1
|
Mao N, Xie X. Mechanisms of Tripterygium wilfordii Hook F on treating rheumatoid arthritis explored by network pharmacology analysis and molecular docking. Open Med (Wars) 2024; 19:20240967. [PMID: 38841174 PMCID: PMC11151399 DOI: 10.1515/med-2024-0967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory and disabling disease that imposes significant economic and social costs. Tripterygium wilfordii Hook F (TwHF) has a long history of use in traditional Chinese medicine for treating joint disorders, and it has been shown to be cost-effective in treating RA, but its exact mechanism is unknown. Objective The goal of the network pharmacology analysis and molecular docking was to investigate the potential active compounds and associated anti-RA mechanisms of TwHF. Methods TCMSP and UniProt databases were searched for active compounds and related targets of TwHF. PharmGKB, DrugBank, OMIM, TTD, and the Human Gene Databases were used to identify RA-related targets. The intersected RA and TwHF targets were entered into the STRING database to create a protein-protein interaction network. R software was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking technology was used to analyze the optimal effective components from TwHF for docking with the selected target gene. Results Following screening and duplicate removal, a total of 51 active compounds and 96 potential targets were chosen. The PPI network revealed that the target proteins are CXCL8, CXCL6, STAT3, STAT1, JUN, PPARG, TP53, IL14, MMP9, VEGFA, RELA, CASP3, PTGS2, IFNG, AKT1, FOS, ICAM1, and MAPK14. The results of the GO enrichment analysis focused primarily on the response to lipopolysaccharide, the response to molecules of bacterial origin, and the response to drugs. The KEGG results indicated that the mechanisms were closely related to lipid and atherosclerosis, chemical carcinogenesis-receptor activation, Kaposi sarcoma-associated, herpesvirus infection, hepatitis B, fluid shear stress and atherosclerosis, IL-17 signaling pathways, Th17-cell differentiation, and so on, all of which are involved in angiogenesis, immune cell chemotaxis, and inflammatory responses. Molecular docking results suggested that triptolide was the appropriate PTGS1, PTGS2, and TNF inhibitors. Conclusion Our findings provide an essential role and basis for further immune inflammatory studies into the molecular mechanisms of TwHF and PTGS1, PTGS2, and TNF inhibitor development in RA.
Collapse
Affiliation(s)
- Ni Mao
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Xi Xie
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
2
|
Yin Q, Huang Q, Zhang H, Zhang X, Fan C, Wang H. Anti-rheumatoid arthritis effects of traditional Chinese medicine Fufang Xiaohuoluo pill on collagen-induced arthritis rats and MH7A cells. Front Pharmacol 2024; 15:1374485. [PMID: 38741593 PMCID: PMC11089244 DOI: 10.3389/fphar.2024.1374485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Background Fufang Xiaohuoluo pill (FFXHL) is a commonly used prescription in clinical practice for treating rheumatoid arthritis in China, yet its specific mechanism remains unclear. This study aims to elucidate the pharmacological mechanisms of FFXHL using both in vivo and in vitro experiments. Methods The collagen-induced arthritis (CIA) rat model was established to evaluate FFXHL's therapeutic impact. Parameters that include paw swelling, arthritis scores, and inflammatory markers were examined to assess the anti-inflammatory and analgesic effects of FFXHL. Human fibroblast-like synoviocytes (MH7A cells) is activated by tumour necrosis factor-alpha (TNF-α) were used to explore the anti-inflammatory mechanism on FFXHL. Results Our findings indicate that FFXHL effectively reduced paw swelling, joint pain, arthritis scores, and synovial pannus hyperplasia. It also lowered serum levels of TNF-α, interleukin-1β (IL1β), and interleukin-6 (IL-6). Immunohistochemical analysis revealed decreased expression of nuclear factor-kappa B (NF-κB) p65 in FFXHL-treated CIA rat joints. In vitro experiments demonstrated FFXHL's ability to decrease protein secretion of IL-1β and IL-6, suppress mRNA expression of matrix metalloproteinases (MMP) -3, -9, and -13, reduce reactive oxygen species (ROS) levels, and inhibit NF-κB p65 translocation in TNF-α stimulated MH7A cells. FFXHL also suppressed protein levels of extracellular signal-regulated kinase (ERK), c-Jun Nterminal kinase (JNK), p38 MAP kinase (p38), protein kinase B (Akt), p65, inhibitor of kappa B kinase α/β (IKKα/β), Toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) induced by TNF-α in MH7A cells. Conclusion The findings imply that FFXHL exhibits significant anti-inflammatory and antiarthritic effects in both CIA rat models and TNF-α-induced MH7A cells. The potential mechanism involves the inactivation of TLR4/MyD88, mitogen-activated protein kinases (MAPKs), NF-κB, and Akt pathways by FFXHL.
Collapse
Affiliation(s)
- Qiong Yin
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Qian Huang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Hantao Zhang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Xiaodi Zhang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | | | - Hongping Wang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| |
Collapse
|
3
|
Wang Y, Tian Z, Huang S, Dang N. Tripterygium wilfordii Hook. F. and Its Extracts for Psoriasis: Efficacy and Mechanism. Drug Des Devel Ther 2023; 17:3767-3781. [PMID: 38144417 PMCID: PMC10749103 DOI: 10.2147/dddt.s439534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Psoriasis is an inflammatory autoimmune skin condition that is clinically marked by chronic erythema and scaling. The traditional Chinese herb Tripterygium wilfordii Hook. F. (TwHF) is commonly used in the treatment of immune-related skin illnesses, such as psoriasis. In clinical studies, PASI (Psoriasis Area and Severity Index) were dramatically decreased by TwHF and its extracts. Their benefits for psoriasis also include relief from psoriasis symptoms such as itching, dryness, overall lesion scores and quality of life. And the pathological mechanisms include anti-inflammation, immunomodulation and potentially signaling pathway modulations, which are achieved by modulating type-3 inflammatory cytokines including IL-22, IL-23, and IL-17 as well as immune cells like Th17 lymphocytes, γδT cells, and interfering with IFN-SOCS1, NF-κB and IL- 36α signaling pathways. TwHF and its extracts may cause various adverse drug reactions, such as gastrointestinal responses, aberrant hepatocytes, reproductive issues, and liver function impairment, but at adequate doses, they are regarded as an alternative therapy for the treatment of psoriasis. In this review, the effectiveness and mechanisms of TwHF and its extracts in psoriasis treatment are elucidated.
Collapse
Affiliation(s)
- Yingchao Wang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zhaochun Tian
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Shuhong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
4
|
Shan Y, Zhao J, Wei K, Jiang P, Xu L, Chang C, Xu L, Shi Y, Zheng Y, Bian Y, Zhou M, Schrodi SJ, Guo S, He D. A comprehensive review of Tripterygium wilfordii hook. f. in the treatment of rheumatic and autoimmune diseases: Bioactive compounds, mechanisms of action, and future directions. Front Pharmacol 2023; 14:1282610. [PMID: 38027004 PMCID: PMC10646552 DOI: 10.3389/fphar.2023.1282610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.
Collapse
Affiliation(s)
- Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI. United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol 2023; 14:1196931. [PMID: 37457726 PMCID: PMC10339812 DOI: 10.3389/fimmu.2023.1196931] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use. These inefficiencies have created a need for a different approach to treating RA. Recently, the focus has shifted to direct targeting of transcription factors (TFs), as they play a vital role in the pathogenesis of RA, activating key cytokines, chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs and natural compounds are being explored to target key TFs or their signaling pathways in RA. This review discusses the role of four key TFs in inflammation, namely NF-κB, STATs, AP-1 and IRFs, and their potential for being targeted to treat RA.
Collapse
Affiliation(s)
- Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Lu M, Ou J, Deng X, Chen Y, Gao Q. Exploring the pharmacological mechanisms of Tripterygium wilfordii against diabetic kidney disease using network pharmacology and molecular docking. Heliyon 2023; 9:e17550. [PMID: 37416640 PMCID: PMC10320109 DOI: 10.1016/j.heliyon.2023.e17550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Background Tripterygium wilfordii (TW), when formulated in traditional Chinese medicine (TCM), can effectively treat diabetic kidney disease (DKD). However, the pharmacological mechanism associated with its success has not yet been elucidated. The current work adopted network pharmacology and molecular docking for exploring TW-related mechanisms in treating DKD. Methods: In the present work, the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was employed to obtain the effective components and candidate targets of TW. Additionally, this work utilized the UniProt protein database for screening and standardizing human-derived targets for effective components. The Cytoscape software was utilized to construct an effective component-target network for TW. Targets for DKD were acquired in the GEO, DisGeNET, GeneCards, and OMIM databases. Additionally, a Venn diagram was also plotted to select the possible targets of TW for treating DKD. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted to explore the TW-related mechanism underlying DKD treatment. This work also built a protein-protein interaction (PPI) network based on the Cytoscape and String platform. Then, molecular docking was conducted in order to assess the affinity of key proteins for related compounds. Results: In total, 29 active components and 134 targets of TW were acquired, including 63 shared targets, which were identified as candidate therapeutic targets. Some key targets and important pathways were included in the effect of TW in treating DKD. Genes with higher degrees, including TNF and AKT1, were identified as hub genes of TW against DKD. Molecular docking showed that TNF and AKT1 bind well to the main components in TW (kaempferol, beta-sitosterol, triptolide, nobiletin, and stigmasterol). Conclusions TW primarily treats DKD by acting on two targets (AKT1 and TNF) via the five active ingredients kaempferol, beta-sitosterol, triptolide, nobiletin, and stigmasterol.
Collapse
Affiliation(s)
- Meiqi Lu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Juanjuan Ou
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoqi Deng
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yixuan Chen
- The School of Clinical Medicine, Fujian Medical University Fuzhou, China
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University Fuzhou, China
| |
Collapse
|
7
|
Hui P, Zhou S, Cao C, Zhao W, Zeng L, Rong X. The elucidation of the anti-inflammatory mechanism of EMO in rheumatoid arthritis through an integrative approach combining bioinformatics and experimental verification. Front Pharmacol 2023; 14:1195567. [PMID: 37324499 PMCID: PMC10267444 DOI: 10.3389/fphar.2023.1195567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Emodin (EMO), a natural derivative of the anthraquinone family mainly extracted from rhubarb (Rheum palmatum), has previously been demonstrated to possess superior anti-inflammatory properties from a single target or pathway. In order to explore the underlying mechanism of action of EMO against rheumatoid arthritis (RA), a network pharmacology approach was employed. Methods: A gene expression profile from GSE55457 available from the Gene Expression Omnibus (GEO) database was used to identify the targets of EMO action. Further, single cell RNA sequencing data from GEO database of RA patients (GSE159117) were downloaded and analysed. To further investigate the anti-RA effect of EMO on MH7A cells, the expression of IL-6 and IL-1β were monitored. Finally, RNA-seq analyses were conducted on synovial fibroblasts from EMO-treated. Result: We screened the key targets of EMO against RA using network pharmacology methods, including HMGB1, STAT1, EGR1, NR3C1, EGFR, MAPK14, CASP3, CASP1, IL4, IL13, IKBKB and FN1, and their reliability was verified using ROC curve. Single-cell RNA sequencing data analysis showed that these core target proteins mainly played a role by modulating monocytes. The anti-RA effect of EMO was further verified with MH7A cells, which showed that EMO could block cell differentiation and reduce the expression of IL-6 and IL-1β. WB experiments confirmed that EMO could affect the expression of COX2, HMBG1 and the phosphorylation of p38. Finally, sequencing of synovial fibroblasts from rats treated with EMO showed consistent results with those predicted and verified, further proving the anti-inflammatory effect of EMO. Conclusion: Our research shows that EMO inhibits inflammatory response of rheumatoid arthritis (RA) by targeting HMGB1, STAT1, EGR1, NR3C1, EGFR, MAPK14, CASP3, CASP1, IL4, IL13, IKBKB, FN1 and Monocytes/macrophages.
Collapse
Affiliation(s)
- Pusheng Hui
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
| | - Sicong Zhou
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhao Cao
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
| | - Wenting Zhao
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Zeng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofeng Rong
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliate Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Wu Q, He M, Wang J, Tong T, Yang D, Tang H. The therapeutic mechanism of Chebulae Fructus in the treatment of immunosuppression in Chinese yellow quail on the basis of network pharmacology. Front Vet Sci 2023; 10:1123449. [PMID: 37275616 PMCID: PMC10235497 DOI: 10.3389/fvets.2023.1123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Chebulae Fructus (Terminalia chebula Retz.) is a well-known traditional Chinese medicine (TCM), one of the family Combretaceae, whose immature fruit is called Fructus Chebulae Immaturus or Zangqingguo. This present study aimed at detecting the target and therapeutic mechanism of Chebulae Fructus against immunosuppression through network analysis and experimental validation. Methods Effective components and potential targets of Chebulae Fructus were Search and filtered through the Chinese herbal medicine pharmacology data and analysis platform. A variety of known disease target databases were employed to screen the therapeutic target proteins against immunosuppression and thus constructing a protein-protein interaction network. Hub genes and key pathways in this study were identified by continuous project enrichment analysis. Further, the core targets and therapeutic mechanism of Chebulae Fructus against immunosuppression in Chinese yellow quail through animal experiment. Results Seventy-five identifiable major candidate targets of Chebulae Fructus were found and thus constructing a drug-compound-target-disease network. Targets derived from gene enrichment analysis play pivotal roles in lipid and atherosclerosis, fluid shear stress and atherosclerosis, and the hepatitis B pathway. Height of plicate and areas of lymphoid follicle were both increased and the expression of GATA-3 and T-bet was upregulated in Chinese yellow quail fed with Chebulae Fructus in animal experiment. Conclusion Chebulae Fructus may be a helpful Chinese medicine with immunosuppressive effect and prospective applications in future. Further research is also needed to understand the mechanisms of immunosuppression and the mechanism of action of immunomodulators.
Collapse
Affiliation(s)
- Qiang Wu
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Min He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Wang
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - TieJin Tong
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Dan Yang
- Agricultural College, Yibin Vocational and Technical College, Yibin, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 2022; 39:319-343. [PMID: 35701726 PMCID: PMC10042984 DOI: 10.1007/s10565-022-09730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
Adverse outcome pathways (AOPs) are organized sequences of key events (KEs) that are triggered by a xenobiotic-induced molecular initiating event (MIE) and summit in an adverse outcome (AO) relevant to human or ecological health. The AOP framework causally connects toxicological mechanistic information with apical endpoints for application in regulatory sciences. AOPs are very useful to link endophenotypic, cellular endpoints in vitro to adverse health effects in vivo. In the field of in vitro developmental neurotoxicity (DNT), such cellular endpoints can be assessed using the human "Neurosphere Assay," which depicts different endophenotypes for a broad variety of neurodevelopmental KEs. Combining this model with large-scale transcriptomics, we evaluated DNT hazards of two selected Chinese herbal medicines (CHMs) Lei Gong Teng (LGT) and Tian Ma (TM), and provided further insight into their modes-of-action (MoA). LGT disrupted hNPC migration eliciting an exceptional migration endophenotype. Time-lapse microscopy and intervention studies indicated that LGT disturbs laminin-dependent cell adhesion. TM impaired oligodendrocyte differentiation in human but not rat NPCs and activated a gene expression network related to oxidative stress. The LGT results supported a previously published AOP on radial glia cell adhesion due to interference with integrin-laminin binding, while the results of TM exposure were incorporated into a novel putative, stressor-based AOP. This study demonstrates that the combination of phenotypic and transcriptomic analyses is a powerful tool to elucidate compounds' MoA and incorporate the results into novel or existing AOPs for a better perception of the DNT hazard in a regulatory context.
Collapse
|
10
|
王 杰, 刘 健, 文 建, 王 馨. [Triptolide inhibits inflammatory response and migration of fibroblast like synovial cells in rheumatoid arthritis through the circRNA 0003353/JAK2/STAT3 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:367-374. [PMID: 35426800 PMCID: PMC9010992 DOI: 10.12122/j.issn.1673-4254.2022.03.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effect of triptolide (TPL) on inflammatory response and migration of fibroblast like synovial cells (FLS) in rheumatoid arthritis (RA-FLS) and the mechanism of circular noncoding RNA (circRNA) 0003353 for mediating this effect. METHODS We collected peripheral blood mononuclear cells (PBMCs) and serum samples from 50 hospitalized RA patients and 30 healthy individuals for detecting the expression of circRNA 0003353, immune and inflammatory indexes (ESR, CRP, RF, anti-CCP, IgA, IgG, IgM, C3, and C4) and DAS28 score. Cultured RA-FLS was treated with 10 ng/mL TPL and transfected with a circRNA 0003353 overexpression plasmid, and cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect the changes in the viability and migration of the cells. Enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokines IL-4, IL-6, and IL-17, and real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect the expression of circRNA 003353; Western blotting was used to detect the expressions of p-JAK2, pSTAT3, JAK2 and STAT3 proteins in the treated cells. RESULTS The expression of circRNA 0003353 was significantly increased in PBMCs from RA patients and showed a good performance in assisting the diagnosis of RA (AUC=90.5%, P < 0.001, 95% CI: 0.83-0.98). CircRNA 0003353 expression was positively correlated with ESR, RF and DAS28 (P < 0.05). Treatment with TPL significantly decreased the expression of circRNA 0003353, suppressed the viability and migration ability, decreased the expressions of IL-6 and IL-17, and increased the expression IL-4 in cultured RA-FLS in a time-dependent manner (P < 0.01). TNF-α stimulation of RA-FLS significantly increased the ratios of p-JAK2/JAK2 and p-STAT3/STAT3, which were obviously lowered by TPL treatment (P < 0.01). TPL-treated RA-FLS overexpressing circRNA 0003353 showed significantly increased cell viability and migration ability with decreased IL-4 expression and increased IL-6 and IL-17 expressions and ratios of p-JAK2/ JAK2 and p-STAT3/STAT3 (P < 0.01). CONCLUSION The expression of circRNA 0003353 is increased in PBMCs in RA patients and in RA-FLS. TPL treatment can regulate JAK2/STAT3 signal pathway and inhibit the inflammatory response and migration of RA-FLS through circRNA 0003353.
Collapse
Affiliation(s)
- 杰 王
- />安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - 健 刘
- />安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - 建庭 文
- />安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - 馨 王
- />安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| |
Collapse
|
11
|
Optimizing glycerosome formulations via an orthogonal experimental design to enhance transdermal triptolide delivery. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:135-146. [PMID: 36651523 DOI: 10.2478/acph-2022-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 01/20/2023]
Abstract
Triptolide exerts strong anti-inflammatory and immunomodulatory effects; however, its oral administration might be associated with side effects. Transdermal administration can improve the safety of triptolide. In this study, glycerosomes were prepared as the transdermal vehicle to enhance the transdermal delivery of triptolide. With entrapment efficiency and drug loading as dependent variables, the glycerosome formulation was optimized using an orthogonal experimental design. Phospholipid-to-cholesterol and phospholipid-to-triptolide mass ratios of 30:1 and 5:1, respectively and a glycerol concentration of 20 % (V/V) were used in the optimization. The glycerosomes prepared with the optimized formulation showed good stability, with an average particle size of 153.10 ± 2.69 nm, a zeta potential of -45.73 ± 0.60 mV and an entrapment greater than 75 %. Glycerosomes significantly increased the transdermal delivery of triptolide compared to conventional liposomes. As efficient carriers for the transdermal delivery of drugs, glycerosomes can potentially be used as an alternative to oral triptolide administration.
Collapse
|
12
|
Xia M, Liu D, Liu H, Zhao J, Tang C, Chen G, Liu Y, Liu H. Based on Network Pharmacology Tools to Investigate the Mechanism of Tripterygium wilfordii Against IgA Nephropathy. Front Med (Lausanne) 2022; 8:794962. [PMID: 34977095 PMCID: PMC8715946 DOI: 10.3389/fmed.2021.794962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease and poses a global major public health burden. The preparation of Tripterygium wilfordii Hook F (TwHF) is widely applied for treating patients with Immunoglobulin A nephropathy in China, while the molecular mechanisms remain unclear. This study aimed to verify the therapeutic mechanism of TwHF on IgAN by undertaking a holistic network pharmacology strategy in combination with in vitro and in vivo experiments. Methods: TwHF active ingredients and their targets were obtained via the Traditional Chinese Medicine Systems Pharmacology Database. The collection of IgAN-related target genes was collected from GeneCards and OMIM. TwHF-IgAN common targets were integrated and visualized by Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the predominant molecular mechanisms and pathways of TwHF on the treatment of IgAN. The protein-protein interaction network was constructed by the STRING online search tool, and hub genes were identified using R software. The expression of hub gene and related signaling were evaluated in TwHF-treated mice through immunohistochemistry and western blot and further validated in human mesangial cells (HMCs). In addition, Cell counting kit 8 (CCK8) and flow cytometry were used to detect the effects of TwHF on cell proliferation and cell cycle of mesangial cells. Results: A total of 51 active ingredients were screened from TwHF and 61 overlapping targets related to IgAN were considered potential therapeutic targets, GO functions and KEGG analyses demonstrated that these genes were primarily associated with DNA-binding transcription factor binding, lipid and atherosclerosis pathway. Genes with higher degrees including AKT1, CXCL8, MMP9, PTGS2, CASP3, JUN are hub genes of TwHF against IgAN. Verification of hub gene JUN both in vitro and in vivo showed that TwHF significantly attenuated JUN phosphorylation in the kidneys of IgAN mice and aIgA1-activated HMCs, meanwhile suppressing HMCs proliferation and arresting G1-S cell cycle progression. Conclusion: Our research strengthened the mechanisms of TwHF in treating IgAN, inhibition of JUN activation may play a pivotal role in TwHF in alleviating IgAN renal injury.
Collapse
Affiliation(s)
- Ming Xia
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Di Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyang Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Juanyong Zhao
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyuan Tang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guochun Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Hong OY, Jang HY, Park KH, Jeong YJ, Kim JS, Chae HS. Triptolide inhibits matrix metalloproteinase-9 expression and invasion of breast cancer cells through the inhibition of NF-κB and AP-1 signaling pathways. Oncol Lett 2021; 22:562. [PMID: 34093777 PMCID: PMC8170179 DOI: 10.3892/ol.2021.12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/04/2021] [Indexed: 01/29/2023] Open
Abstract
Triptolide is a diterpenoid epoxide that is endogenously produced by the thunder god vine, Tripterygium wilfordii Hook F. Triptolide has demonstrated a variety of biological activities, including anticancer activities, in previous studies. Invasion and metastasis are the leading causes of mortality for patients with breast cancer, and the increased expression of matrix metalloproteinase-9 (MMP-9) has been shown to be associated with breast cancer invasion. Therefore, the aim of the present study was to investigate the effect of triptolide on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced cell invasion and MMP-9 expression in breast cancer cells. The expression of signal molecules was examined by western blotting, zymography and quantitative polymerase chain reaction; an electrophoretic mobility gel shift assay was also used, and cell invasiveness was measured by an in vitro Matrigel invasion assay. The MCF-7 human breast cancer cell line was treated with triptolide at the highest concentrations at which no marked cytotoxicity was evident. The results demonstrated that triptolide decreased the expression of MMP-9 through inhibition of the TPA-induced phosphorylation of extracellular signal-regulated kinase (ERK) and the downregulation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity. In addition, a Transwell assay revealed that triptolide reduced the ability of MCF-7 cells to invade Matrigel. These data demonstrate that the anti-invasive effect of triptolide is associated with the inhibition of ERK signaling and NF-κB and AP-1 activation, and suggest that triptolide may be a promising drug for breast cancer.
Collapse
Affiliation(s)
- On-Yu Hong
- Department of Biochemistry, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Hye-Yeon Jang
- Department of Biochemistry, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Kwang-Hyun Park
- Department of Emergency Medical Rescue, Nambu University, Gwangju 62271, Republic of Korea.,Department of Emergency Medicine, Graduate School of Chonnam National University, Gwangju 61469, Republic of Korea
| | - Young-Ju Jeong
- Department of Obstetrics and Gynecology, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54907, Republic of Korea
| | - Hee Suk Chae
- Department of Obstetrics and Gynecology, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Jeollabuk 54907, Republic of Korea
| |
Collapse
|