1
|
Wu N, Chi J, Cai H, Hu J, Lai Y, Lin C, Kang L, Sun J, Huang J, Li M, Xu L. Traditional Chinese medication qili qiangxin capsule protects against myocardial ischemia-reperfusion injury through suppressing autophagy via the phosphoinositide 3-kinase/protein kinase B/forkhead box O3 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118821. [PMID: 39265794 DOI: 10.1016/j.jep.2024.118821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Positive evidence from clinical trials highlights the promising potential of traditional Chinese medication, Qili qiangxin capsule (QLQX), on chronic heart failure; however, limited data are available regarding its effects and mechanism in myocardial ischemia-reperfusion injury (MIRI). Herein, we aimed to explore cardioprotective effects and the underlying mechanism of QLQX in MIRI in vivo and in vitro. MATERIALS AND METHODS Mice were subjected to left anterior descending coronary artery ligation for 30 min followed by 24 h of reperfusion with or without 7-day pretreatment with QLQX (0.234, 0.468, or 0.936 g/kg). Cardiac function, myocardial infarction, and morphological changes were evaluated. The mechanism underlying the cardio-protection of QLQX on MIRI was determined by network pharmacology based on the common genes of potential targets of QLQX and MIRI-related genes, further validated by H9c2 cardiomyocytes exposing hypoxia/reoxygenation (H/R). The viability, apoptosis, as well as autophagy and relevant signaling proteins in H9c2 were analyzed. RESULTS QLQX pretreatment markedly improved cardiac function and decreased myocardium infarct size, apoptotic cardiomyocyte number, and LHD, CK-MB, and TnT levels in MIRI mice. QLQX could mitigate H/R-induced H9c2 cardiomyocyte injury, as evidenced by decreased cell apoptosis and LDH release and increased ATP production. QLQX effectively attenuates excessive autophagy in cardiomyocytes both in vivo and in vitro. Mechanically, network pharmacology analysis demonstrated the cardio-protection of QLQX on MIRI involving in PI3K/Akt signaling; the effects of QLQX on H/R-induced H9c2 cardiomyocytes were abolished by a specific PI3K inhibitor. CONCLUSION QLQX protects against cardiomyocyte apoptosis and excessive autophagy via PI3K/Akt signaling during MIRI.
Collapse
Affiliation(s)
- Ningxia Wu
- Cardiovascular Department, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510130, China; Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China; Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianing Chi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Cai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jiaman Hu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510315, China.
| | - Yingying Lai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510315, China.
| | - Cailong Lin
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510315, China.
| | - Liang Kang
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jingping Sun
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianyu Huang
- Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China.
| | - Min Li
- Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China.
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of Southern Theatre Command, Guangzhou, 510040, China.
| |
Collapse
|
2
|
Nan N, Yang N, Liu Y, Hao HQ. Chinese Medicine Combined with Adipose Tissue-Derived Mesenchymal Stem Cells: A New Promising Aspect of Integrative Medicine. Chin J Integr Med 2025:10.1007/s11655-025-4208-z. [PMID: 39809966 DOI: 10.1007/s11655-025-4208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 01/16/2025]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSCs) are crucially involved in various biological processes because of their self-renewal, multi-differentiation, and immunomodulatory activities. Some ADSC's characteristics have been associated with the basic theory of Chinese medicine (CM), especially the Meridian theory. CM can improve the biological properties of ADSCs to facilitate their use in injury treatment, restore immune homeostasis, and inhibit inflammatory responses. Therefore, the combination of CM and ADSCs may be a new promising research direction in integrative medicine of China. This review summarizes the association between CM and ADSCs to assess the potential application value of their combination against various diseases.
Collapse
Affiliation(s)
- Nan Nan
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Na Yang
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Yang Liu
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China
| | - Hui-Qin Hao
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, Shanxi Province, 030619, China.
| |
Collapse
|
3
|
Teh YM, Mualif SA, Mohd Noh NI, Lim SK. The Potential of Naturally Derived Compounds for Treating Chronic Kidney Disease: A Review of Autophagy and Cellular Senescence. Int J Mol Sci 2024; 26:3. [PMID: 39795863 PMCID: PMC11719669 DOI: 10.3390/ijms26010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by irreversible progressive worsening of kidney function leading to kidney failure. CKD is viewed as a clinical model of premature aging and to date, there is no treatment to reverse kidney damage. The well-established treatment for CKD aims to control factors that may aggravate kidney progression and to provide kidney protection effects to delay the progression of kidney disease. As an alternative, Traditional Chinese Medicine (TCM) has been shown to have fewer adverse effects for CKD patients. However, there is a lack of clinical and molecular studies investigating the mechanisms by which natural products used in TCM can improve CKD. In recent years, autophagy and cellular senescence have been identified as key contributors to aging and age-related diseases. Exploring the potential of natural products in TCM to target these processes in CKD patients could slow disease progression. A better understanding of the characteristics of these natural products and their effects on autophagy and cellular senescence through clinical studies, coupled with the use of these products as complementary therapy alongside mainstream treatment, may maximize therapeutic benefits and minimize adverse effects for CKD patients. While promising, there is currently a lack of thorough research on the potential synergistic effects of these natural products. This review examines the use of natural products in TCM as an alternative treatment for CKD and discusses their active ingredients in terms of renoprotection, autophagy, and cellular senescence.
Collapse
Affiliation(s)
- Yoong Mond Teh
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Siti Aisyah Mualif
- Department of Biomedical Engineering and Health Science, Faculty of Electrical Engineering, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia; (Y.M.T.); (S.A.M.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, University Technology Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - Soo Kun Lim
- Department of Medicine, Faculty of Medicine, University of Malaysia (UM), Kuala Lumpur 59100, Malaysia
| |
Collapse
|
4
|
Wu L, Lai W, Li L, Yang S, Li F, Yang C, Gong X, Wu L. Autophagy Regulates Ferroptosis-Mediated Diabetic Liver Injury by Modulating the Degradation of ACSL4. J Diabetes Res 2024; 2024:7146054. [PMID: 39741964 PMCID: PMC11688137 DOI: 10.1155/jdr/7146054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/17/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Background: Diabetic liver injury is a serious complication due to the lack of effective treatments and the unclear pathogenesis. Ferroptosis, a form of cell death involving reactive oxygen species (ROS)-dependent lipid peroxidation (LPO), is closely linked to autophagy and diabetic complications. Therefore, this study is aimed at investigating the role of autophagy in regulating ferroptosis by modulating the degradation of acyl-CoA synthetase long-chain family member 4 (ACSL4) in diabetic hepatocytes and its potential impact on diabetic liver injury. Methods: Initially, ferroptosis and autophagy were assessed in liver tissues from streptozotocin-induced diabetic rats and in palmitic acid (PA)-treated LO2 cells. Subsequently, the study focused on elucidating the regulatory role of autophagy in mediating ferroptosis through the modulation of ACSL4 expression in PA-treated LO2 cells. Results: The results demonstrated that ACSL4-mediated ferroptosis and inhibition of autophagy were observed in diabetic hepatocytes in vivo and in PA-treated LO2 cells. Additionally, the ferroptosis inhibitor was able to mitigate the PA-induced cell death in LO2 cells. Mechanistically, the stability and expression level of the ACSL4 protein were upregulated and primarily degraded via the autophagy-lysosome pathway in PA-treated LO2 cells. The use of the autophagy inhibitor 3-methyladenine (3-MA) and the inducer rapamycin further demonstrated that autophagy regulated ferroptosis by mediating ACSL4 degradation, highlighting its critical role in diabetic liver injury. Conclusions: These results elucidate the roles of ferroptosis, autophagy, and their interactions in the pathogenesis of diabetic liver injury, offering potential therapeutic targets. Furthermore, they shed light on the pathogenesis of ferroptosis and other diabetic complications.
Collapse
Affiliation(s)
- Liangxiu Wu
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Gastroenterology, The People's Hospital of Hezhou, Hezhou, China
| | - Weicheng Lai
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Lanlan Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fengjuan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chen Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Kuang G, Zhao Y, Wang L, Wen T, Liu P, Ma B, Peng Q, Xu F, Ye L, Fan J. Astragaloside IV Alleviates Acute Hepatic Injury by Regulating Macrophage Polarization and Pyroptosis via Activation of the AMPK/SIRT1 Signaling Pathway. Phytother Res 2024. [PMID: 39660635 DOI: 10.1002/ptr.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/17/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Acute hepatic injury (AHI) is associated with poor prognosis in sepsis patient; however, to date, no specific therapeutic approach has been established for this disease. Therefore, we aimed to explore the effects and action mechanisms of Astragaloside IV (AS) on AHI. C57BL/6 mice, RAW264.7 cells, and bone marrow-derived macrophages were used in this study. Sepsis-associated AHI model mice were established using lipopolysaccharide + D-galactosamine. Pathological examination of liver tissues and serum alanine aminotransferase/aspartate aminotransferase was performed to evaluate the liver function. Moreover, inflammatory cytokine levels, proportion of M1/M2 macrophages and their marker levels, and cell pyroptosis-related indicator levels were determined in the liver of the AHI model mice with or without AS treatment. AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) expression was determined after AS treatment. Additionally, inflammatory cytokine levels, liver injury, and macrophage polarization were evaluated after inhibiting the AMPK/SIRT1 pathway. AS alleviated lipopolysaccharide + D-galactosamine-induced AHI and inhibited inflammatory reactions in the blood and liver of mice. AS also promoted the M1-to-M2 phenotypic transformation of macrophages in the liver of AHI model mice and in vitro, thereby decreasing the pro-inflammatory cytokine levels and increasing the anti-inflammatory cytokine levels. AS increased AMPK and SIRT1 levels in the liver and macrophages. Furthermore, AS improved liver injury by elevating the expression of the AMPK/SIRT1 signaling pathway and inhibiting pyroptosis in macrophages. Overall, AS alleviated AHI by promoting M1-to-M2 macrophage transformation and inhibiting macrophage pyroptosis via activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Gang Kuang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| | - Yisi Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Liuyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingyu Wen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Panting Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Bei Ma
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Qiaozhi Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Fan
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhao J, Gao G, Ding J, Liu W, Wang T, Zhao L, Xu J, Zhang Z, Zhang X, Xie Z. Astragaloside I Promotes Lipophagy and Mitochondrial Biogenesis to Improve Hyperlipidemia by Regulating Akt/mTOR/TFEB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21548-21559. [PMID: 39226078 DOI: 10.1021/acs.jafc.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The simultaneous enhancement of lipophagy and mitochondrial biogenesis has emerged as a promising strategy for lipid lowering. The transcription factor EB (TFEB) exhibits a dual role, whereby it facilitates the degradation of lipid droplets (LDs) through the process of lipophagy while simultaneously stimulating mitochondrial biogenesis to support the utilization of lipophagy products. The purpose of this study was to explore the effect of astragaloside I (AS I) on hyperlipidemia and elucidate its underlying mechanism. AS I improved serum total cholesterol and triglyceride levels and reduced hepatic steatosis and lipid accumulation in db/db mice. AS I enhanced the fluorescence colocalization of LDs and autophagosomes and promoted the proteins and genes related to the autolysosome. Moreover, AS I increased the expression of mitochondrial biogenesis-related proteins and genes, indicating that AS I promoted lipophagy and mitochondrial biogenesis. Mechanistically, AS I inhibits the protein level of p-TFEB (ser211) expression and promotes TFEB nuclear translocation. The activation of TFEB by AS I was impeded upon the introduction of the mammalian target of rapamycin (mTOR) agonist MHY1485. The inhibition of p-mTOR by AS I and the activation of TFEB were no longer observed after administration of the Akt agonist SC-79, which indicated that AS I activated TFEB to promote lipophagy-dependent on the Akt/mTOR pathway and may be a potentially effective pharmaceutical and food additive for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Jie Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Gai Gao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jing Ding
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei Liu
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Tao Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liang Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaowei Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
7
|
Jalil AT, Zair MA, Hanthal ZR, Naser SJ, Aslandook T, Abosaooda M, Fadhil A. Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome. Indian J Clin Biochem 2024; 39:450-458. [PMID: 39346714 PMCID: PMC11436500 DOI: 10.1007/s12291-023-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 10/01/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder characterized by elevated androgen levels, menstrual irregularities, and polycystic morphology of the ovaries. Affecting 6-10% of women in childbearing age, PCOS is a leading cause of infertility worldwide. In recent years, there has been a growing acknowledgment of the involvement of adenosine monophosphate-activated protein kinase (AMPK) in the development of polycystic ovary syndrome (PCOS). The expression of AMPK is diminished in polycystic ovaries, and when AMPK is silenced in human granulosa cells, there is a rise in the expression of steroidogenic enzymes, resulting in increased production of estradiol and progesterone. Additionally, in mouse models, the inhibiting AMPK intensifies the polycystic appearance of ovaries and impairs the process of ovulation. Moreover, it has been shown that AMPK activators like metformin and resveratrol ameliorate PCOS associated signs and symptoms in experimental and clinical studies. These findings, collectively, indicate the key role of AMPK in the pathogenesis of PCOS. Understanding the role of AMPK in PCOS will offer rewarding information on details of PCOS pathogenesis and will provide novel more specific therapeutic approaches. The present review summarizes the latest findings regarding the role of AMPK in PCOS obtained in experimental and clinical studies.
Collapse
Affiliation(s)
- Abduldaheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon Iraq
| | - Mahdi Abd Zair
- Department of Pharmacy, Kut University College, Kut, Wasit Iraq
| | | | - Sarmad Jaafar Naser
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- Medical Laboratory Technology Department, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
8
|
Alshareef NS, AlSedairy SA, Al-Harbi LN, Alshammari GM, Yahya MA. Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects. Antioxidants (Basel) 2024; 13:1098. [PMID: 39334757 PMCID: PMC11428842 DOI: 10.3390/antiox13091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects.
Collapse
Affiliation(s)
| | | | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.A.A.); (G.M.A.); (M.A.Y.)
| | | | | |
Collapse
|
9
|
Zhang Y, Kang Q, He L, Chan KI, Gu H, Xue W, Zhong Z, Tan W. Exploring the immunometabolic potential of Danggui Buxue Decoction for the treatment of IBD-related colorectal cancer. Chin Med 2024; 19:117. [PMID: 39210410 PMCID: PMC11360867 DOI: 10.1186/s13020-024-00978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Danggui Buxue (DGBX) decoction is a classical prescription composed of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), used to enrich blood, and nourish Qi in Chinese medicine, with the potential to recover energy and stimulate metabolism. Chronic inflammation is a risk factor in the development of inflammatory bowel disease (IBD)-related colorectal cancer (CRC). More importantly, AR and ASR have anti-inflammatory and anti-cancer activities, as well as prefiguring a potential effect on inflammation-cancer transformation. We, therefore, aimed to review the immunometabolism potential of DGBX decoction and its components in this malignant transformation, to provide a helpful complement to manage the risk of IBD-CRC. The present study investigates the multifaceted roles of DGBX decoction and its entire components AR and ASR, including anti-inflammation effects, anti-cancer properties, immune regulation, and metabolic regulation. This assessment is informed by a synthesis of scholarly literature, with more than two hundred articles retrieved from PubMed, Web of Science, and Scopus databases within the past two decades. The search strategy employed utilized keywords such as "Danggui Buxue", "Astragali Radix", "Angelicae Sinensis Radix", "Inflammation", and "Metabolism", alongside the related synonyms, with a particular emphasis on high-quality research and studies yielding significant findings. The potential of DGBX decoction in modulating immunometabolism holds promise for the treatment of IBD-related CRC. It is particularly relevant given the heterogeneity of CRC and the growing trend towards personalized medicine, but the precise and detailed mechanism necessitate further in vivo validation and extensive clinical studies to substantiate the immunometabolic modulation and delineate the pathways involved.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China
| | - Hui Gu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Xue
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Nithyasree V, Magdalene P, Praveen Kumar PK, Preethi J, Gromiha MM. Role of HSP90 in Type 2 Diabetes Mellitus and Its Association with Liver Diseases. Mol Biotechnol 2024:10.1007/s12033-024-01251-1. [PMID: 39162909 DOI: 10.1007/s12033-024-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Non-alcoholic fatty acid liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) are the fatal liver diseases which encompass a spectrum of disease severity associated with increased risk of type 2 diabetes mellitus (T2DM), a metabolic disorder. Heat shock proteins serve as markers in early prognosis and diagnosis of early stages of liver diseases associated with metabolic disorder. This review aims to comprehensively investigate the significance of HSP90 isoforms in T2DM and liver diseases. Additionally, we explore the collective knowledge on plant-based drug compounds that regulate HSP90 isoform targets, highlighting their potential in treating T2DM-associated liver diseases. Furthermore, this review focuses on the computational systems' biology and next-generation sequencing technology approaches that are used to unravel the potential medicine for the treatment of pleiotropy of these 2 diseases and to further elucidate the mechanism.
Collapse
Affiliation(s)
- V Nithyasree
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - P Magdalene
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - P K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - J Preethi
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
11
|
Ozdemir K, Hakan Barak T, Kurt Celep I, Savasan O, Demirci Kayıran S, Eroglu Ozkan E. Evaluation of Phytochemistry and Antidiabetic Potential of an Astragalus Species (Astragalus kurdicus Boiss.). Chem Biodivers 2024; 21:e202400699. [PMID: 38860322 DOI: 10.1002/cbdv.202400699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Astragalus kurdicus Boiss. roots are used in folk medicine for antidiabetic purposes. Different Astragalus plant metabolites have a notable potential for antidiabetic activity through varying mechanisms. Herein, this study is designed to assess the antidiabetic activity of Astragalus kurdicus total (AKM: methanol extract, yield: 14.53 %) and sub-extracts (AKB: n-butanol, AKC: chloroform, AKW: water, AKH: hexane extracts), utilizing a range of diabetes-related in vitro methodologies, and to investigate the chemical composition of the plant. The highest astragaloside and saponin content was seen in AKB extract. Among the measured saponins, the abundance of Astragaloside IV (27.41 μg/mg in AKM) was the highest in high-performance thin-layer chromatography (HPTLC) analysis. Furthermore, flavonoid-rich AKC was found to be mostly responsible for the high antioxidant activity. According to the results of the activity tests, AKW was the most active extract in protein tyrosine phosphatase 1 B (PTP1B), dipeptidyl peptidase IV (DPP4), and α-amylase inhibition tests (percent inhibitions are: 87.17 %, 82.4 %, and 91.49 % respectively, at 1 mg/mL). AKM and AKW demonstrated the highest efficacy in stimulating the growth of prebiotic microorganisms and preventing the formation of advanced glycation end products (AGEs). Thus, for the first time, the antidiabetic activity of A. kurdicus was evaluated from various perspectives.
Collapse
Affiliation(s)
- Kevser Ozdemir
- Institute of Health Sciences, Istanbul University, Fatih, Istanbul, 34116, Turkiye
- Faculty of Pharmacy, Department of Pharmacognosy, Fırat University, Merkez, Elazig, 23200, Turkiye
| | - Timur Hakan Barak
- Faculty of Pharmacy, Department of Pharmacognosy, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34755, Turkiye
| | - Inci Kurt Celep
- Faculty of Pharmacy, Department of Pharmacognosy, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34755, Turkiye
| | - Ozan Savasan
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, 34755, Turkiye
| | - Serpil Demirci Kayıran
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Cukurova University, Merkez, Adana, 01330, Turkiye
| | - Esra Eroglu Ozkan
- Faculty of Pharmacy, Department of Pharmacognosy, Istanbul University, Fatih, Istanbul, 34116, Turkiye
| |
Collapse
|
12
|
Zhou M, Liu X, Wu Y, Xiang Q, Yu R. Liver Lipidomics Analysis Revealed the Protective mechanism of Zuogui Jiangtang Qinggan Formula in type 2 diabetes mellitus with non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118160. [PMID: 38588985 DOI: 10.1016/j.jep.2024.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatic steatosis, a hallmark of non-alcoholic fatty liver disease (NAFLD), represents a significant global health issue. Liver lipidomics has garnered increased focus recently, highlighting Traditional Chinese Medicine's (TCM) role in mitigating such conditions through lipid metabolism regulation. The Zuogui Jiangtang Qinggan Formula (ZGJTQGF), a longstanding TCM regimen for treating Type 2 Diabetes Mellitus (T2DM) with NAFLD, lacks a definitive mechanism for its lipid metabolism regulatory effects. AIM OF THE STUDY This research aims to elucidate ZGJTQGF's mechanism on lipid metabolism in T2DM with NAFLD. MATERIALS AND METHODS The study, utilized db/db mice to establish T2DM with NAFLD models. Evaluations included Hematoxylin-Eosin (HE) and Oil Red O stainedstaining of liver tissues, alongside biochemical lipid parameter analysis. Liver lipidomics and Western blotting further substantiated the findings, systematically uncovering the mechanism of action mechanism. RESULTS ZGJTQGF notably reduced body weight, and Fasting Blood Glucose (FBG), enhancing glucose tolerance in db/db mice. HE, and Oil Red O staining, complemented by biochemical and liver lipidomics analyses, confirmed ZGJTQGF's efficacy in ameliorating liver steatosis and lipid metabolism anomalies. Lipidomics identified 1571 significantly altered lipid species in the model group, primarily through the upregulation of triglycerides (TG) and diglycerides (DG), and the downregulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Post-ZGJTQGF treatment, 496 lipid species were modulated, with increased PC and PE levels and decreased TG and DG, showcasing significant lipid metabolism improvement in T2DM with NAFLD. Moreover, ZGJTQGF's influence on lipid synthesis-related proteins was observed, underscoring its anti-steatotic impact through liver lipidomic alterations and offering novel insights into hepatic steatosis pathogenesis. CONCLUSIONS Liver lipidomics analysis combined with protein verification further demonstrated that ZGJTQGF could ameliorate the lipid disturbance of TG, DG, PC, PE in T2DM with NAFLD, as well as improve fatty acid and cholesterol synthesis and metabolism through De novo lipogenesis pathway.
Collapse
Affiliation(s)
- Min Zhou
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China
| | - Xiu Liu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China
| | - Yongjun Wu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China
| | - Qin Xiang
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China.
| | - Rong Yu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China.
| |
Collapse
|
13
|
Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res 2024; 38:3564-3582. [PMID: 38715375 DOI: 10.1002/ptr.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.
Collapse
Affiliation(s)
- Lvzhuo Zhang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Qianjiang Central Hospital Affiliated to Yangtze University, Qianjiang, Hubei, China
| | - Shifeng He
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
14
|
Kakoti BB, Alom S, Deka K, Halder RK. AMPK pathway: an emerging target to control diabetes mellitus and its related complications. J Diabetes Metab Disord 2024; 23:441-459. [PMID: 38932895 PMCID: PMC11196491 DOI: 10.1007/s40200-024-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose In this extensive review work, the important role of AMP-activated protein kinase (AMPK) in causing of diabetes mellitus has been highlighted. Structural feature of AMPK as well its regulations and roles are described nicely, and the association of AMPK with the diabetic complications like nephropathy, neuropathy and retinopathy are also explained along with the connection between AMPK and β-cell function, insulin resistivity, mTOR, protein metabolism, autophagy and mitophagy and effect on protein and lipid metabolism. Methods Published journals were searched on the database like PubMed, Medline, Scopus and Web of Science by using keywords such as AMPK, diabetes mellitus, regulation of AMPK, complications of diabetes mellitus, autophagy, apoptosis etc. Result After extensive review, it has been found that, kinase enzyme like AMPK is having vital role in management of type II diabetes mellitus. AMPK involve in enhance the concentration of glucose transporter like GLUT 1 and GLUT 4 which result in lowering of blood glucose level in influx of blood glucose into the cells; AMPK increases the insulin sensitivity and decreases the insulin resistance and further AMPK decreases the apoptosis of β-cells which result into secretion of insulin and AMPK is also involve in declining of oxidative stress, lipotoxicity and inflammation, owing to which organ damage due to diabetes mellitus can be lowered by activation of AMPK. Conclusion As AMPK activation leads to overall control of diabetes mellitus, designing and developing of small molecules or peptide that can act as AMPK agonist will be highly beneficial for control or manage diabetes mellitus.
Collapse
Affiliation(s)
- Bibhuti B. Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Girijananda Chowdhury University- Tezpur campus, 784501 Sonitpur, Assam India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, 781125 Mirza, Kamrup, Assam India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot -8 OCF Pocket Institution, Sarita Vihar, 110076 Delhi, India
| |
Collapse
|
15
|
Liu N, Ji Y, Liu R, Jin X. The state of astragaloside IV research: A bibliometric and visualized analysis. Fundam Clin Pharmacol 2024; 38:208-224. [PMID: 37700611 DOI: 10.1111/fcp.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Astragaloside IV has emerged as a pharmaceutical monomer with great medical applications and potential. Astragaloside IV has many effects such as improving myocardial ischemia, cerebral ischemia-reperfusion injury, anti-inflammatory, analgesic, antiviral, promoting lymphocyte proliferation, and antitumor effects. However, there are few bibliometric studies on astragaloside IV. OBJECTIVES We aim to visualize the hotspots and trends in astragaloside IV research through bibliometric analysis to further understand the future development of basic and clinical research. Methods The articles and reviews on astragaloside IV were screened from the Web of Science Core Collection, and knowledge maps were generated using CiteSpace software. Bibliometric analysis was performed on 971 articles published from 1998 to 2022. RESULTS The number of articles on astragaloside IV increased yearly. These publications came from 42 countries/regions, with China being the largest. The primary research institutions were Shanghai University of Traditional Chinese Medicine and Guangzhou University of Traditional Chinese Medicine. Journal of Ethnopharmacology was the most studied journal and co-cited journal. A total of 473 authors were included, among which Hongxin Wang had the highest number of publications and Zhang Wd had the highest total citation frequency. After analysis, the most common keywords are astragaloside IV, expression, and oxidative stress. Cardiovascular disease, cerebral ischemia, cancer, and kidney disease are current and developing research fields. CONCLUSION This study used bibliometrics and visualization methods to analyze the research hotspots and trends of astragaloside IV. Astragaloside IV on ischemia-reperfusion injury, cancer, and tumor may become the focus of future research.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yansu Ji
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
16
|
Chen S, Jiao Y, Han Y, Zhang J, Deng Y, Yu Z, Wang J, He S, Cai W, Xu J. Edible traditional Chinese medicines improve type 2 diabetes by modulating gut microbiotal metabolites. Acta Diabetol 2024; 61:393-411. [PMID: 38227209 DOI: 10.1007/s00592-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with intricate pathogenic mechanisms. Despite the availability of various oral medications for controlling the condition, reports of poor glycemic control in type 2 diabetes persist, possibly involving unknown pathogenic mechanisms. In recent years, the gut microbiota have emerged as a highly promising target for T2DM treatment, with the metabolites produced by gut microbiota serving as crucial intermediaries connecting gut microbiota and strongly related to T2DM. Increasingly, traditional Chinese medicine is being considered to target the gut microbiota for T2DM treatment, and many of them are edible. In studies conducted on animal models, edible traditional Chinese medicine have been shown to primarily alter three significant gut microbiotal metabolites: short-chain fatty acids, bile acids, and branched-chain amino acids. These metabolites play crucial roles in alleviating T2DM by improving glucose metabolism and reducing inflammation. This review primarily summarizes twelve edible traditional Chinese medicines that improve T2DM by modulating the aforementioned three gut microbiotal metabolites, along with potential underlying molecular mechanisms, and also incorporation of edible traditional Chinese medicines into the diets of T2DM patients and combined use with probiotics for treating T2DM are discussed.
Collapse
Affiliation(s)
- Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiqiao Jiao
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiyang Han
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zilu Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shasha He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
17
|
Yao Y, Chen Y, Chen H, Pan X, Li X, Liu W, Bahetjan Y, Lu B, Pang K, Yang X, Pang Z. Black mulberry extract inhibits hepatic adipogenesis through AMPK/mTOR signaling pathway in T2DM mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117216. [PMID: 37741475 DOI: 10.1016/j.jep.2023.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Black mulberry (Morus nigra L.) is an ancient dual-use plant resource for medicine and food. It is widely used in Uyghur folklore for hypoglycemic treatment and is a folkloric plant medicine with regional characteristics. However, the mechanism of Morus nigra L. treatment in diabetes mellitus has not been fully understood, especially from the perspective of hepatic lipid accumulation is less reported. OBJECTIVE OF THIS STUDY This study was to explore the potential of Morus nigra L. fruit ethyl acetate extract (MNF-EA) to reduce blood sugar levels by preventing the production of hepatic lipogenesis and to provide more evidence for the use of MNF-EA as an adjuvant therapy for type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS In this study, the chemical composition of MNF-EA was first analyzed and characterized using UPLC-Q-TOF-MS technique. A series of in vitro studies were performed with HepG2-IR cells and oleic acid (OA)-induced HepG2 cells, including MTT assay, glucose uptake assay, oil red O staining and Western blot analysis. The STZ-HFD co-induced T2DM mice were employed for in vivo research, including physical indices, biochemical analysis, histopathological examination, and Western blot analysis. RESULTS The 19 compounds in MNF-EA were identified by UPLC-Q-TOF-MS technique. Insulin resistance (IR) and lipid droplet accumulation in HepG2 cells were greatly improved by MNF-EA treatment, which had no appreciable side effects at the dosage used. In T2DM mice, MNF-EA decreased fasting blood glucose (FBG), saved body weight, and significantly improved oral glucose tolerance (OGTT) and IR status. In addition, MNF-EA treatment also improved lipid metabolism disorders and liver function in T2DM mice. Histopathological sections showed that MNF-EA treatment reduced hepatic steatosis. Mechanistic studies suggest that MNF-EA acted through the AMPK/mTOR pathway. CONCLUSIONS These results suggest that MNF-EA has great potential to reverse the metabolic abnormalities associated with T2DM by regulating the AMPK/mTOR signaling pathway. Therefore, we believe that MNF is a promising medicinal and food-homologous agent to improve T2DM.
Collapse
Affiliation(s)
- Yudi Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yang Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huijian Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xin Pan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaojun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenqi Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yerlan Bahetjan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Kejian Pang
- College of Biological and Geographical Sciences, Yili Normal University, Yining, 835000, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
18
|
Wu C, Zhang W, Yan F, Dai W, Fang F, Gao Y, Cui W. Amelioration effects of the soybean lecithin-gallic acid complex on iron-overload-induced oxidative stress and liver damage in C57BL/6J mice. PHARMACEUTICAL BIOLOGY 2023; 61:37-49. [PMID: 36573499 PMCID: PMC9809354 DOI: 10.1080/13880209.2022.2151632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/30/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Gallic acid (GA) and lecithin showed important roles in antioxidant and drug delivery, respectively. A complex synthesized from GA and soybean lecithin (SL-GAC), significantly improved bioavailability of GA and pharmacological activities. However, the antioxidant activity of SL-GAC and its effect on iron-overload-induced liver injury remains unexplored. OBJECTIVE This study investigates the antioxidant properties of SL-GAC in vitro and in mice, and its remediating effects against liver injury by iron-overloaded. MATERIALS AND METHODS In vitro, free radical scavenging activity, lipid peroxidation inhibition, and ferric reducing power of SL-GAC were measured by absorbance photometry. In vivo, C57BL/6J mice were randomized into 4 groups: control, iron-overloaded, iron-overloaded + deferoxamine, and iron-overloaded + SL-GAC. Treatments with deferoxamine (150 mg/kg/intraperitioneally) and SL-GAC (200 mg/kg/orally) were given to the desired groups for 12 weeks, daily. Iron levels, oxidative stress, and biochemical parameters were determined by histopathological examination and molecular biological techniques. RESULTS In vitro, SL-GAC showed DPPH and ABTS free radicals scavenging activity with IC50 values equal to 24.92 and 128.36 μg/mL, respectively. In C57BL/6J mice, SL-GAC significantly reduced the levels of serum iron (22.82%), liver iron (50.29%), aspartate transaminase (25.97%), alanine transaminase (38.07%), gamma glutamyl transferase (42.11%), malondialdehyde (19.82%), total cholesterol (45.96%), triglyceride (34.90%), ferritin light chain (18.51%) and transferrin receptor (27.39%), while up-regulated the levels of superoxide dismutase (24.69%), and glutathione (11.91%). CONCLUSIONS These findings encourage the use of SL-GAC to treat liver injury induced by iron-overloaded. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Caihong Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Wenxin Zhang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Feifei Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Wenwen Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Fang Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yanli Gao
- Department of Pediatric Ultrosonic, The First Hospital of Jilin University, Changchun, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
19
|
Zhao X, Bie LY, Pang DR, Li X, Yang LF, Chen DD, Wang YR, Gao Y. The role of autophagy in the treatment of type II diabetes and its complications: a review. Front Endocrinol (Lausanne) 2023; 14:1228045. [PMID: 37810881 PMCID: PMC10551182 DOI: 10.3389/fendo.2023.1228045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a chronic metabolic disease characterized by prolonged hyperglycemia and insulin resistance (IR). Its incidence is increasing annually, posing a significant threat to human life and health. Consequently, there is an urgent requirement to discover effective drugs and investigate the pathogenesis of T2DM. Autophagy plays a crucial role in maintaining normal islet structure. However, in a state of high glucose, autophagy is inhibited, resulting in impaired islet function, insulin resistance, and complications. Studies have shown that modulating autophagy through activation or inhibition can have a positive impact on the treatment of T2DM and its complications. However, it is important to note that the specific regulatory mechanisms vary depending on the target organ. This review explores the role of autophagy in the pathogenesis of T2DM, taking into account both genetic and external factors. It also provides a summary of reported chemical drugs and traditional Chinese medicine that target the autophagic pathway for the treatment of T2DM and its complications.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lu-Yao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dao-Ran Pang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long-Fei Yang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan-Dan Chen
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Qin S, Chen J, Zhong K, Li D, Peng C. Could Cyclosiversioside F Serve as a Dietary Supplement to Prevent Obesity and Relevant Disorders? Int J Mol Sci 2023; 24:13762. [PMID: 37762063 PMCID: PMC10531328 DOI: 10.3390/ijms241813762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is the basis of numerous metabolic diseases and has become a major public health issue due to its rapidly increasing prevalence. Nevertheless, current obesity therapeutic strategies are not sufficiently effective, so there is an urgent need to develop novel anti-obesity agents. Naturally occurring saponins with outstanding bio-activities have been considered promising drug leads and templates for human diseases. Cyclosiversioside F (CSF) is a paramount multi-functional saponin separated from the roots of the food-medicinal herb Astragali Radix, which possesses a broad spectrum of bioactivities, including lowering blood lipid and glucose, alleviating insulin resistance, relieving adipocytes inflammation, and anti-apoptosis. Recently, the therapeutic potential of CSF in obesity and relevant disorders has been gradually explored and has become a hot research topic. This review highlights the role of CSF in treating obesity and obesity-induced complications, such as diabetes mellitus, diabetic nephropathy, cardiovascular and cerebrovascular diseases, and non-alcoholic fatty liver disease. Remarkably, the underlying molecular mechanisms associated with CSF in disease therapy have been partially elucidated, especially PI3K/Akt, NF-κB, MAPK, apoptotic pathway, TGF-β, NLRP3, Nrf-2, and AMPK, with the aim of promoting the development of CSF as a functional food and providing references for its clinical application in obesity-related disorders therapy.
Collapse
Affiliation(s)
| | | | | | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
21
|
Wang M, Yu H, He Y, Liao S, Xu D. Cross-talk between traditional Chinese medicine and Parkinson's disease based on cell autophagy. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 7:100235. [DOI: 10.1016/j.prmcm.2023.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
22
|
Zhong YT, Shen Q, Yang YT, Zhang RB, Zhao LC, Li W. Trilobatin ameliorates HFD/STZ-induced glycolipid metabolism disorders through AMPK-mediated pathways. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
23
|
Chen J, Zhu G, Xiao W, Huang X, Wang K, Zong Y. Ginsenoside Rg1 Ameliorates Pancreatic Injuries via the AMPK/mTOR Pathway in vivo and in vitro. Diabetes Metab Syndr Obes 2023; 16:779-794. [PMID: 36945297 PMCID: PMC10024876 DOI: 10.2147/dmso.s401642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The main propanaxatriol-type saponin found in ginseng (Panax ginseng C. A. Mey), ginsenoside Rg1 (G-Rg1), has bioactivities that include anti-inflammatory, antioxidant, and anti-diabetic properties. This study aimed to investigate the effects of G-Rg1 on streptozotocin (STZ)-induced Type 1 Diabetes mellitus (T1DM) mice and the insulin-secreting cell line in RIN-m5F cells with high-glucose (HG) treatment. METHODS The STZ-induced DM mice model was treated with G-Rg1 alone or combined with 3-Methyladenine (3-MA, an autophagy inhibitor)/rapamycin (RAPA, an autophagy activator) for 8 weeks, and levels of glucose and lipid metabolism, histopathological changes, as well as autophagy and apoptosis of relevant markers were estimated. In vitro, the HG-induced RIN-m5F cells were treated with G-Rg1, 3-MA, and Compound C (CC), an AMPK inhibitor, or their combinations to estimate the influences on cell apoptosis, autophagy, and AMPK/mTOR pathway-associated target gene levels. RESULTS G-Rg1 treatment attenuated glucose and lipid metabolism disorder and pancreatic fibrosis in diabetic mice. In addition, subdued autophagy and p-AMPK protein expression, and enhanced p-mTOR protein expression and apoptosis levels in TIDM mice and HG-induced RIN-m5F cells were ameliorated by G-Rg1 treatment. Furthermore, these anti-apoptosis effects of G-Rg1 were partially abolished by 3-MA and CC. CONCLUSION Our findings revealed that G-Rg1 exhibits strong anti-apoptosis ability in pancreatic tissues of type 1 diabetic mice and HG-induced RIN-m5F cells, and the mechanisms involved in activating AMPK and inhibiting mTOR-mediated autophagy, indicating that G-Rg1 may have the therapeutic and preventive potential for treating pancreatic injury in diabetic patients.
Collapse
Affiliation(s)
- Jin Chen
- Department of Hematology, Yiwu Central Hospital, Yiwu, People’s Republic of China
| | - Guoping Zhu
- Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, People’s Republic of China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaosong Huang
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, People’s Republic of China
| | - Kewu Wang
- Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, People’s Republic of China
- Correspondence: Kewu Wang; Yi Zong, Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, Zhejiang, People’s Republic of China, Email ;
| | - Yi Zong
- Department of Radiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, People’s Republic of China
| |
Collapse
|
24
|
Zhang Y, Xu G, Huang B, Chen D, Ye R. Astragaloside IV Regulates Insulin Resistance and Inflammatory Response of Adipocytes via Modulating CTRP3 and PI3K/AKT Signaling. Diabetes Ther 2022; 13:1823-1834. [PMID: 36103112 PMCID: PMC9663774 DOI: 10.1007/s13300-022-01312-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Emerging evidence showed that adipocytes are important regulators in controlling insulin resistance in type 2 diabetes mellitus (T2DM). So far, compounds isolated from natural plants have been widely studied for their roles in alleviating T2DM-associated complications. This work evaluated the actions of astragaloside IV (AS-IV) on insulin resistance and inflammatory biomarker expression in adipocytes and explored the potential mechanisms. METHODS Glucose consumption of the adipocytes was determined by a glucose assay kit; the mRNA expression levels of glucose transporter type 4 (GLUT-4), interleukin-6 (IL-6), TNF-α and C1q tumor necrosis factor-related protein 3 (CTRP3) were measured by quantitative real-time PCR (qRT-PCR); the protein levels were determined by western blot assay and enzyme-linked immunosorbent assay. RESULTS AS-IV concentration-dependently increased glucose consumption in the insulin resistance adipocytes. Further qRT-PCR results showed that AS-IV concentration-dependently reduced adipocyte IL-6 and TNF-α expression. Moreover, GLUT-4 expression in adipocytes was also significantly upregulated by AS-IV. Furthermore, we found that AS-IV concentration-dependently increased CTRP3 expression in adipocytes. CTRP3 silence decreased glucose consumption, upregulated IL-6 and TNF-α expression and downregulated GLUT-4 mRNA expression in 200 µM AS-IV-treated adipocytes. Moreover, AS-IV treatment enhanced the activity of phosphoinositide 3-kinase (PI3K)/AKT signaling in adipocytes, which was markedly attenuated by CTRP3 silencing. Importantly, inhibition of PI3K/AKT signaling also attenuated AS-IV induced an increase in glucose consumption and GLUT-4 expression and a decrease in IL-6 and TNF-α expression of adipocytes. CONCLUSIONS Collectively, our data indicated that AS-IV attenuated insulin resistance and inflammation in adipocytes via targeting CTRP3/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Guangning Xu
- Department of Traditional Chinese Medicine, Shenzhen Shekou People’s Hospital, Shenzhen, China
| | - Baoyi Huang
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Dongni Chen
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| | - Renqun Ye
- Department of Endocriology, Shenzhen Bao’an Traditional Chinese Medicine Hospital, the Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518100 China
| |
Collapse
|
25
|
Yang Y, Hong M, Lian WW, Chen Z. Review of the pharmacological effects of astragaloside IV and its autophagic mechanism in association with inflammation. World J Clin Cases 2022; 10:10004-10016. [PMID: 36246793 PMCID: PMC9561601 DOI: 10.12998/wjcc.v10.i28.10004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Astragalus membranaceus Bunge, known as Huangqi, has been used to treat various diseases for a long time. Astragaloside IV (AS-IV) is one of the primary active ingredients of the aqueous Huangqi extract. Many experimental models have shown that AS-IV exerts broad beneficial effects on cardiovascular disease, nervous system diseases, lung disease, diabetes, organ injury, kidney disease, and gynaecological diseases. This review demonstrates and summarizes the structure, solubility, pharmacokinetics, toxicity, pharmacological effects, and autophagic mechanism of AS-IV. The autophagic effects are associated with multiple signalling pathways in experimental models, including the PI3KI/Akt/mTOR, PI3K III/Beclin-1/Bcl-2, PI3K/Akt, AMPK/mTOR, PI3K/Akt/mTOR, SIRT1–NF-κB, PI3K/AKT/AS160, and TGF-β/Smad signalling pathways. Based on this evidence, AS-IV could be used as a replacement therapy for treating the multiple diseases referenced above.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Wen Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
26
|
Zhou F, Yang L, Yang L, Wang X, Guo N, Sun W, Ma H. Trpc5-regulated AMPKα/mTOR autophagy pathway is associated with glucose metabolism disorders in low birth weight mice under overnutrition. Biochem Biophys Res Commun 2022; 630:1-7. [PMID: 36122525 DOI: 10.1016/j.bbrc.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that low birth weight (LBW) individuals are at higher risk of glucose metabolism disorders compared with normal birth weight (NBW) individuals under overnutrition conditions, but the mechanism remains unclear. To explore the underlying mechanism of glucose metabolism disorders induced by LBW under overnutrition in adulthood, the prenatal malnutrition method was applied to ICR mice to establish the LBW mice model and high-fat diets were used to mimic overnutrition conditions. Then the mechanism was further explored on Hepg2 cells treated with nutritional deprivation plus palmitic acid. The results showed that LBW plus high-fat interventions will cause glucose metabolism disorders and inhibit autophagy flux in adulthood. Moreover, the expression of TRPC5-regulated AMPK/mTOR autophagy pathway was downregulated by LBW with high-fat interventions. Collectively, LBW plus high-fat intervention increased the risk of glucose metabolism disorders, which may be related to the alteration of TRPC5 expression level and its regulation of the AMPKα/mTOR autophagy pathway. This study may provide a fundamental basis for the molecular mechanism of glucose metabolism disorders induced by LBW with high-fat diets in adulthood and a new target for the treatment of metabolic diseases in LBW individuals.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linlin Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Linquan Yang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xing Wang
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Na Guo
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wenwen Sun
- Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Huijuan Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China; Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
27
|
Ning P, Jiang X, Yang J, Zhang J, Yang F, Cao H. Mitophagy: A potential therapeutic target for insulin resistance. Front Physiol 2022; 13:957968. [PMID: 36082218 PMCID: PMC9445132 DOI: 10.3389/fphys.2022.957968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Glucose and lipid metabolism disorders caused by insulin resistance (IR) can lead to metabolic disorders such as diabetes, obesity, and the metabolic syndrome. Early and targeted intervention of IR is beneficial for the treatment of various metabolic disorders. Although significant progress has been made in the development of IR drug therapies, the state of the condition has not improved significantly. There is a critical need to identify novel therapeutic targets. Mitophagy is a type of selective autophagy quality control system that is activated to clear damaged and dysfunctional mitochondria. Mitophagy is highly regulated by various signaling pathways, such as the AMPK/mTOR pathway which is involved in the initiation of mitophagy, and the PINK1/Parkin, BNIP3/Nix, and FUNDC1 pathways, which are involved in mitophagosome formation. Mitophagy is involved in numerous human diseases such as neurological disorders, cardiovascular diseases, cancer, and aging. However, recently, there has been an increasing interest in the role of mitophagy in metabolic disorders. There is emerging evidence that normal mitophagy can improve IR. Unfortunately, few studies have investigated the relationship between mitophagy and IR. Therefore, we set out to review the role of mitophagy in IR and explore whether mitophagy may be a potential new target for IR therapy. We hope that this effort serves to stimulate further research in this area.
Collapse
Affiliation(s)
- Peng Ning
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Xiaobo Jiang
- Department of Cardiovascular Medicine, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jing Yang
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jiaxing Zhang
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Fan Yang
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
- *Correspondence: Fan Yang, ; Hongyi Cao,
| | - Hongyi Cao
- Department of Endocrine and Metabolism, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People’s Hospital(The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
- *Correspondence: Fan Yang, ; Hongyi Cao,
| |
Collapse
|
28
|
Zhao J, Zhang Y, Zhao Y, Wu T, Chen Y, Zhang Y, Kong H, Zhao Y, Qu H. Protective Effects of Zingiberis Carbonisata-Based Carbon Dots on Diabetic Liver Injury in Mice. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To explain the active components of ZRC-CDs from the perspective of nanomaterials and investigate the potential mechanism for the treatment of diabetic liver injury, the structure, electron transfer properties, and elemental composition of ZRC-CDs were characterized. The protective
effects of ZRC-CDs on the diabetic liver injury were demonstrated using the Alloxan-induced diabetic model. The ZRC-CDs are spherical, with a diameter ranging from 1.0–4.5 nm and a yield of 0.56%. The results showed that ZRC-CDs decreased the levels of blood glucose in diabetic mice
and had a mitigating effect on elevated ALT and AST. More studies found that ZRC-CDs were able to decrease the levels of inflammatory cytokines and suppress the protein expression in related signaling pathways.
Collapse
Affiliation(s)
- Jie Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yifan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yusheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
29
|
Sun W, Zhang Y, Jia L. Polysaccharides from Agrocybe cylindracea residue alleviate type 2-diabetes-induced liver and colon injuries by p38 MAPK signaling pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
31
|
Mechanism of Astragalus membranaceus Alleviating Acquired Hyperlipidemia Induced by High-Fat Diet through Regulating Lipid Metabolism. Nutrients 2022; 14:nu14050954. [PMID: 35267929 PMCID: PMC8912611 DOI: 10.3390/nu14050954] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Astragalus membranaceus (AM) is a food and medicinal homologous plant. The current research is aimed to investigate the beneficial effects and mechanisms of AM in treating acquired hyperlipidemia. The network pharmacology and bioinformatics analysis results showed 481 AM-related targets and 474 acquired hyperlipidemia-associated targets, and 101 candidate targets were obtained through the intersection, mainly enriched in endocrine resistance, AGE-RAGE in diabetic complications and p53 signaling pathways. Quercetin, kaempferol, calycosin, formononetin and isorhamnetin were determined as the candidate active components of AM in the treatment of acquired hyperlipidemia. Moreover, key targets of AM, namely, AKT serine/threonine kinase 1 (AKT1), vascular endothelial growth factor A (VEGFA), cyclin D1 (CCND1) and estrogen receptor 1 (ESR1), were screened out, which were closely related to adipogenesis, fatty acid metabolism and bile acid metabolism. The subsequent animal experiments showed that AM extract treatment improved the lipid profiles of the high-fat diet (HFD)-fed mice by reducing lipogenesis and increasing lipolysis and lipid β-oxidation, which were associated with the downregulating of AKT1 and CCND1, and the upregulating of VEGFA and ESR1 in liver and adipose tissue. Overall, AM alleviated acquired hyperlipidemia through regulating lipid metabolism, and AKT1, VEGFA, CCND1 and ESR1 might be the key targets.
Collapse
|
32
|
Regulatory Effects of Astragaloside IV on Hyperglycemia-Induced Mitophagy in Schwann Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7864308. [PMID: 35069769 PMCID: PMC8767404 DOI: 10.1155/2022/7864308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE This study aimed to observe the regulatory effects of astragaloside IV (AS-IV) on hyperglycemia-induced mitochondrial damage and mitophagy in Schwann cells and to provide references for clinical trials on AS-IV in the treatment of diabetic peripheral neuropathy. METHODS Schwann cells were grown in a high-glucose medium to construct an autophagy model; the cells were then treated with AS-IV and N-acetylcysteine (control) to observe the regulatory effects of AS-IV on oxidative stress and mitophagy. RESULTS AS-IV exhibited antioxidant activity and inhibited the overactivation of autophagy in Schwann cells, significantly reducing the level of reactive oxygen species and downregulating the expression of autophagy-related proteins (LC3, PINK, and Parkin) under hyperglycemic conditions, thereby exerting a protective effect on mitochondrial morphology and membrane potential. CONCLUSION AS-IV can maintain the mitochondrial function of Schwann cells under hyperglycemic conditions by effectively alleviating oxidative stress and overactivation of mitophagy. The evidence from this study supports an AS-IV-based therapeutic strategy against diabetic peripheral neuropathy.
Collapse
|
33
|
Entezari M, Hashemi D, Taheriazam A, Zabolian A, Mohammadi S, Fakhri F, Hashemi M, Hushmandi K, Ashrafizadeh M, Zarrabi A, Ertas YN, Mirzaei S, Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed Pharmacother 2022; 146:112563. [PMID: 35062059 DOI: 10.1016/j.biopha.2021.112563] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is considered as a main challenge in both developing and developed countries, as lifestyle has changed and its management seems to be vital. Type I and type II diabetes are the main kinds and they result in hyperglycemia in patients and related complications. The gene expression alteration can lead to development of DM and related complications. The AMP-activated protein kinase (AMPK) is an energy sensor with aberrant expression in various diseases including cancer, cardiovascular diseases and DM. The present review focuses on understanding AMPK role in DM. Inducing AMPK signaling promotes glucose in DM that is of importance for ameliorating hyperglycemia. Further investigation reveals the role of AMPK signaling in enhancing insulin sensitivity for treatment of diabetic patients. Furthermore, AMPK upregulation inhibits stress and cell death in β cells that is of importance for preventing type I diabetes development. The clinical studies on diabetic patients have shown the role of AMPK signaling in improving diabetic complications such as brain disorders. Furthermore, AMPK can improve neuropathy, nephropathy, liver diseases and reproductive alterations occurring during DM. For exerting such protective impacts, AMPK signaling interacts with other molecular pathways such as PGC-1α, PI3K/Akt, NOX4 and NF-κB among others. Therefore, providing therapeutics based on AMPK targeting can be beneficial for amelioration of DM.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Hashemi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Shima Mohammadi
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farima Fakhri
- Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
34
|
Yin Y, Qu H, Yang Q, Fang Z, Gao R. Astragaloside IV alleviates Schwann cell injury in diabetic peripheral neuropathy by regulating microRNA-155-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153749. [PMID: 34601220 DOI: 10.1016/j.phymed.2021.153749] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND MicroRNA-155(miR-155) is closely associated with diabetic peripheral neuropathy (DPN). Astragaloside IV (AST) is a significant extract of Astragalus membranaceus, which has been found to be effective in the treatment of DPN. However, whether astragaloside IV alleviate DPN via regulating miR-155-mediated autophagy remains unclear. PURPOSE This study was designed to evaluate the effects of AST on DPN myelin Schwann cells injury and explore the mechanism of AST in treating DPN for the first time. METHODS GK rats fed with high-fat diet and RSC96 cells cultured in high glucose were used to establish DPN Schwann cells injury in vivo and in vitro model. The effects of AST on DPN were explored through blood glucose detection, nerve function detection, pathological detection and the expression of Neuritin detected by immunohistochemical. To study the effect of AST on the DPN Schwann cells autophagy and the upstream PI3K/Akt/mTOR pathway, the expressions of beclin-1 and LC3 were detected by western blot (WB) in sciatic nerves and by immunofluorescence (IFC) in RSC96 cells. The real-time polymerase chain reaction (RT-PCR) was applied to detect the expressions of miR-155, ATG5, ATG12 both in vivo and in vitro. The binding effect of miR-155 and target gene PI3KCA was verified by luciferase reporter gene assay. The expressions of PI3K, p-Akt/Akt, p-mTOR/mTOR were detected by WB and the expressions of PI3KCA were detected by RT-PCR in vitro. The apoptosis was detected by flow cytometry. Meanwhile, the influence of miR-155 overexpression and knocked down on the above indicators was also detected in RSC96 cells. At last, further mechanism experiments were conducted to verify the mechanism of AST regulating the autophagy and apoptosis of RSC96 cells. RESULTS AST reduced blood glucose levels, alleviated peripheral nerve myelin sheath injury, and improved neurological function in DPN rats. In addition, AST enhanced the autophagy activity and alleviated the apoptosis in RSC96 cell. Mechanism study shown that AST promote autophagy via regulating miR-155-mediated PI3K/Akt/mTOR signaling pathways. AST reduced RSC96 cells apoptosis by promoting autophagy. CONCLUSION AST alleviate the myelin sheath injury of DPN caused by the apoptosis of Schwann cells via enhancing autophagy, which was attributed to inhibiting the activation of the PI3K/Akt/mTOR signaling pathway by upregulating miR-155 expression.
Collapse
Affiliation(s)
- Yundong Yin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Zhaohui Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Rui Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|