1
|
Liu H, Lv Z, Zhang G, Yan Z, Bai S, Dong D, Wang K. Molecular understanding and clinical aspects of tumor-associated macrophages in the immunotherapy of renal cell carcinoma. J Exp Clin Cancer Res 2024; 43:242. [PMID: 39169402 PMCID: PMC11340075 DOI: 10.1186/s13046-024-03164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common tumors that afflicts the urinary system, accounting for 90-95% of kidney cancer cases. Although its incidence has increased over the past decades, its pathogenesis is still unclear. Tumor-associated macrophages (TAMs) are the most prominent immune cells in the tumor microenvironment (TME), comprising more than 50% of the tumor volume. By interacting with cancer cells, TAMs can be polarized into two distinct phenotypes, M1-type and M2-type TAMs. In the TME, M2-type TAMs, which are known to promote tumorigenesis, are more abundant than M1-type TAMs, which are known to suppress tumor growth. This ratio of M1 to M2 TAMs can create an immunosuppressive environment that contributes to tumor cell progression and survival. This review focused on the role of TAMs in RCC, including their polarization, impacts on tumor proliferation, angiogenesis, invasion, migration, drug resistance, and immunosuppression. In addition, we discussed the potential of targeting TAMs for clinical therapy in RCC. A deeper understanding of the molecular biology of TAMs is essential for exploring innovative therapeutic strategies for the treatment of RCC.
Collapse
Affiliation(s)
- Han Liu
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zongwei Lv
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Gong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zhenhong Yan
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Song Bai
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, #77 Puhe Road, Shenyang, Liaoning, 110122, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
2
|
Zhao Y, Ma R, Wang C, Hu R, Wu W, Sun X, Chen B, Zhang W, Chen Y, Zhou J, Yuan P. CAPG interference induces apoptosis and ferroptosis in colorectal cancer cells through the P53 pathway. Mol Cell Probes 2023; 71:101919. [PMID: 37468079 DOI: 10.1016/j.mcp.2023.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE Given the high incidence and mortality rates of colorectal cancer (CRC) and the inadequacy of existing treatments for many patients, this study aimed to explore the potential of Capping Actin Protein (CAPG), a protein involved in actin-related movements, as a novel therapeutic target for CRC. METHODS Bioinformatic analysis of gene expression was conducted using the UALCAN website. Cell proliferation was measured using the CCK-8 kit. Cell cycle, apoptosis, and ferroptosis were analyzed using flow cytometry. Tumorigenesis was evaluated by the subcutaneous inoculation of CRC cells into BALB/c nude female mice. Differentially expressed genes and signaling pathways were identified using RNA sequencing. RESULTS CAPG was significantly overexpressed in human CRC tissues and its upregulation was correlated with poor overall survival. CAPG knockdown led to notable inhibition of CRC cells in vitro and in vivo. Interference with CAPG blocked the cell cycle at the G1 phase and triggered apoptosis and ferroptosis by upregulating the P53 pathway in CRC cells. CONCLUSION CRC patients with higher CAPG levels have a poorer prognosis. CAPG inhibits apoptosis and ferroptosis, while promoting CRC cell proliferation by repressing the P53 pathway. Our study suggests that CAPG may be a potential therapeutic target for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Yingying Zhao
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Ma
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyue Wang
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Hu
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weili Wu
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Sun
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Baotao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | | | - You Chen
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ping Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Fu Y, Zhang X, Liang X, Chen Y, Chen Z, Xiao Z. CapG promoted nasopharyngeal carcinoma cell motility involving Rho motility pathway independent of ROCK. World J Surg Oncol 2022; 20:347. [PMID: 36258216 PMCID: PMC9580211 DOI: 10.1186/s12957-022-02808-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background Gelsolin-like capping actin protein (CapG) modulates actin dynamics and actin-based motility with a debatable role in tumorigenic progression. The motility-associated functions and potential molecular mechanisms of CapG in nasopharyngeal carcinoma (NPC) remain unclear. Methods CapG expression was detected by immunohistochemistry in a cohort of NPC tissue specimens and by Western blotting assay in a variety of NPC cell lines. Loss of function and gain of function of CapG in scratch wound-healing and transwell assays were performed. Inactivation of Rac1 and ROCK with the specific small molecular inhibitors was applied to evaluate CapG’s role in NPC cell motility. GTP-bound Rac1 and phosphorylated-myosin light chain 2 (p-MLC2) were measured in the ectopic CapG overexpressing cells. Finally, CapG-related gene set enrichment analysis was conducted to figure out the significant CapG-associated pathways in NPC. Results CapG disclosed increased level in the poorly differentiated NPC tissues and highly metastatic cells. Knockdown of CapG reduced NPC cell migration and invasion in vitro, while ectopic CapG overexpression showed the opposite effect. Ectopic overexpression of CapG compensated for the cell motility loss caused by simultaneous inactivation of ROCK and Rac1 or inactivation of ROCK alone. GTP-bound Rac1 weakened, and p-MLC2 increased in the CapG overexpressing cells. Bioinformatics analysis validated a positive correlation of CapG with Rho motility signaling, while Rac1 motility pathway showed no significant relationship. Conclusions The present findings highlight the contribution of CapG to NPC cell motility independent of ROCK and Rac1. CapG promotes NPC cell motility at least partly through MLC2 phosphorylation and contradicts with Rac1 activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02808-7.
Collapse
Affiliation(s)
- Ying Fu
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, 451191, Henan, China
| | - Xujun Liang
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yongheng Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhuchu Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhefeng Xiao
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
4
|
Wang G, Liu H, An L, Hou S, Zhang Q. CAPG facilitates diffuse large B-cell lymphoma cell progression through PI3K/AKT signaling pathway. Hum Immunol 2022; 83:832-842. [DOI: 10.1016/j.humimm.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|
5
|
Differential Intracellular Protein Distribution in Cancer and Normal Cells-Beta-Catenin and CapG in Gynecologic Malignancies. Cancers (Basel) 2022; 14:cancers14194788. [PMID: 36230711 PMCID: PMC9561979 DOI: 10.3390/cancers14194788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The distribution and mobility of proteins inside the living cell can be used to differentiate cancer from normal cells. This review highlights differential protein distribution of two exemplary proteins, beta-catenin and CapG, and their role in gynecologic cancers. Recognizing differential protein distribution in cancer cells may have diagnostic and therapeutic implications. Abstract It is well-established that cancer and normal cells can be differentiated based on the altered sequence and expression of specific proteins. There are only a few examples, however, showing that cancer and normal cells can be differentiated based on the altered distribution of proteins within intracellular compartments. Here, we review available data on shifts in the intracellular distribution of two proteins, the membrane associated beta-catenin and the actin-binding protein CapG. Both proteins show altered distributions in cancer cells compared to normal cells. These changes are noted (i) in steady state and thus can be visualized by immunohistochemistry—beta-catenin shifts from the plasma membrane to the cell nucleus in cancer cells; and (ii) in the dynamic distribution that can only be revealed using the tools of quantitative live cell microscopy—CapG shuttles faster into the cell nucleus of cancer cells. Both proteins may play a role as prognosticators in gynecologic malignancies: beta-catenin in endometrial cancer and CapG in breast and ovarian cancer. Thus, both proteins may serve as examples of altered intracellular protein distribution in cancer and normal cells.
Collapse
|
6
|
Qian F, Wei G, Gao Y, Wang X, Gong J, Guo C, Wang X, Zhang X, Zhao J, Wang C, Xu M, Hu Y, Yin G, Kang J, Chai R, Xie G, Liu D. Single-cell RNA-sequencing of zebrafish hair cells reveals novel genes potentially involved in hearing loss. Cell Mol Life Sci 2022; 79:385. [PMID: 35753015 PMCID: PMC11072488 DOI: 10.1007/s00018-022-04410-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 01/22/2023]
Abstract
Hair cells play key roles in hearing and balance, and hair cell loss would result in hearing loss or vestibular dysfunction. Cellular and molecular research in hair cell biology provides us a better understanding of hearing and deafness. Zebrafish, owing to their hair cell-enriched organs, have been widely applied in hair cell-related research worldwide. Similar to mammals, zebrafish have inner ear hair cells. In addition, they also have lateral line neuromast hair cells. These different types of hair cells vary in morphology and function. However, systematic analysis of their molecular characteristics remains lacking. In this study, we analyzed the GFP+ cells isolated from Tg(Brn3c:mGFP) larvae with GFP expression in all hair cells using single-cell RNA-sequencing (scRNA-seq). Three subtypes of hair cells, namely macula hair cell (MHC), crista hair cell (CHC), and neuromast hair cell (NHC), were characterized and validated by whole-mount in situ hybridization analysis of marker genes. The hair cell scRNA-seq data revealed hair cell-specific genes, including hearing loss genes that have been identified in humans and novel genes potentially involved in hair cell formation and function. Two novel genes were discovered to specifically function in NHCs and MHCs, corresponding to their specific expression in NHCs and MHCs. This study allows us to understand the specific genes in hair cell subpopulations of zebrafish, which will shed light on the genetics of both human vestibular and cochlear hair cell function.
Collapse
Affiliation(s)
- Fuping Qian
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Guanyun Wei
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Yajing Gao
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Xin Wang
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Jie Gong
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Chao Guo
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Xiaoning Wang
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Xu Zhang
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Jinxiang Zhao
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Cheng Wang
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China
| | - Mengting Xu
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Yuebo Hu
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Guoli Yin
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China
| | - Jiahui Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, China
| | - Renjie Chai
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China.
- State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100864, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226001, China.
| | - Dong Liu
- School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, 226019, China.
- Co-Innovation Center of Neuroregeneration, School of Life SciencesKey Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, 226019, China.
| |
Collapse
|