1
|
Zhao H, Sun Y, Feng H, Cai J, Liu Y, Li Y, Chen S, Zhou Z, Du Y, Zeng X, Ren H, Su W, Mei Q, Chen G. PFKP silencing suppresses tumor growth via the AXL-MET axis. Int J Biol Sci 2024; 20:6056-6072. [PMID: 39664584 PMCID: PMC11628322 DOI: 10.7150/ijbs.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024] Open
Abstract
PFKP (Phosphofructokinase, Platelet Type isoform), as an essential metabolic enzyme, contributes to the high glycolysis rates seen in cancers while its role in oncogenic pathways, especially from a non-metabolic aspect, is not fully understood. We found that PFKP was highly expressed in NSCLC and was related to poor patient survival. Knockdown of PFKP significantly inhibited cell proliferation, colony formation, invasion, and migration of NSCLC cells. Nanoparticles-mediated PFKP silencing can inhibit tumor growth in vivo. Mechanistically, we found that PFKP can bind with AXL and promote its phosphorylation at Y779, thus activating the AXL signaling pathway and promoting MET phosphorylation. In addition, several glycolysis, glutaminolysis, and TCA cycle proteins were downregulated following PFKP silencing. PFKP has an oncogenic role in cancer progression in vitro and in vivo. Beyond its known role in glycolysis, PFKP also has a non-metabolic function in affecting lung cancer progression by interacting with the AXL-MET axis, thus indicating a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Huijie Zhao
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuze Sun
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Huijing Feng
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Cai
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Liu
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yu Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sijie Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiqing Zhou
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuhui Du
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaofei Zeng
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenmei Su
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Xian S, Zeng Z. Methods for Establishing a Rat Model of Rheumatic Heart Disease. Rev Cardiovasc Med 2024; 25:346. [PMID: 39355577 PMCID: PMC11440394 DOI: 10.31083/j.rcm2509346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 10/03/2024] Open
Abstract
Rheumatic heart disease (RHD) is responsible for nearly 250,000 deaths annually and poses a significant health threat in developing areas. The unclear pathogenesis of RHD makes the development of cost-effective treatments challenging, particularly as current surgical options are expensive and technologically demanding, exacerbating the economic and quality-of-life burdens for patients. Given the risks associated with direct human experimentation due to the uncertain pathogenesis, using a rat model infected with Group A Streptococcus (GAS) has become a crucial experimental strategy for RHD research. The development of an RHD rat model, refined over 23 years, now stands as a pivotal approach in studies aiming to understand the disease's pathogenesis. This review summarizes the evolution, characteristics, advantages, and limitations of the RHD rat model, offering insights into potential areas for improvement. It aims to provide researchers with a comprehensive understanding of the model, supporting the advancement of research methodologies and the discovery of innovative treatments for RHD.
Collapse
Affiliation(s)
- Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, 530021 Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, 530021 Nanning, Guangxi, China
| |
Collapse
|
3
|
Sun J, Du Q, Zhao L, Huang J, Yu H, Ding H, Mao D, Tai S. Long non-coding RNA H19 mediates the miR-29b/transforming growth factor-β1/Drosophila mothers against decapentaplegic 3 signalling pathway to promote bladder fibrosis in diabetic rats. Int Urol Nephrol 2024; 56:2779-2791. [PMID: 38530583 DOI: 10.1007/s11255-024-03992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Diabetic bladder fibrosis is a common comorbidity. Altered expression of some long non-coding RNAs (LncRNAs) has been associated with bladder fibrosis. LncRNA H19 has been reported to regulate bladder cancer through miR-29b. However, the action mechanism of LncRNA H19 in bladder fibrosis is unclear. METHODS In vitro, human bladder smooth muscle cells (HBSMCs) were cultured with transforming growth factor-β1 (TGF-β1) for 48 h to construct cell model of bladder fibrosis. HBSMCs were then transfected with si-LncRNA H19, si-NC, miR-29b-mimic, mimic-NC, or miR-29b-inhibitor. In vivo, Sprague-Dawley (SD) rats were given a high-sucrose-high-fat (HSHF) diet for 4 weeks and injected with streptozotocin (STZ, 50 mg/kg) to induce bladder fibrosis model in diabetic rats, followed by injection of lentiviral particles knocking down LncRNA H19 expression, empty vector, or miR-29b-inhibitor, respectively. RESULTS LncRNA H19 was up-regulated in TGF-β1-induced HBSMC fibrosis and STZ-induced diabetic rat bladder fibrosis, whereas miR-29b was down-regulated. si-LncRNA H19 reduced blood glucose levels and improved histopathological damage of bladder tissue in rats. In addition, si-LncRNA H19 or miR-29b-mimic increased the expression of E-cadherin, but decreased the expression of N-cadherin, vimentin, fibronectin (FN) in bladder tissues, and HBSMCs. si-LncRNA H19 reduced TGF-β1/p-drosophila mothers against decapentaplegic 3 (Smad3) protein in HBSMCs and in rat bladder tissues, while miR-29b-inhibitor reversed the effect of si-LncRNA H19. CONCLUSION This study indicated that LncRNA H19 may inhibit bladder fibrosis in diabetic rats by targeting miR-29b via the TGF-β1/Smad3 signalling pathway.
Collapse
Affiliation(s)
- Ji Sun
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 North Yucai Road, Xiaoshan District, Hangzhou, 311202, Zhejiang, China
| | - Qiang Du
- Department of Anaesthesiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311202, Zhejiang, China
| | - Liwei Zhao
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 North Yucai Road, Xiaoshan District, Hangzhou, 311202, Zhejiang, China
| | - Jiaguo Huang
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 North Yucai Road, Xiaoshan District, Hangzhou, 311202, Zhejiang, China
| | - Hui Yu
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 North Yucai Road, Xiaoshan District, Hangzhou, 311202, Zhejiang, China
| | - Hongxiang Ding
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 North Yucai Road, Xiaoshan District, Hangzhou, 311202, Zhejiang, China
| | - Dikai Mao
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 North Yucai Road, Xiaoshan District, Hangzhou, 311202, Zhejiang, China
| | - Shengcheng Tai
- Department of Urology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, No. 728 North Yucai Road, Xiaoshan District, Hangzhou, 311202, Zhejiang, China.
| |
Collapse
|
4
|
Snyder Y, Mann FAT, Middleton J, Murashita T, Carney J, Bianco RW, Jana S. Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds. APPLIED MATERIALS TODAY 2024; 39:102323. [PMID: 39131741 PMCID: PMC11308761 DOI: 10.1016/j.apmt.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The clinical application of heart valve scaffolds is hindered by complications associated with the activation of valvular interstitial cell-like (VIC-like) cells and their transdifferentiation into myofibroblasts. This study aimed to examine several molecular pathway(s) that may trigger the overactive myofibroblast phenotypes in the implanted scaffolds. So, we investigated the influence of three molecular pathways - macrophage-induced inflammation, the TGF-β1-SMAD2, and WNT/β-catenin β on VIC-like cells during tissue engineering of heart valve scaffolds. We implanted electrospun heart valve scaffolds in adult sheep for up to 6 months in the right ventricular outflow tract (RVOT) and analyzed biomolecular (gene and protein) expression associated with the above three pathways by the scaffold infiltrating cells. The results showed a gradual increase in gene and protein expression of markers related to the activation of VIC-like cells and the myofibroblast phenotypes over 6 months of scaffold implantation. Conversely, there was a gradual increase in macrophage activity for the first three months after scaffold implantation. However, a decrease in macrophage activity from three to six months of scaffold tissue engineering suggested that immunological signal factors were not the primary cause of myofibroblast phenotype. Similarly, the gene and protein expression of factors associated with the TGF-β1-SMAD2 pathway in the cells increased in the first three months but declined in the next three months. Contrastingly, the gene and protein expression of factors associated with the WNT/β-catenin pathway increased significantly over the six-month study. Thus, the WNT/β-catenin pathway could be the predominant mechanism in activating VIC-like cells and subsequent myofibroblast phenotype.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| | - FA Tony Mann
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - John Middleton
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - Takashi Murashita
- Department of Surgery, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212
| | - John Carney
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Richard W. Bianco
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Bai L, Li Y, Lu C, Yang Y, Zhang J, Lu Z, Huang K, Xian S, Yang X, Na N, Huang F, Zeng Z. Anti-IL-17 Inhibits PINK1/Parkin Autophagy and M1 Macrophage Polarization in Rheumatic Heart Disease. Inflammation 2024:10.1007/s10753-024-02094-3. [PMID: 38977539 DOI: 10.1007/s10753-024-02094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Rheumatic heart disease (RHD) is an important and preventable cause of cardiovascular death and disability, but the lack of clarity about its exact mechanisms makes it more difficult to find alternative methods or prevention and treatment. We previously demonstrated that increased IL-17 expression plays a crucial role in the development of RHD-related valvular inflammatory injury. Macrophage autophagy/polarization may be a pro-survival strategy in the initiation and resolution of the inflammatory process. This study investigated the mechanism by which IL-17 regulates autophagy/polarization activation in macrophages. A RHD rat model was generated, and the effects of anti-IL-17 and 3-methyladenine (3-MA) were analyzed. The molecular mechanisms underlying IL-17-induced macrophage autophagy/polarization were investigated via in vitro experiments. In our established RHD rat model, the activation of the macrophage PINK1/Parkin autophagic pathway in valve tissue was accompanied by M1 macrophage infiltration, and anti-IL-17 treatment inhibited autophagy and reversed macrophage inflammatory infiltration, thereby attenuating endothelial-mesenchymal transition (EndMT) in the valve tissue. The efficacy of 3-MA treatment was similar to that of anti-IL-17 treatment. Furthermore, in THP-1 cells, the pharmacological promotion of autophagy by IL-17 induced M1-type polarization, whereas the inhibition of autophagy by 3-MA reversed this process. Mechanistically, silencing PINK1 in THP-1 blocked autophagic flux. Moreover, IL-17-induced M1-polarized macrophages promoted EndMT in HUVECs. This study revealed that IL-17 plays an important role in EndMT in RHD via the PINK1/Parkin autophagic pathway and macrophage polarization, providing a potential therapeutic target.
Collapse
Affiliation(s)
- Ling Bai
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Yuan Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Yiping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jie Zhang
- Emergency Office, Nanning Center for Disease Control and Prevention, Nanning , Guangxi, China
| | - Zirong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Keke Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Xi Yang
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Na Na
- Department of Neuroscience, The Scripps Research Institute, La Jolla, USA
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China.
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China.
| |
Collapse
|
6
|
Abstract
Zinc is structurally and functionally essential for more than 300 enzymes and 2000 transcription factors in human body. Intracellular labile zinc is the metabolically effective zinc and tiny changes in its concentrations significantly affect the intracellular signaling and enzymatic responses. Zinc is crucial for the embrionic and fetal development of heart. Therefore, it is shown to be related with a variety of congenital heart defects. It is involved in epithelial-to-mesenchymal transformation including endocardial cushion development, which is necessary for atrioventricular septation as well as the morphogenesis of heart valves. In atherosclerosis, monocyte endothelial adhesion, and diapedesis, activation and transformation into macrophages and forming foam cells by the ingestion of oxidized LDL are monocyte related steps which need zinc. Intracellular zinc increases intracellular calcium through a variety of pathways and furthermore, zinc itself can work as a second messenger as calcium. These demonstrate the significance of intracellular zinc in heart failure and arterial hypertension. However, extracellular zinc has an opposite effect by blocking calcium channels, explaining decreased serum zinc levels, contrary to the increased cardiomyocyte and erythrocyte zinc levels in hypertensive subjects. These and other data in the literature demonstrate that zinc has important roles in healthy and diseased cardiovascular system but zinc-cardiovascular system relationship is so complex that, it has not been explained in all means. In this article, we try to review some of the available knowledge about this complex relationship.
Collapse
Affiliation(s)
- Serhan Ozyildirim
- Department of Cardiology, Cardiology Institute, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | | |
Collapse
|
7
|
Chen WH, Tan Y, Wang YL, Wang X, Liu ZH. Rheumatic valvular heart disease treated with traditional Chinese medicine: A case report. World J Clin Cases 2023; 11:1600-1606. [PMID: 36926399 PMCID: PMC10011998 DOI: 10.12998/wjcc.v11.i7.1600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Rheumatic heart disease (RHD) is an autoimmune disease that leads to irreversible valve damage and heart failure. Surgery is an effective treatment; however, it is invasive and carries risks, restricting its broad application. Therefore, it is essential to find alternative nonsurgical treatments for RHD.
CASE SUMMARY A 57-year-old woman was assessed with cardiac color Doppler ultrasound, left heart function tests, and tissue Doppler imaging evaluation at Zhongshan Hospital of Fudan University. The results showed mild mitral valve stenosis with mild to moderate mitral and aortic regurgitation, confirming a diagnosis of rheumatic valve disease. After her symptoms became severe, with frequent ventricular tachycardia and supraventricular tachycardia > 200 beats per minute, her physicians recommended surgery. During a 10-day preoperative waiting period, the patient asked to be treated with traditional Chinese medicine. After 1 week of this treatment, her symptoms improved significantly, including resolution of the ventricular tachycardia, and the surgery was postponed pending further follow-up. At 3 -month follow-up, color Doppler ultrasound showed mild mitral valve stenosis with mild mitral and aortic regurgitation. Therefore, it was determined that no surgical treatment was required.
CONCLUSION Traditional Chinese medicine treatment effectively relieves symptoms of RHD, particularly mitral valve stenosis and mitral and aortic regurgitation.
Collapse
Affiliation(s)
- Wei-Hang Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ya-Lei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhao-Heng Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
8
|
Rayford KJ, Cooley A, Strode AW, Osi I, Arun A, Lima MF, Misra S, Pratap S, Nde PN. Trypanosoma cruzi dysregulates expression profile of piRNAs in primary human cardiac fibroblasts during early infection phase. Front Cell Infect Microbiol 2023; 13:1083379. [PMID: 36936778 PMCID: PMC10017870 DOI: 10.3389/fcimb.2023.1083379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas Disease, causes severe morbidity, mortality, and economic burden worldwide. Though originally endemic to Central and South America, globalization has led to increased parasite presence in most industrialized countries. About 40% of infected individuals will develop cardiovascular, neurological, and/or gastrointestinal pathologies. Accumulating evidence suggests that the parasite induces alterations in host gene expression profiles in order to facilitate infection and pathogenesis. The role of regulatory gene expression machinery during T. cruzi infection, particularly small noncoding RNAs, has yet to be elucidated. In this study, we aim to evaluate dysregulation of a class of sncRNAs called piRNAs during early phase of T. cruzi infection in primary human cardiac fibroblasts by RNA-Seq. We subsequently performed in silico analysis to predict piRNA-mRNA interactions. We validated the expression of these selected piRNAs and their targets during early parasite infection phase by stem loop qPCR and qPCR, respectively. We found about 26,496,863 clean reads (92.72%) which mapped to the human reference genome. During parasite challenge, 441 unique piRNAs were differentially expressed. Of these differentially expressed piRNAs, 29 were known and 412 were novel. In silico analysis showed several of these piRNAs were computationally predicted to target and potentially regulate expression of genes including SMAD2, EGR1, ICAM1, CX3CL1, and CXCR2, which have been implicated in parasite infection, pathogenesis, and various cardiomyopathies. Further evaluation of the function of these individual piRNAs in gene regulation and expression will enhance our understanding of early molecular mechanisms contributing to infection and pathogenesis. Our findings here suggest that piRNAs play important roles in infectious disease pathogenesis and can serve as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kayla J. Rayford
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Ayorinde Cooley
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Anthony W. Strode
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Inmar Osi
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Ashutosh Arun
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Maria F. Lima
- Biomedical Sciences, School of Medicine, City College of New York, New York, NY, United States
| | - Smita Misra
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Siddharth Pratap
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, United States
- Bioinformatics Core, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Pius N. Nde
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
9
|
Lu TJ, Yang YF, Cheng CF, Tu YT, Chen YR, Lee MC, Tsai KW. Phosphofructokinase Platelet Overexpression Accelerated Colorectal Cancer Cell Growth and Motility. J Cancer 2023; 14:943-951. [PMID: 37151384 PMCID: PMC10158518 DOI: 10.7150/jca.82738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Glycolysis is a glucose metabolism pathway that generates the high-energy compound adenosine triphosphate, which supports cancer cell growth. Phosphofructokinase platelet (PFKP) plays a crucial role in glycolysis regulation and is involved in human cancer progression. However, the biological function of PFKP remains unclear in colorectal cancer (CRC). Methods: We analyzed the expression levels of PFKF in colon cancer cells and clinical samples using real-time PCR and western blot techniques. To determine the clinical significance of PFKP expression in colorectal cancer (CRC), we analyzed public databases. In addition, we conducted in vitro assays to investigate the effects of PFKP on cell growth, cell cycle, and motility. Results: An analysis by the Cancer Genome Atlas database revealed that PFKP was significantly overexpressed in CRC. We examined the levels of PFKP mRNA and protein, revealing that PFKP expression was significantly increased in CRC. The results of the univariate Cox regression analysis showed that high PFKP expression was linked to worse disease-specific survival (DSS) and overall survival (OS) [DSS: crude hazard ratio (CHR) = 1.84, 95% confidence interval (CI): 1.01-3.36, p = 0.047; OS: CHR=1.91, 95% CI: 1.06-3.43, p = 0.031]. Multivariate Cox regression analysis revealed that high PFKP expression was an independent prognostic biomarker for the DSS and OS of patients with CRC (DSS: adjusted HR = 2.07, 95% CI: 1.13-3.79, p = 0.018; AHR = 2.34, 95% CI: 1.29-4.25, p = 0.005). PFKP knockdown reduced the proliferation, colony formation, and invasion of CRC cells. In addition, the knockdown induced cell cycle arrest at the G0/G1 phase by impairing cell cycle-related protein expression. Conclusion: Overexpression of PFKP contributes to the growth and invasion of CRC by regulating cell cycle progression. PFKP expression can serve as a valuable molecular biomarker for cancer prognosis and a potential therapeutic target for treating CRC.
Collapse
Affiliation(s)
- Tzung-Ju Lu
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Fen Yang
- Pulmonary function Laboratory, Division of Pulmonary Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
| | - Ya-Ting Tu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Yi-Ru Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, Taiwan
- ✉ Corresponding author: Kuo-Wang Tsai, Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan, R. O. C. E-Mail:
| |
Collapse
|
10
|
Integrin-Linked Kinase Expression in Human Valve Endothelial Cells Plays a Protective Role in Calcific Aortic Valve Disease. Antioxidants (Basel) 2022; 11:antiox11091736. [PMID: 36139812 PMCID: PMC9495882 DOI: 10.3390/antiox11091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent during aging. CAVD initiates with endothelial dysfunction, leading to lipid accumulation, inflammation, and osteogenic transformation. Integrin-linked kinase (ILK) participates in the progression of cardiovascular diseases, such as endothelial dysfunction and atherosclerosis. However, ILK role in CAVD is unknown. First, we determined that ILK expression is downregulated in aortic valves from patients with CAVD compared to non-CAVD, especially at the valve endothelium, and negatively correlated with calcification markers. Silencing ILK expression in human valve endothelial cells (siILK-hVECs) induced endothelial-to-mesenchymal transition (EndMT) and promoted a switch to an osteoblastic phenotype; SiILK-hVECs expressed increased RUNX2 and developed calcified nodules. siILK-hVECs exhibited decreased NO production and increased nitrosative stress, suggesting valvular endothelial dysfunction. NO treatment of siILK-hVECs prevented VEC transdifferentiation, while treatment with an eNOS inhibitor mimicked ILK-silencing induction of EndMT. Accordingly, NO treatment inhibited VEC calcification. Mechanistically, siILK-hVECs showed increased Smad2 phosphorylation, suggesting a TGF-β-dependent mechanism, and NO treatment decreased Smad2 activation and RUNX2. Experiments performed in eNOS KO mice confirmed the involvement of the ILK-eNOS signaling pathway in valve calcification, since aortic valves from these animals showed decreased ILK expression, increased RUNX2, and calcification. Our study demonstrated that ILK endothelial expression participates in human CAVD development by preventing endothelial osteogenic transformation.
Collapse
|
11
|
Wang S, Xu L, Wu Y, Shen H, Lin Z, Fang Y, Zhang L, Shen B, Liu Y, Wu K. Parathyroid Hormone Promotes Human Umbilical Vein Endothelial Cell Migration and Proliferation Through Orai1-Mediated Calcium Signaling. Front Cardiovasc Med 2022; 9:844671. [PMID: 35369318 PMCID: PMC8965836 DOI: 10.3389/fcvm.2022.844671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Parathyroid hormone is the main endocrine regulator of extracellular calcium and phosphorus levels. Secondary hyperparathyroidism–induced endothelial dysfunction may be related to calcium homeostasis disorders. Here, we investigated the effects of parathyroid hormone on human umbilical vein endothelial cells (HUVECs) and characterized the involvement of store-operated Ca2+ entry (SOCE) and the nuclear factor of activated T cells (NFAT) signaling pathway. We used immunoblot experiments to find that parathyroid hormone significantly enhanced the expression of the Orai1 channel, a type of channel mediating SOCE, SOCE activity, and Orai1-mediated proliferation of HUVECs but did not increase Orai2 and Orai3. RNA-seq was utilized to identify 1,655 differentially expressed genes (823 upregulated and 832 downregulated) in parathyroid hormone–treated HUVECs as well as enhanced focal adhesion signaling and expression levels of two key genes, namely, COL1A1 and NFATC1. Increased protein and mRNA expression levels of COL1A1 and NFATC1 were confirmed by immunoblotting and quantitative RT-PCR, respectively. Cytosol and nuclei fractionation experiments and immunofluorescence methods were used to show that parathyroid hormone treatment increased NFATC1 nuclear translocation, which was inhibited by a calcineurin inhibitor (CsA), a selective calmodulin antagonist (W7), an Orai channel inhibitor (BTP2), or Orai1 small interfering RNA (siRNA) transfection. Parathyroid hormone also increased COL1A1 expression, cell migration, and proliferation of HUVECs. The PTH-induced increase in HUVEC migration and proliferation were inhibited by CsA, W7, BTP2, or COL1A1 siRNA transfection. These findings indicated that PTH increased Orai1 expression and Orai1-mediated SOCE, causing the nuclear translocation of NFATC1 to increase COL1A1 expression and COL1A1-mediated HUVEC migration and proliferation. These results suggest potential key therapeutic targets of Orai1 and the downstream calmodulin/calcineurin/NFATC1/COL1A1 signaling pathway in parathyroid hormone–induced endothelial dysfunction and shed light on underlying mechanisms that may be altered to prevent or treat secondary hyperparathyroidism–associated cardiovascular disease.
Collapse
Affiliation(s)
- Shuhao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijie Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yv Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Otorhinolaryngology, General Hospital of Anhui Wanbei Coal Power Group, Suzhou, China
| | - Hailong Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhangying Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Fang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Yehai Liu
| | - Kaile Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Kaile Wu
| |
Collapse
|
12
|
Zhang B, Zhu Z, Zhang X, Li F, Ding A. Inhibition of the proliferation, invasion, migration, and epithelial-mesenchymal transition of prostate cancer cells through the action of ATP1A2 on the TGF-β/Smad pathway. Transl Androl Urol 2022; 11:53-66. [PMID: 35242641 PMCID: PMC8824814 DOI: 10.21037/tau-21-1117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/07/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Prostate cancer (PC) is one of the major male malignancies worldwide. Because Na+-K+-ATPase is widely involved in various pathological processes, but the action of its α2 subtype (ATP1A2) in PC is unclear, we investigated the role of ATP1A2 in the invasion and migration of PC cells. METHODS We measured the expression levels of ATP1A2 in human normal prostate epithelial cell line (RWPE-1) and PC cell lines (PC-3 and DU145) by quantitative real-time PCR (qRT-PCR) and western blot. Cell proliferation, apoptosis, migration, and invasion of PC-3 and DU145 cells were investigated through clone formation assay, EdU assay, flow cytometry and transwell assay, respectively. The effect of ATP1A2 on a tumor-inhibitory pathway [transforming growth factor-β (TGF-β)/Smad] was assessed using western blot. In addition, tumor formation was detected using in vivo xenograft model in male BALB/c nude mice. RESULTS The Cancer Genome Atlas (TCGA) analysis showed that ATP1A2 expression was reduced in PC patients (P<0.05), and patients with low ATP1A2 expression had a lower survival rate (P<0.05). ATP1A2 levels were significantly reduced in PC-3 and DU145 cells, compared with RWPE-1 cells (P<0.01). We also demonstrated that overexpression of ATP1A2 significantly inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of PC-3 and DU145 cells (P<0.01) and promoted apoptosis (P<0.01). However, silencing ATP1A2 had the opposite effect (P<0.01). In addition, overexpression of ATP1A2 significantly inhibited the TGF-β/Smad pathway (P<0.01), whereas silencing ATP1A2 activated the TGF-β/Smad pathway (P<0.01). Meanwhile, the effect of ATP1A2 silencing on the proliferation, apoptosis, migration and invasion was reversed by TGF-β/Smad pathway inhibitor (LY364947). Furthermore, ATP1A2 inhibited tumor growth in vivo. CONCLUSIONS ATP1A2 inhibited proliferation, apoptosis, migration, invasion, and EMT in PC by inhibiting the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Bashan Zhang
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Zinian Zhu
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Xibo Zhang
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Fei Li
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Aijiao Ding
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
13
|
Transcriptomic profiling and pathway analysis of cultured human lung microvascular endothelial cells following ionizing radiation exposure. Sci Rep 2021; 11:24214. [PMID: 34930946 PMCID: PMC8688546 DOI: 10.1038/s41598-021-03636-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
The vascular system is sensitive to radiation injury, and vascular damage is believed to play a key role in delayed tissue injury such as pulmonary fibrosis. However, the response of endothelial cells to radiation is not completely understood. We examined the response of primary human lung microvascular endothelial cells (HLMVEC) to 10 Gy (1.15 Gy/min) X-irradiation. HLMVEC underwent senescence (80-85%) with no significant necrosis or apoptosis. Targeted RT-qPCR showed increased expression of genes CDKN1A and MDM2 (10-120 min). Western blotting showed upregulation of p2/waf1, MDM2, ATM, and Akt phosphorylation (15 min-72 h). Low levels of apoptosis at 24-72 h were identified using nuclear morphology. To identify novel pathway regulation, RNA-seq was performed on mRNA using time points from 2 to 24 h post-irradiation. Gene ontology and pathway analysis revealed increased cell cycle inhibition, DNA damage response, pro- and anti- apoptosis, and pro-senescence gene expression. Based on published literature on inflammation and endothelial-to-mesenchymal transition (EndMT) pathway genes, we identified increased expression of pro-inflammatory genes and EndMT-associated genes by 24 h. Together our data reveal a time course of integrated gene expression and protein activation leading from early DNA damage response and cell cycle arrest to senescence, pro-inflammatory gene expression, and endothelial-to-mesenchymal transition.
Collapse
|
14
|
Abstract
Endothelial-to-mesenchymal transition is a dynamic process in which endothelial cells suppress constituent endothelial properties and take on mesenchymal cell behaviors. To begin the process, endothelial cells loosen their cell-cell junctions, degrade the basement membrane, and migrate out into the perivascular surroundings. These initial endothelial behaviors reflect a transient modulation of cellular phenotype, that is, a phenotypic modulation, that is sometimes referred to as partial endothelial-to-mesenchymal transition. Loosening of endothelial junctions and migration are also seen in inflammatory and angiogenic settings such that endothelial cells initiating endothelial-to-mesenchymal transition have overlapping behaviors and gene expression with endothelial cells responding to inflammatory signals or sprouting to form new blood vessels. Reduced endothelial junctions increase permeability, which facilitates leukocyte trafficking, whereas endothelial migration precedes angiogenic sprouting and neovascularization; both endothelial barriers and quiescence are restored as inflammatory and angiogenic stimuli subside. Complete endothelial-to-mesenchymal transition proceeds beyond phenotypic modulation such that mesenchymal characteristics become prominent and endothelial functions diminish. In proadaptive, regenerative settings the new mesenchymal cells produce extracellular matrix and contribute to tissue integrity whereas in maladaptive, pathologic settings the new mesenchymal cells become fibrotic, overproducing matrix to cause tissue stiffness, which eventually impacts function. Here we will review what is known about how TGF (transforming growth factor) β influences this continuum from junctional loosening to cellular migration and its relevance to cardiovascular diseases.
Collapse
Affiliation(s)
- Zahra Alvandi
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA
| |
Collapse
|