1
|
Li Z, Ma J, Wang X, Zhu L, Gan Y, Dai B. The role of immune cells in the pathogenesis of connective tissue diseases-associated pulmonary arterial hypertension. Front Immunol 2024; 15:1464762. [PMID: 39355239 PMCID: PMC11442293 DOI: 10.3389/fimmu.2024.1464762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH) is a disease characterized by an elevated pulmonary artery pressure that arises as a complication of connective tissue diseases. The number of patients with CTD-PAH accounts for 25.3% of all PAH patients. The main pathological features of CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles, increased pulmonary vascular resistance, autoimmune activation and inflammatory reaction. It is worth noting that abnormal immune activation will produce autoantibodies and release cytokines, and abnormal immune cell recruitment will promote inflammatory environment and vascular remodeling. Therefore, almost all forms of connective tissue diseases are related to PAH. In addition to general therapy and targeted drug therapy for PAH, high-dose glucocorticoid combined with immunosuppressant can quickly alleviate and stabilize the basic CTD-PAH disease. Given this, the development of therapeutic approaches targeting immune dysregulation and heightened inflammation is recognized as a promising strategy to prevent or reverse the progression of CTD-PAH. This review explores the potential mechanisms by which immune cells contribute to the development of CTD-PAH and examines the clinical application of immunosuppressive therapies in managing CTD-PAH.
Collapse
Affiliation(s)
- Zhe Li
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Juan Ma
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Xuejing Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, China
| | - Liquan Zhu
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yu Gan
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Baoquan Dai
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
2
|
Jiang S, Xu Z, Shi Y, Liang S, Jiang X, Xiao M, Wang K, Ding L. Circulating insulin-like growth factor-1 and risk of lung diseases: A Mendelian randomization analysis. Front Endocrinol (Lausanne) 2023; 14:1126397. [PMID: 36936149 PMCID: PMC10020499 DOI: 10.3389/fendo.2023.1126397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) display a vital role in in the pathogenesis of lung diseases, however, the relationship between circulating IGF-1 and lung disease remains unclear. METHODS Single nucleotide polymorphisms (SNPs) associated with the serum levels of IGF-1 and the outcomes data of lung diseases including asthma, chronic obstructive pulmonary disease (COPD), lung cancer and idiopathic pulmonary fibrosis (IPF) were screened from the public genome-wide association studies (GWAS). Two-sample Mendelian randomization (MR) analysis was then performed to assess the independent impact of IGF-1 exposure on these lung diseases. RESULTS Totally, 416 SNPs related to circulating IGF-1 levels among 358,072 participants in UK Biobank. According to a primary casual effects model with MR analyses by the inverse variance weighted (IVW) method, the circulating IGF-1 was demonstrated a significantly related with the risk of asthma (OR, 0.992; 95% CI, 0.985-0.999, P=0.0324), while circulating IGF-1 showed no significant correlation with CODP (OR, 1.000; 95% CI, 0.999-1.001, P=0.758), lung cancer (OR, 0.979, 95% CI, 0.849-1.129, P=0.773), as well as IPIGFF (OR, 1.100, 95% CI, 0.794-1.525, P=0.568). CONCLUSION The present study demonstrated that circulating IGF-1 may be causally related to lower risk of asthma.
Collapse
Affiliation(s)
- Sujing Jiang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Sibei Liang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Xinyuan Jiang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Mingshu Xiao
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- *Correspondence: Kai Wang, ; Liren Ding,
| | - Liren Ding
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Kai Wang, ; Liren Ding,
| |
Collapse
|
3
|
Han YY, Yan Q, Chen W, Forno E, Celedón JC. Serum insulin-like growth factor-1, asthma, and lung function among British adults. Ann Allergy Asthma Immunol 2021; 126:284-291.e2. [PMID: 33316372 PMCID: PMC7897263 DOI: 10.1016/j.anai.2020.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) plays a key role in the pathogenesis of metabolic syndrome, which is in turn associated with asthma. Whether IGF-1 contributes to asthma causation or asthma severity is largely unknown. OBJECTIVE To evaluate the relation between serum IGF-1 and asthma, asthma outcomes, and lung function in adults. METHODS Cross-sectional study of 297,590 adults (aged 40-69 years) who participated in the United Kingdom Biobank, had no diagnosis of diabetes, and were not on insulin. Multivariable logistic or linear regression was used to analyze serum IGF-1 and physician-diagnosed asthma, current wheezing, asthma hospitalizations, and lung function measures (forced expiratory volume in 1 second [FEV1], forced vital capacity [FVC], and FEV1 to FVC ratio). RESULTS Serum IGF-1 levels above the lowest quartile (Q1) were significantly associated with lower odds of asthma (adjusted odds ratio for fourth quartile [Q4] vs Q1 = 0.88; 95% confidence interval [CI], 0.85-0.91). Among the participants with asthma, IGF-1 levels above Q1 were significantly associated with lower odds of current wheezing (adjusted odds ratio for Q4 vs Q1 = 0.89; 95% CI, 0.83-0.96), but not with asthma hospitalizations. Serum IGF-1 was significantly and positively associated with FEV1 (b = 20.9 mL; 95% CI, 19.1-22.7) and FVC (b = 25.6 mL; 95% CI, 23.4-27.7), regardless of an asthma diagnosis; these associations were significant in men and women, with larger estimated effects in men. CONCLUSION In a large study of British adults, higher serum IGF-1 levels were associated with lower odds of asthma and current wheezing and higher FEV1 and FVC. Our findings suggest potential beneficial effects of circulating IGF-1 on asthma and asthma outcomes in adults.
Collapse
Affiliation(s)
- Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qi Yan
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Ruan W, Deng J, Ying K. Novel Aspects of Insulin-like Growth Factor 1/insulin Network in Chronic Inflammatory Airway Disease. Curr Med Chem 2021; 27:7256-7263. [PMID: 31724496 DOI: 10.2174/0929867326666191113140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
At least a proportion of patients suffering from chronic inflammatory airway diseases respond poorly to the bronchodilator and corticosteroid therapies. There is a need for the development of improved anti-inflammatory treatment. Insulin Growth Factor 1 (IGF1) and insulin participate in not only metabolism and glucose homeostasis, but also many other physiological and pathophysiological processes, including growth and inflammation. Recently, it was shown that not only the classical IGF1 and IGF1 Receptor (IGF1R), but also the other molecules in the IGF1/insulin network, including insulin, insulin-like growth factor-binding protein (IGFBP), and IGFBP protease, have roles in chronic inflammatory airway diseases. This review aims to provide a comprehensive insight into recent endeavors devoted to the role of the IGF1/insulin network in chronic inflammatory airway diseases. Its participation in airway inflammation, remodeling, and hyper-responsiveness (AHR), as well as acute exacerbation, has been conclusively demonstrated. Its possible relation to glucocorticoid insensitivity has also been indicated. A better understanding of the IGF1/insulin network by further bench-to-bedside research may provide us with rational clinical therapeutic approaches against chronic inflammatory airway diseases.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Deng
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kejing Ying
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Doskaliuk B, Zaiats L, Yatsyshyn R, Gerych P, Cherniuk N, Zimba O. Pulmonary involvement in systemic sclerosis: exploring cellular, genetic and epigenetic mechanisms. Rheumatol Int 2020; 40:1555-1569. [PMID: 32715342 DOI: 10.1007/s00296-020-04658-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a chronic progressive autoimmune disease characterized by immune inflammation, vasculopathy, and fibrosis. There are still numerous uncertainties in the understanding of disease initiation and progression. Pulmonary involvement in SSc, and particularly pulmonary fibrosis, is critical for all organ systems affections in this disease. This review is aimed to describe and analyze new findings in the pathophysiology of SSc-associated pulmonary involvement and to explore perspective diagnostic and therapeutic strategies. A myriad of cellular interactions is explored in the dynamics of progressive interstitial lung disease (ILD) and pulmonary hypertension (PH) in SSc. The role of exosomes, microvesicles, and apoptotic bodies is examined and the impact of micro and long non-coding RNAs, DNA methylation, and histone modification in SSc is discussed.
Collapse
Affiliation(s)
- Bohdana Doskaliuk
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine. .,Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76000, Ukraine.
| | - Liubomyr Zaiats
- Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76000, Ukraine
| | - Roman Yatsyshyn
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Petro Gerych
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Nataliia Cherniuk
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Olena Zimba
- Department of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
6
|
Mu M, Gao P, Yang Q, He J, Wu F, Han X, Guo S, Qian Z, Song C. Alveolar Epithelial Cells Promote IGF-1 Production by Alveolar Macrophages Through TGF-β to Suppress Endogenous Inflammatory Signals. Front Immunol 2020; 11:1585. [PMID: 32793225 PMCID: PMC7385185 DOI: 10.3389/fimmu.2020.01585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
To maintain alveolar gas exchange, the alveolar surface has to limit unnecessary inflammatory responses. This involves crosstalk between alveolar epithelial cells (AECs) and alveolar macrophages (AMs) in response to damaging factors. We recently showed that insulin-like growth factor (IGF)-1 regulates the phagocytosis of AECs. AMs secrete IGF-1 into the bronchoalveolar lavage fluid (BALF) in response to inflammatory stimuli. However, whether AECs regulate the production of IGF-1 by AMs in response to inflammatory signals remains unclear, as well as the role of IGF-1 in controlling the alveolar balance in the crosstalk between AMs and AECs under inflammatory conditions. In this study, we demonstrated that IGF-1 was upregulated in BALF and lung tissues of acute lung injury (ALI) mice, and that the increased IGF-1 was mainly derived from AMs. In vitro experiments showed that the production and secretion of IGF-1 by AMs as well as the expression of TGF-β were increased in LPS-stimulated AEC-conditioned medium (AEC-CM). Pharmacological blocking of TGF-β in AECs and addition of TGF-β neutralizing antibody to AEC-CM suggested that this AEC-derived cytokine mediates the increased production and secretion of IGF-1 from AMs. Blocking TGF-β synthesis or treatment with TGF-β neutralizing antibody attenuated the increase of IGF-1 in BALF in ALI mice. TGF-β induced the production of IGF-1 by AMs through the PI3K/Akt signaling pathway. IGF-1 prevented LPS-induced p38 MAPK activation and the expression of the inflammatory factors MCP-1, TNF-α, and IL-1β in AECs. However, IGF-1 upregulated PPARγ to increase the phagocytosis of apoptotic cells by AECs. Intratracheal instillation of IGF-1 decreased the number of polymorphonuclear neutrophils in BALF of ALI model mice, reduced alveolar congestion and edema, and suppressed inflammatory cell infiltration in lung tissues. These results elucidated a mechanism by which AECs used TGF-β to regulate IGF-1 production from AMs to attenuate endogenous inflammatory signals during alveolar inflammation.
Collapse
Affiliation(s)
- Mimi Mu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Peiyu Gao
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Qian Yang
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Jing He
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Xue Han
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Shujun Guo
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| |
Collapse
|