1
|
Dahal S, Kakulavarapu RV, Heyburn L, Wilder D, Kumar R, Dimitrov G, Gautam A, Hammameih R, Long JB, Sajja VS. microRNA Profile Changes in Brain, Cerebrospinal Fluid, and Blood Following Low-Level Repeated Blast Exposure in a Rat Model. J Neurotrauma 2024. [PMID: 39535039 DOI: 10.1089/neu.2024.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
It is well documented that service members are exposed to repeated low-level blast overpressure during training with heavy weapons such as artillery, mortars and explosive breaching. Often, acute symptoms associated with these exposures are transient but cumulative effect of low-level repeated blast exposures (RBEs) can include persistent deficits in cognitive and behavioral health. Thus far, reliable diagnostic biomarkers which can guide countermeasure strategies have not been identified. In this study, rats were exposed to multiple field-relevant blast waves with 8.5 and 10 psi peak positive overpressures, applying one exposure per day for 14 consecutive days. micro-RNAs that can potentially be used as biomarkers for RBEs were assessed in blood, brain, and cerebrospinal fluid (CSF). RBE caused a differential pattern of changes in various miRNAs in blood, brain and CSF in an overpressure-dependent manner. Our key outcomes were decrease of mir-6215 and let-7 family miRNAs and increase of mir-6321 and mir-222-5p in brain, blood, and CSF. Expression pattern of these miRNAs is in concurrence with various neurological conditions such as upregulation of mir-6321 in focal ischemic injury and downregulation of mir-6215 in nerve injury model. Contrarily, Let-7 family miRNAs have neuroprotective role and their downregulation suggests progression of blast induced traumatic brain injury (bTBI) with RBE at 14× -8.5 psi. Repeated blast caused alterations in miRNAs that are likely involved in vascular integrity, inflammation, and cell death. These results indicate that miRNAs are differentially dysregulated in response to blast injuries and may represent better prognostic and diagnostic biomarkers than traditional molecules to identify blast-specific brain injury.
Collapse
Affiliation(s)
- Shataakshi Dahal
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - RamaRao Venkata Kakulavarapu
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Lanier Heyburn
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Donna Wilder
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Raina Kumar
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - George Dimitrov
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Aarti Gautam
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Rasha Hammameih
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Joseph B Long
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Venkatasivasai Sujith Sajja
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Hamada Y, Takata T, Iwama H, Kawakita R, Nonaka W, Deguchi K, Kobara H, Morishita A, Miyamoto O, Nakamura T, Itano T, Masaki T. Temporal expression profiles of microRNAs associated with acute phase of brain ischemia in gerbil hippocampus. Heliyon 2024; 10:e28875. [PMID: 38576576 PMCID: PMC10990972 DOI: 10.1016/j.heliyon.2024.e28875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Neuroprotective therapeutic potential for restoring dysregulated microRNA (miRNA) expression has previously been demonstrated in a gerbil cerebral infarction model. However, since temporal changes in miRNA expression profiles following stroke onset are unknown, miRNAs proving to be useful therapeutic targets have yet to be identified. We evaluated cognitive function, hippocampal neuronal cell death, and microarray-based miRNA expression profiles at 5, 9, 18, 36, and 72 h after 5-min whole brain ischemia in gerbils. A decline in cognitive function occurred in parallel with increased neuronal cell death 36-72 h after ischemia. The Jonckheere-Terpstra test was used to analyze miRNA expression trends 5-72 h after ischemia. The expression levels of 63 miRNAs were significantly upregulated, whereas 32 miRNAs were significantly downregulated, monotonically. Of the 32 monotonically downregulated miRNAs, 18 showed the largest decrease in expression 5-9 h after ischemia. A subset of these dysregulated miRNAs (miR-378a-5p, miR-204-5p, miR-34c-5p, miR-211-5p, miR-34b-3p, and miR-199b-3p) could be associated with brain ischemia and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yasuhiro Hamada
- Department of Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Tadayuki Takata
- Department of Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Rie Kawakita
- Department of Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Wakako Nonaka
- Department of Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
- Department of General Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Kazushi Deguchi
- Department of Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Osamu Miyamoto
- Department of Medical Engineering, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, 701-0193, Japan
| | - Takehiro Nakamura
- Department of Physiology 2, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Toshifumi Itano
- Department of Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kagawa, 761-0793, Japan
| |
Collapse
|
3
|
Exosomal Mir-3613-3p derived from oxygen-glucose deprivation-treated brain microvascular endothelial cell promotes microglial M1 polarization. Cell Mol Biol Lett 2023; 28:18. [PMID: 36870962 PMCID: PMC9985860 DOI: 10.1186/s11658-023-00432-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Brain microvascular endothelial cell (BMEC) injury can affect neuronal survival by modulating immune responses through the microenvironment. Exosomes are important vehicles of transport between cells. However, the regulation of the subtypes of microglia by BMECs through the exosome transport of microRNAs (miRNAs) has not been established. METHODS In this study, exosomes from normal and oxygen-glucose deprivation (OGD)-cultured BMECs were collected, and differentially expressed miRNAs were analyzed. BMEC proliferation, migration, and tube formation were analyzed using MTS, transwell, and tube formation assays. M1 and M2 microglia and apoptosis were analyzed using flow cytometry. miRNA expression was analyzed using real-time polymerase chain reaction (RT-qPCR), and IL-1β, iNOS, IL-6, IL-10, and RC3H1 protein concentrations were analyzed using western blotting. RESULTS We found that miR-3613-3p was enriched in BMEC exosome by miRNA GeneChip assay and RT-qPCR analysis. miR-3613-3p knockdown enhanced cell survival, migration, and angiogenesis in the OGD-treated BMECs. In addition, BMECs secrete miR-3613-3p to transfer into microglia via exosomes, and miR-3613-3p binds to the RC3H1 3' untranslated region (UTR) to reduce RC3H1 protein levels in microglia. Exosomal miR-3613-3p promotes microglial M1 polarization by inhibiting RC3H1 protein levels. BMEC exosomal miR-3613-3p reduces neuronal survival by regulating microglial M1 polarization. CONCLUSIONS miR-3613-3p knockdown enhances BMEC functions under OGD conditions. Interfering with miR-3613-3p expression in BMSCs reduced the enrichment of miR-3613-3p in exosomes and enhanced M2 polarization of microglia, which contributed to reduced neuronal apoptosis.
Collapse
|
4
|
MiR-182 Inhibition Protects Against Experimental Stroke in vivo and Mitigates Astrocyte Injury and Inflammation in vitro via Modulation of Cortactin Activity. Neurochem Res 2022; 47:3682-3696. [PMID: 35951202 PMCID: PMC10069410 DOI: 10.1007/s11064-022-03718-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Ischemic stroke remains a devastating cerebrovascular disease that accounts for a high proportion of mortality and disability worldwide. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are responsible for regulation of post-transcriptional gene expression, and growing evidence supports a role for miRNAs in stroke injury and recovery. The current study examined the role of miR-182 in experimental stroke using both in vitro and in vivo models of ischemic injury. Brain levels of miR-182 significantly increased after transient middle cerebral artery occlusion (MCAO) in mice and in primary astrocyte cultures subjected to combined oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo, stroke volume and neurological score were significantly improved by pre-treatment with miR-182 antagomir. Astrocyte cultures stressed with OGD/R resulted in mitochondrial fragmentation and downregulation of cortactin, an actin-binding protein. Inhibition of miR-182 significantly preserved cortactin expression, reduced mitochondrial fragmentation and improved astrocyte survival after OGD/R. In parallel, lipopolysaccharide (LPS)-induced nitric-oxide release in astrocyte cultures was significantly reduced by miR-182 inhibition, translating to reduced injury in primary neuronal cultures subjected to conditioned medium from LPS-treated astrocytes. These findings identify miR-182 and/or cortactin as potential clinical targets to preserve mitochondrial structure and mitigate neuroinflammation and cell death after ischemic stroke.
Collapse
|
5
|
Zhang R, Chen DY, Luo XW, Yang Y, Zhang XC, Yang RH, Chen P, Shen ZQ, He B. Comprehensive Analysis of the Effect of 20( R)-Ginsenoside Rg3 on Stroke Recovery in Rats via the Integrative miRNA-mRNA Regulatory Network. Molecules 2022; 27:1573. [PMID: 35268674 PMCID: PMC8911624 DOI: 10.3390/molecules27051573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNAs. Recent research has proven that miRNAs play an essential role in the occurrence and development of ischemic stroke. Our previous studies confirmed that 20(R)-ginsenosideRg3 [20(R)-Rg3] exerts beneficial effects on cerebral ischemia-reperfusion injury (CIRI), but its molecular mechanism has not been elucidated. In this study, we used high-throughput sequencing to investigate the differentially expressed miRNA and mRNA expression profiles of 20(R)-Rg3 preconditioning to ameliorate CIRI injury in rats and to reveal its potential neuroprotective molecular mechanism. The results show that 20(R)-Rg3 alleviated neurobehavioral dysfunction in MCAO/R-treated rats. Among these mRNAs, 953 mRNAs were significantly upregulated and 2602 mRNAs were downregulated in the model group versus the sham group, whereas 437 mRNAs were significantly upregulated and 35 mRNAs were downregulated in the 20(R)-Rg3 group in contrast with those in the model group. Meanwhile, the expression profile of the miRNAs showed that a total of 283 differentially expressed miRNAs were identified, of which 142 miRNAs were significantly upregulated and 141 miRNAs were downregulated in the model group compared with the sham group, whereas 34 miRNAs were differentially expressed in the 20(R)-Rg3 treatment group compared with the model group, with 28 miRNAs being significantly upregulated and six miRNAs being significantly downregulated. Furthermore, 415 (391 upregulated and 24 downregulated) differentially expressed mRNAs and 22 (17 upregulated and 5 downregulated) differentially expressed miRNAs were identified to be related to 20(R)-Rg3's neuroprotective effect on stroke recovery. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that 20(R)-Rg3 could modulate multiple signaling pathways related to these differential miRNAs, such as the cGMP-PKG, cAMP and MAPK signaling pathways. This study provides new insights into the protective mechanism of 20(R)-Rg3 against CIRI, and the mechanism may be partly associated with the regulation of brain miRNA expression and its target signaling pathways.
Collapse
Affiliation(s)
- Rui Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - De-Yun Chen
- Faculty of Food, Drugs and Health, Yunnan Vocational and Technical College of Agriculture, Kunming 650212, China;
| | - Xing-Wei Luo
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Yuan Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Xiao-Chao Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Ren-Hua Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Peng Chen
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Zhi-Qiang Shen
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| | - Bo He
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China; (R.Z.); (X.-W.L.); (Y.Y.); (X.-C.Z.); (R.-H.Y.)
| |
Collapse
|
6
|
MiR-10b-3p alleviates cerebral ischemia/reperfusion injury by targeting Krüppel-like factor 5 (KLF5). Pflugers Arch 2022; 474:343-353. [PMID: 34989875 DOI: 10.1007/s00424-021-02645-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
Although miR-10b-3p has been identified to be involved in cerebral ischemia injury, its impact and specific mechanism in cerebral ischemia injury remain unclear. The effects of Mir-10b-3p were investigated by establishing rat and cell models of ischemia/reperfusion (I/R) injury. Oxygen-glucose deprivation/reperfusion (OGD/R) was performed on pheochromocytoma-12 (PC12) cells. MiR-10b-3p expression levels in brain tissues and PC12 cells were detected by qRT-PCR. The impacts of miR-10b-3p on neurological deficits, infarct volume, inflammatory factor expression, in vivo brain water content, cell viability, and cell apoptosis were assessed. The relationship between miR-10b-3p and KLF5 was determined by TargetScan and luciferase reporter assay. The rescue experiments were performed to confirm the role of this axis in cerebral ischemia injury. Mir-10b-3p levels in rat brain tissue and PC12 cells were significantly decreased after I/R injury. MiR-10b-3p overexpression obviously reduced neurological deficits, infarct volume, brain water content, inflammatory factors expression, and neuronal apoptosis in the brain of ischemia-stroked rats. Meanwhile, miR-10b-3p upregulation also inhibited cell viability and apoptosis of OGD/R-induced PC12 cells. Besides, KLF5 was identified as a target of miR-10b-3p, and rescue experiments revealed that KLF5 was involved in the regulation of miR-10b-3p in ischemic injury. Our results demonstrated that miR-10b-3p had the neuroprotective effects against ischemia injury by targeting KLF5 and provided a potential underlying target for ischemic stroke treatment.
Collapse
|
7
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M, Arefian N. Emerging Impact of Non-coding RNAs in the Pathology of Stroke. Front Aging Neurosci 2021; 13:780489. [PMID: 34867304 PMCID: PMC8640345 DOI: 10.3389/fnagi.2021.780489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke (IS) is an acute cerebral vascular event with high mortality and morbidity. Though the precise pathophysiologic routes leading to this condition are not entirely clarified, growing evidence from animal and human experiments has exhibited the impact of non-coding RNAs in the pathogenesis of IS. Various lncRNAs namely MALAT1, linc-SLC22A2, linc-OBP2B-1, linc_luo_1172, linc-DHFRL1-4, SNHG15, linc-FAM98A-3, H19, MEG3, ANRIL, MIAT, and GAS5 are possibly involved in the pathogenesis of IS. Meanwhile, lots of miRNAs contribute in this process. Differential expression of lncRNAs and miRNAs in the sera of IS patients versus unaffected individuals has endowed these transcripts the aptitude to distinguish at risk patients. Despite conduction of comprehensive assays for evaluation of the influence of lncRNAs/miRNAs in the pathogenesis of IS, therapeutic impacts of these transcripts in IS have not been clarified. In the present paper, we review the impact of lncRNAs/miRNAs in the pathobiology of IS through assessment of evidence provided by human and animal studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Noormohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University Hospital, Tehra, Iran
| |
Collapse
|
8
|
Gomes-Duarte A, Bauer S, Venø MT, Norwood BA, Henshall DC, Kjems J, Rosenow F, Vangoor VR, Pasterkamp RJ. Enrichment of Circular RNA Expression Deregulation at the Transition to Recurrent Spontaneous Seizures in Experimental Temporal Lobe Epilepsy. Front Genet 2021; 12:627907. [PMID: 33584828 PMCID: PMC7876452 DOI: 10.3389/fgene.2021.627907] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a common form of epilepsy and is characterized by recurrent spontaneous seizures originating from the temporal lobe. The majority of mTLE patients develop pharmacoresistance to available anti-epileptic drugs (AEDs) while exhibiting severe pathological changes that can include hippocampal atrophy, neuronal death, gliosis and chronic seizures. The molecular mechanisms leading to mTLE remain incompletely understood, but are known to include defects in post-transcriptional gene expression regulation, including in non-coding RNAs (ncRNAs). Circular RNAs (circRNAs) are a class of recently rediscovered ncRNAs with high levels of expression in the brain and proposed roles in diverse neuronal processes. To explore a potential role for circRNAs in epilepsy, RNA-sequencing (RNA-seq) was performed on hippocampal tissue from a rat perforant pathway stimulation (PPS) model of TLE at different post-stimulation time points. This analysis revealed 218 differentially expressed (DE) circRNAs. Remarkably, the majority of these circRNAs were changed at the time of the occurrence of the first spontaneous seizure (DOFS). The expression pattern of two circRNAs, circ_Arhgap4 and circ_Nav3, was further validated and linked to miR-6328 and miR-10b-3p target regulation, respectively. This is the first study to examine the regulation of circRNAs during the development of epilepsy. It reveals an intriguing link between circRNA deregulation and the transition of brain networks into the state of spontaneous seizure activity. Together, our results provide a molecular framework for further understanding the role and mechanism-of-action of circRNAs in TLE.
Collapse
Affiliation(s)
- Andreia Gomes-Duarte
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sebastian Bauer
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Morten T. Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Omiics ApS, Aarhus, Denmark
| | - Braxton A. Norwood
- Department of Neuroscience, Expesicor Inc., Kalispell, MT, United States
- Diagnostics Development, FYR Diagnostics, Missoula, MT, United States
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Vamshidhar R. Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R. Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Shen B, Wang L, Xu Y, Wang H, He S. LncRNA GAS5 Silencing Attenuates Oxygen-Glucose Deprivation/Reperfusion-Induced Injury in Brain Microvascular Endothelial Cells via miR-34b-3p-Dependent Regulation of EPHA4. Neuropsychiatr Dis Treat 2021; 17:1667-1678. [PMID: 34079264 PMCID: PMC8165656 DOI: 10.2147/ndt.s302314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The aim of our study was to explore the role of long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) in ischemic stroke using oxygen-glucose deprivation/reperfusion (OGD/R)-induced bEnd.3 cells as in vitro cell model. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were adopted to analyze RNA and protein expression. Cell viability and apoptosis were analyzed by Cell Counting Kit-8 (CCK8) assay and flow cytometry. The levels of nitric oxide (NO) and endothelin-1 (ET-1) in culture supernatant were examined by their matching commercial kits. The intermolecular target interaction was predicted by starBase software and tested by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS OGD/R-induced apoptosis and dysregulation in vascular endocrine system were largely alleviated by the knockdown of GAS5. GAS5 interacted with microRNA-34b-3p (miR-34b-3p), and GAS5 silencing protected bEnd.3 cells from OGD/R-induced injury partly through up-regulating miR-34b-3p. EPH receptor A4 (EPHA4) was a target of miR-34b-3p. GAS5 acted as the molecular sponge of miR-34b-3p to up-regulate EPHA4 in bEnd.3 cells. GAS5 interference protected against OGD/R-induced damage in bEnd.3 cells partly through down-regulating EPHA4. CONCLUSION LncRNA GAS5 knockdown protected brain microvascular endothelial cells bEnd.3 from OGD/R-induced injury depending on the regulation of miR-34b-3p/EPHA4 axis.
Collapse
Affiliation(s)
- Bin Shen
- Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu Province, People's Republic of China
| | - Lan Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, People's Republic of China
| | - Yuejun Xu
- Wuchang University of Technology, Wuhan, 430223, Hubei Province, People's Republic of China
| | - Hongwei Wang
- Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu Province, People's Republic of China
| | - Shiyi He
- Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu Province, People's Republic of China
| |
Collapse
|
10
|
Lewis MA, Di Domenico F, Ingham NJ, Prosser HM, Steel KP. Hearing impairment due to Mir183/96/182 mutations suggests both loss and gain of function effects. Dis Model Mech 2020; 14:dmm.047225. [PMID: 33318051 PMCID: PMC7903918 DOI: 10.1242/dmm.047225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 01/13/2023] Open
Abstract
The microRNA miR-96 is important for hearing, as point mutations in humans and mice result in dominant progressive hearing loss. Mir96 is expressed in sensory cells along with Mir182 and Mir183, but the roles of these closely-linked microRNAs are as yet unknown. Here we analyse mice carrying null alleles of Mir182, and of Mir183 and Mir96 together to investigate their roles in hearing. We found that Mir183/96 heterozygous mice had normal hearing and homozygotes were completely deaf with abnormal hair cell stereocilia bundles and reduced numbers of inner hair cell synapses at four weeks old. Mir182 knockout mice developed normal hearing then exhibited progressive hearing loss. Our transcriptional analyses revealed significant changes in a range of other genes, but surprisingly there were fewer genes with altered expression in the organ of Corti of Mir183/96 null mice compared with our previous findings in Mir96 Dmdo mutants, which have a point mutation in the miR-96 seed region. This suggests the more severe phenotype of Mir96 Dmdo mutants compared with Mir183/96 mutants, including progressive hearing loss in Mir96 Dmdo heterozygotes, is likely to be mediated by the gain of novel target genes in addition to the loss of its normal targets. We propose three mechanisms of action of mutant miRNAs; loss of targets that are normally completely repressed, loss of targets whose transcription is normally buffered by the miRNA, and gain of novel targets. Any of these mechanisms could lead to a partial loss of a robust cellular identity and consequent dysfunction.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
11
|
Zhu L, Zhou X, Li S, Liu J, Yang J, Fan X, Zhou S. miR‑183‑5p attenuates cerebral ischemia injury by negatively regulating PTEN. Mol Med Rep 2020; 22:3944-3954. [PMID: 32901892 PMCID: PMC7533437 DOI: 10.3892/mmr.2020.11493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cerebral ischemia is a common cerebrovascular disease caused by the occlusion of a cerebral blood vessel. MicroRNAs (miRNAs/miRs) are emerging regulators of various human diseases, including cerebral ischemia. Upregulation of miR‑183‑5p has been reported to alleviate liver injury induced by ischemia‑reperfusion (I/R). However, the effect of miR‑183‑5p on cerebral ischemia injury remains unknown. The present study evaluated the effects of miR‑183‑5p on ischemia injury using ischemic models of mouse brains exposed to transient middle cerebral artery occlusion and Neuro‑2A (N2A) neuroblastoma cells exposed to oxygen‑glucose‑deprivation (OGD) and subsequently reoxygenated. Ischemia was evaluated in mice using neurological function scores, cerebral edema, 2,3,5‑triphenyltetrazoliumchloride, Nissl and Fluoro‑Jade B staining assays. In addition, miR‑183‑5p expression, N2A cell viability and the expression levels of apoptosis‑associated proteins were detected by quantitative PCR, Cell Counting Kit‑8 assay, flow cytometry and western blotting. The association between miR‑183‑5p and phosphatase and tensin homolog (PTEN) was also confirmed by a luciferase reporter assay. The results revealed that miR‑183‑5p expression was decreased and brain damage was increased in ischemic mice compared with the sham group. Additionally, miR‑183‑5p levels were reduced, and apoptosis was increased in N2A cells exposed to ischemia compared with the control group. Following transfection with agomiR‑183‑5p, cerebral ischemic injury and apoptosis levels were reduced in the in vivo I/R stroke model and OGD‑induced N2A cells. In addition, PTEN was determined to be a target of miR‑183‑5p following elucidation of a direct binding site. Overexpression of PTEN reversed the miR‑183‑5p‑induced N2A cell apoptosis inhibition and survival after OGD. The results of the present study suggested that miR‑183‑5p reduced ischemic injury by negatively regulating PTEN, which may aid the development of a novel therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xueying Zhou
- Department of Rehabilitation, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shanshan Li
- Department of Neurology, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Jianmeng Liu
- Department of Gynaecology and Obstetrics, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Jingyan Yang
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiangyun Fan
- Department of General Medicine, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Shengnian Zhou
- Department of Neurology, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
12
|
Overexpression of miR-217-5p protects against oxygen-glucose deprivation/reperfusion-induced neuronal injury via inhibition of PTEN. Hum Cell 2020; 33:1026-1035. [PMID: 32683553 DOI: 10.1007/s13577-020-00396-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is characterized by loss of brain function because of cerebral ischemia. Evidence has been shown that miR-217-5p is significantly downregulated in infarcted brain areas following focal cerebral ischemia. However, the role of miR-217-5p in ischemic stroke is still unclear. To mimic ischemia/reperfusion (I/R) injury conditions in vitro, SH-SY5Y cells were treated with oxygen-glucose deprivation/reperfusion (OGD/R). Our data found that PTEN was the directly target of miR-217-5p in SH-SY5Y cells. The level of miR-217-5p was significantly decreased, while the level of PTEN was notably increased in SH-SY5Y cells following OGD/R treatment. Overexpression of miR-217-5p markedly promoted the proliferation and cell cycle progression, and inhibited apoptosis in OGD/R-treated SH-SY5Y cells. In addition, overexpression of miR-217-5p significantly decreased the expressions of PTEN and FOXO1, but increased the expression of p-Akt in OGD/R-treated SH-SY5Y cells. Moreover, methylation specific PCR (MSP) results indicated the CpG islands in the promoter region of miR-217-5p were hypermethylated in SH-SY5Y cells under OGD/R. Meanwhile, the DNA methylation of miR-217-5p promoter region decreased expression of miR-217-5p. Our data indicated that miR-217-5p could attenuate ischemic injury by inhibiting PTEN. In addition, DNA methylation-mediated silencing of miR-217-5p may serve as a promising therapeutic target of ischemic stroke.
Collapse
|