abdel-Kader MS. Targeting inflammation and oxidative stress for protection against ischemic brain injury in rats using cupressuflavone. Saudi Pharm J 2024; 32:101933. [PMID: 38204594 PMCID: PMC10777008 DOI: 10.1016/j.jsps.2023.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Inflammatory responses and oxidative stress contribute to the pathogenesis of brain ischemia/reperfusion (IR) injury. Naturally occurring bioflavonoids possess antioxidant and anti-inflammatory properties. The phytochemicals of Juniperus sabina L., known as "Abhal" in Saudi Arabia, have been studied and cupressuflavone (CUP) has been isolated as the major bioflavonoid. This study aimed to investigate the neuroprotective potential of CUP in reducing brain IR damage in rats and to understand probable mechanisms. After 60 min of inducing cerebral ischemia by closing the left common carotid artery (CCA), blood flow was restored to allow reperfusion. The same surgical procedure was performed on sham-operated control rats, excluding cerebral IR. CUP or vehicle was given orally to rats for 3 days prior to ischemia induction and for a further 3 days following reperfusion. Based on the findings of this study, compared to the IR control group, CUP-administered group demonstrated reduced neurological deficits, improved motor coordination, balance, and locomotor activity. Additionally, brain homogenates of IR rats showed a decrease in malondialdehyde (MDA) level, an increase in reduced glutathione (GSH) content, and an increase in catalase (CAT) enzyme activity following CUP treatment. CUP suppressed neuro-inflammation via reducing serum inflammatory cytokine levels, particularly those of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) and enhancing the inflammatory cytokine levels, such as Nuclear factor kappa- B (NF-κB), TANK-binding kinase-1 (TBK1), and interferon beta (IFN-β) in brain tissues. Furthermore, CUP ameliorated the histological alterations in the brain tissues of IR rats. CUP significantly suppressed caspase-3 expression and downregulated the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway as a result of suppressing High mobility group box 1 (HMGB1). To our knowledge, this is the first study to document the neuroprotective properties of CUP. Thus, the study findings revealed that CUP ameliorates IR-induced cerebral injury possibly by enhancing brain antioxidant contents, reducing serum inflammatory cytokine levels, potentiating the brain contents of TBK1 and IFN-β and suppressing the HMGB1/TLR-4 signaling pathway. Hence, CUP may serve as a potential preventive and therapeutic alternative for cerebral stroke.
Collapse
Affiliation(s)
- Faisal F. Albaqami
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hassan N. Althurwi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Khalid M. Alharthy
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Gamal A. Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Tariq M. Aljarba
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| |
Collapse
|
4
|
Zhang L, Sui S, Wang S, Sun J. Neuroprotective Effect of Corosolic Acid Against Cerebral Ischemia-Reperfusion Injury in Experimental Rats. J Oleo Sci 2022; 71:1501-1510. [PMID: 36089398 DOI: 10.5650/jos.ess22130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several therapeutic approaches were also urgently needed as ischaemic stroke was one of the most common brain disorders. Many phytochemicals have recently been discovered for the advancement of lead-like libraries that are concentrated on the peripheral and central nervous systems. Science does not yet understand how these drugs work, nor do they comprehend their in vivo characteristics. We investigated the potential benefits of corosolic acid (CA) in the treatment of brain injury caused by ischemia/reperfusion (I/R) in adult male Sprague-Dawley rats. Injury occurs after a 2-hour transient occlusion of the posterior cerebral artery and subsequent reperfusion (after 20 hours). Furthermore, the experiment assessed the size of the infarct, the amount of brain water present, as well as the neurofunctional conditions in rats. In the study, several markers of inflammation and cytokines associated with brain injury were measured. The Elisa kit was used in this study to measure the mRNA expression of interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin 1β, TNF-α (tumor necrosis factor), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and nitrous oxide (NO). The CA treatment significantly reduced brain water content, brain infarction volume, neurological scores, and Evans blue leakage (p < 0.001 and p < 0.001). Experimental rats were treated with CA after a significantly reduced level of anti-inflammatory, pro-inflammatory, and oxidative stress mediators was noted in their body tissues and serum (p < 0.001). By suppressing inflammatory responses in rats, CA demonstrated anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University
| | - Songtao Sui
- Department of Neurosurgery, Qingdao West Coast New Area Central Hospital
| | - Si Wang
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University
| | - Jinbo Sun
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
5
|
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, Ren M, Li Y, Chen H, Wang J, Gong D. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review. Front Pharmacol 2021; 12:607412. [PMID: 33967750 PMCID: PMC8102015 DOI: 10.3389/fphar.2021.607412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it’s reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Neuroprotective and Anti-inflammatory Effect of Tangeretin Against Cerebral Ischemia-Reperfusion Injury in Rats. Inflammation 2020; 43:2332-2343. [DOI: 10.1007/s10753-020-01303-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Wang J, Mao J, Wang R, Li S, Wu B, Yuan Y. Kaempferol Protects Against Cerebral Ischemia Reperfusion Injury Through Intervening Oxidative and Inflammatory Stress Induced Apoptosis. Front Pharmacol 2020; 11:424. [PMID: 32351385 PMCID: PMC7174640 DOI: 10.3389/fphar.2020.00424] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
The aim of this research is to investigate the potential neuro-protective effect of kaempferol which with anti-oxidant, anti-inflammatory, and immune modulatory properties, and understand the effect of kaempferol on reducing cerebral ischemia reperfusion (I/R) injury in vivo. Male adult Sprague Dawley (SD) rats were pretreated with kaempferol for one week via gavage before cerebral I/R injury operation. We found that kaempferol treatment can reduce the cerebral infarct volume and neurological score after cerebral I/R. Rats were sacrificed after 24 h reperfusion. We observed that kaempferol improved the arrangement, distribution, and morphological structure of neurons, as well as attenuated cell apoptosis in brain tissue via hematoxylin and eosin (H&E) staining, Nissl staining and TUNEL staining. Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH) kit analysis, enzyme-linked immunosorbent (ELISA) assay, real-time PCR, Western blot, and immunohistochemical examination indicated that kaempferol mitigated oxidative and inflammatory stress via regulating the expression of proteins, p-Akt, p-GSK-3β, nuclear factor erythroid2-related factor 2 (Nrf-2), and p-NF-κB during cerebral I/R, thus increasing the activity of SOD and GSH, meanwhile decreasing the content of MDA in serum and brain tissue, as well as restoring the expression levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 in vivo. Taken together, this study suggested that kaempferol protects against cerebral I/R induced brain damage. The possible mechanism is related with inhibiting oxidative and inflammatory stress induced apoptosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junqin Mao
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, Gu L. Targeting Oxidative Stress and Inflammation to Prevent Ischemia-Reperfusion Injury. Front Mol Neurosci 2020; 13:28. [PMID: 32194375 PMCID: PMC7066113 DOI: 10.3389/fnmol.2020.00028] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
The cerebral ischemia injury can result in neuronal death and/or functional impairment, which leads to further damage and dysfunction after recovery of blood supply. Cerebral ischemia/reperfusion injury (CIRI) often causes irreversible brain damage and neuronal injury and death, which involves many complex pathological processes including oxidative stress, amino acid toxicity, the release of endogenous substances, inflammation and apoptosis. Oxidative stress and inflammation are interactive and play critical roles in ischemia/reperfusion injury in the brain. Oxidative stress is important in the pathological process of ischemic stroke and is critical for the cascade development of ischemic injury. Oxidative stress is caused by reactive oxygen species (ROS) during cerebral ischemia and is more likely to lead to cell death and ultimately brain death after reperfusion. During reperfusion especially, superoxide anion free radicals, hydroxyl free radicals, and nitric oxide (NO) are produced, which can cause lipid peroxidation, inflammation and cell apoptosis. Inflammation alters the balance between pro-inflammatory and anti-inflammatory factors in cerebral ischemic injury. Inflammatory factors can therefore stimulate or exacerbate inflammation and aggravate ischemic injury. Neuroprotective therapies for various stages of the cerebral ischemia cascade response have received widespread attention. At present, neuroprotective drugs mainly include free radical scavengers, anti-inflammatory agents, and anti-apoptotic agents. However, the molecular mechanisms of the interaction between oxidative stress and inflammation, and their interplay with different types of programmed cell death in ischemia/reperfusion injury are unclear. The development of a suitable method for combination therapy has become a hot topic.
Collapse
Affiliation(s)
- Liquan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Wu
- Department of Anesthesiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zeng Zhi
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|