1
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
2
|
Qiu S, Zhang K, Chen S, Yin S. Circular RNA PRKCI (hsa_circ_0067934): a potential target in the pathogenesis of human malignancies. Front Oncol 2024; 14:1365032. [PMID: 38741779 PMCID: PMC11089142 DOI: 10.3389/fonc.2024.1365032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Circular RNAs (circRNAs) are a new type of endogenous non-coding RNA formed by a covalent closed loop. CircRNAs are characterized by specificity, universality, conservation, and stability. They are abundant in eukaryotic cells and have biological regulatory roles at various transcriptional and post-transcriptional levels. The upregulation of circPRKCI has been observed in a variety of tumors and is directly related to the clinicopathological characteristics of tumors and prognosis. More importantly, circPRKCI can participate in the tumorigenesis, progression, recurrence, and metastasis of various tumors through many functional mechanisms, including the activation of signaling pathways, such as the phosphatidylinositol-3-kinase (PI3K)/AKT pathway, and sponging of many microRNAs (miRNAs). This review summarizes the progress achieved in understanding the biological functions of circRNA PRKCI in various tumors. The goal is to inform the discovery of more functional mechanisms and new anticancer molecular targets.
Collapse
Affiliation(s)
- Shipei Qiu
- Department of General Surgery, Southeast University Affiliated Zhongda Hospital, Nanjing, China
| | - Kefan Zhang
- Department of Cardiothoracic Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuting Yin
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Ma S, Chen F, Lin C, Sun W, Wang D, Zhou S, Chang S, Lu Z, Zhang D. MiR-186-5p prevents hepatocellular carcinoma progression by targeting methyltransferase-like 3 that regulates m6A-mediated stabilization of follistatin-like 5. Heliyon 2024; 10:e26767. [PMID: 38463829 PMCID: PMC10920164 DOI: 10.1016/j.heliyon.2024.e26767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a multistep process involving sophisticated genetic, epigenetic, and transcriptional changes. However, studies on microRNA (miRNA)'s regulatory effects of N6-methyladenosine (m6A) modifications on HCC progression are limited. Methods Cell Counting Kit-8 (CCK-8), clone formation, and Transwell assays were used to investigate changes in cancer cell proliferation, invasion, and migration. RNA m6A levels were verified using methylated RNA immunoprecipitation. Luciferase reporter assay was used to study the potential binding between miRNAs and mRNA. A mouse tumor transplant model was established to study the changes in tumor progression. Results Follistatin-like 5 (FSTL5) was significantly downregulated in HCC and inhibited its further progression. Additionally, methyltransferase-like 3 (METTL3) reduced FSTL5 mRNA stability in an m6A-YTH domain family 2(YTHDF2)-dependent manner. Functional experiments revealed that METTL3 downregulation inhibited HCC progression by upregulating FSTL5 in vitro and in vivo. Luciferase reporter assay verified that miR-186-5p directly targets METTL3. Additionally, miR-186-5p inhibits the proliferation, migration, and invasion of HCC cells by downregulating METTL3 expression. Conclusions The miR-186-5p/METTL3/YTHDF2/FSTL5 axis may offer new directions for targeted HCC therapy.
Collapse
Affiliation(s)
- Shuoshuo Ma
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
- Liver Transplantation Center and Hepatobiliary and Pancreatic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangfang Chen
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Chuanle Lin
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Wanliang Sun
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Dongdong Wang
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Shuo Zhou
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - ShiRu Chang
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Zheng Lu
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
| | - Dengyong Zhang
- Department of General Surgery, The First Affiliated Hospital of BengBu Medical College, BengBu, 233000, China
- The University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology, Houston, USA
| |
Collapse
|
4
|
Liu D, Huang Y, Shang Y. Sufentanil Suppresses Cell Carcinogenesis Via Targeting miR-186-5p/HMGB1 Axis and Wnt/β-Catenin Pathway in Non-Small-Cell Lung Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01104-x. [PMID: 38470557 DOI: 10.1007/s12033-024-01104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Sufentanil is a common opioid anesthetic agent, which exerts anti-cancer properties in several cancer types. However, its action mechanisms in non-small cell lung cancer (NSCLC) are unclear. Therefore, the present study investigated the pharmacological effect of sufentanil on miRNAs in NSCLC treatment. In this study, after treatment with sufentanil, the proliferation, migration, invasion and apoptosis of A549 and H1299 NSCLC cell lines were measured by cell counting kit-8 (CCK-8) assay, colony formation assay, transwell assays and flow cytometry. Quantitative real time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of miR-186-5p and high mobility group box-1 (HMGB1), and their interaction was analyzed using luciferase reporter assay. The proteins of HMGB1, and apoptosis- and Wnt/β-catenin pathway-related factors were detected by western blot. It was demonstrated that sufentanil significantly upregulated miR‑186‑5p to restrict NSCLC cell proliferation, migration, invasion, and boost apoptosis in vitro. Mechanically, miR-186-5p interacted with HMGB1 and negatively regulated HMGB1 in NSCLC cells. Furthermore, rescue assay showed that sufentanil exerted antitumor activities by upregulating miR-186-5p, which targeted HMGB1 and restrained Wnt/β-catenin signal pathway in NSCLC cells. In conclusion, these results suggested that sufentanil disrupts the oncogenicity of NSCLC cells by regulating miR-186-5p/HMGB1/β-catenin axis, providing a promising implication for the anti-oncogenic effect of sufentanil.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Ye Huang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - You Shang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China.
| |
Collapse
|
5
|
Liu Z, Ren X, Yang Z, Mei L, Li W, Tu C, Li Z. Prognostic and clinical value of circPRKCI expression in diverse human cancers. Chin Med J (Engl) 2024; 137:152-161. [PMID: 37718264 PMCID: PMC10798697 DOI: 10.1097/cm9.0000000000002844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Highly expressed in various human cancers, circular RNA Protein Kinase C Iota (circPRKCI) has been reported to play an important role in cancer development and progression. Herein, we sought to reveal the prognostic and clinical value of circPRKCI expression in diverse human cancers. METHODS We searched the Pubmed, Web of Science, and the Cochrane Library databases from inception until May 16, 2021. The relationship between circPRKCI expression and cancer patients' survival, including overall survival (OS) and disease-free survival (DFS), was assessed by pooled hazard ratios (HR) with corresponding 95% confidence interval (CI). The correlation between circPRKCI expression and clinical outcomes was evaluated using odds ratios (OR) with corresponding 95% CI. The data were analyzed by STATA software (version 12.0) or Review Manager (RevMan 5.3). RESULTS A total of 15 studies with 1109 patients were incorporated into our meta-analysis. The results demonstrated that high circPRKCI expression was significantly related to poor OS (HR = 1.96, 95% CI: 1.61, 2.39, P <0.001) when compared with low circPRKCI expression in diverse human cancers. However, elevated circPRKCI expression was not associated with DFS (HR = 1.34, 95% CI: 0.93, 1.95, P = 0.121). Furthermore, the patient with a higher circPRKCI expression was prone to have a larger tumor size, advanced clinical stage, and lymph node metastasis, but it was not significantly correlated with age, gender, and distant metastasis. CONCLUSION Elevated circPRKCI expression was correlated with worse OS and unfavorable clinical features, suggesting a novel prognostic and predictive role of circPRKCI in diverse human cancers.
Collapse
Affiliation(s)
- Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhimin Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenyi Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Akhlaghipour I, Fanoodi A, Zangouei AS, Taghehchian N, Khalili-Tanha G, Moghbeli M. MicroRNAs as the Critical Regulators of Forkhead Box Protein Family in Pancreatic, Thyroid, and Liver Cancers. Biochem Genet 2023; 61:1645-1674. [PMID: 36781813 DOI: 10.1007/s10528-023-10346-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
The metabolism of human body is mainly regulated by the pancreas, liver, and thyroid using the hormones or exocrine secretions that affect the metabolic processes from food digestion to intracellular metabolism. Therefore, metabolic organ disorders have wide clinical symptoms that severely affect the quality of patient's life. The pancreatic, liver, and thyroid cancers as the main malignancies of the metabolic system have always been considered as one of the serious health challenges worldwide. Despite the novel therapeutic modalities, there are still significant high mortality and recurrence rates, especially in liver and pancreatic cancer patients which are mainly related to the late diagnosis. Therefore, it is required to assess the molecular bases of tumor progressions to introduce novel early detection and therapeutic markers in these malignancies. Forkhead box (FOX) protein family is a group of transcription factors that have pivotal roles in regulation of cell proliferation, migration, and apoptosis. They function as oncogene or tumor suppressor during tumor progression. MicroRNAs (miRNAs) are also involved in regulation of cellular processes. Therefore, in the present review, we discussed the role of miRNAs during pancreatic, thyroid, and liver tumor progressions through FOX regulation. It has been shown that miRNAs were mainly involved in tumor progression via FOXM and FOXO targeting. This review paves the way for the introduction of miR/FOX axis as an efficient early detection marker and therapeutic target in pancreatic, thyroid, and liver tumors.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Wang Z, Zhou X, Deng X, Ye D, Liu D, Zhou B, Zheng W, Wang X, Wang Y, Borkhuu O, Fang L. miR-186-ANXA9 signaling inhibits tumorigenesis in breast cancer. Front Oncol 2023; 13:1166666. [PMID: 37841425 PMCID: PMC10570552 DOI: 10.3389/fonc.2023.1166666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Breast cancer (BC) ranks as the highest incidence among cancer types in women all over the world. MicroRNAs (miRNAs) are a class of short endogenous non-coding RNA in cells mostly functioning to silence the target mRNAs. In the current study, a miRNA screening analysis identified miR-186-5p to be downregulated in human breast cancer tumors. Functional studies in vitro demonstrated that overexpression of miR-186-5p inhibited cellular proliferation and induced cell apoptosis in multiple breast cancer cell lines including MDA-MB-231, MCF-7, and BT549 cells. Transplantation of the miR-186-5p-overexpressing MDA-MB-231 cells into nude mice significantly inhibited mammary tumor growth in vivo. Sequence blast analysis predicted annexin A9 (ANXA9) as a target gene of miR-186-5p, which was validated by luciferase reporter assay, QRT-PCR analysis, and western blot. Additional gene expression analysis of clinical tumor samples indicated a negative correlation between miR-186-5p and ANXA9 in human breast cancer. Knockdown of ANXA9 mimicked the phenotype of miR-186-5p overexpression. Reintroduction of ANXA9 back rescued the miR-186-5p-induced cell apoptosis. In addition, miR-186-5p decreased the expression of Bcl-2 and increased the expression of p53, suggesting a mechanism regulating miR-186-5p-induced cellular apoptosis. In summary, our study is the first to demonstrate miR-186-5p-ANXA9 signaling in suppressing human breast cancer. It provided a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Zhongrui Wang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
- Department of Breast and Thyroid Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochong Deng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Oyungerel Borkhuu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai, China
- Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Xing B, Shen C, Yang Q, Wang Z, Tan W. miR-144-3p represses hepatocellular carcinoma progression by affecting cell aerobic glycolysis via FOXK1. Int J Exp Pathol 2023; 104:117-127. [PMID: 36806218 PMCID: PMC10182365 DOI: 10.1111/iep.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/22/2023] Open
Abstract
Aerobic glycolysis is a unique mark of cancer cells, which enables therapeutic intervention in cancer. Forkhead box K1 (FOXK1) is a transcription factor that facilitates the progression of multiple cancers including hepatocellular carcinoma (HCC). Nevertheless, it is unclear whether or not FOXK1 can affect HCC cell glycolysis. This study attempted to study the effect of FOXK1 on HCC cell glycolysis. Expression of mature miRNAs and mRNAs, as well as clinical data, was downloaded from The Cancer Genome Atlas-Liver hepatocellular carcinoma (TCGA-LIHC) dataset. FOXK1 and miR-144-3p levels were assessed through quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Targeting of the relationship between miR-144-3p and FOXK1 was verified via a dual-luciferase assay. Pathway enrichment analysis of FOXK1 was performed by Gene Set Enrichment Analysis (GSEA). Cell function assays revealed the glycolytic ability, cell viability, migration, invasion, cell cycle, and apoptosis of HCC cells in each treatment group. Bioinformatics analysis suggested that FOXK1 was upregulated in tissues of HCC patients, while the upstream miR-144-3p was downregulated in tumour tissues. Dual-luciferase assay implied a targeting relationship between miR-144-3p and FOXK1. Cellular experiments implied that silencing FOXK1 repressed HCC cell glycolysis, which in turn inhibited the HCC malignant progression. Rescue assay confirmed that miR-144-3p repressed glycolysis in HCC cells by targeting FOXK1, and then repressed HCC malignant progression. miR-144-3p/FOXK1 axis repressed malignant progression of HCC via affecting the aerobic glycolytic process of HCC cells. miR-144-3p and FOXK1 have the potential to become new therapeutic targets for HCC, which provide new insights for HCC treatment.
Collapse
Affiliation(s)
- Binyu Xing
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Cunyi Shen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qinling Yang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zheng Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wenjun Tan
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
9
|
Luo X, Peng Y, Fan X, Xie X, Jin Z, Zhang X. The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers. Cancers (Basel) 2023; 15:cancers15082229. [PMID: 37190158 DOI: 10.3390/cancers15082229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The majority of glucose in tumor cells is converted to lactate despite the presence of sufficient oxygen and functional mitochondria, a phenomenon known as the "Warburg effect" or "aerobic glycolysis". Aerobic glycolysis supplies large amounts of ATP, raw material for macromolecule synthesis, and also lactate, thereby contributing to cancer progression and immunosuppression. Increased aerobic glycolysis has been identified as a key hallmark of cancer. Circular RNAs (circRNAs) are a type of endogenous single-stranded RNAs characterized by covalently circular structures. Accumulating evidence suggests that circRNAs influence the glycolytic phenotype of various cancers. In gastrointestinal (GI) cancers, circRNAs are related to glucose metabolism by regulating specific glycolysis-associated enzymes and transporters as well as some pivotal signaling pathways. Here, we provide a comprehensive review of glucose-metabolism-associated circRNAs in GI cancers. Furthermore, we also discuss the potential clinical prospects of glycolysis-associated circRNAs as diagnostic and prognostic biomarkers and therapeutic targets in GI cancers.
Collapse
Affiliation(s)
- Xiaonuan Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Basic Medicine School, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Liu Z, Yang F, Xiao Z, Liu Y. Review of novel functions and implications of circular RNAs in hepatocellular carcinoma. Front Oncol 2023; 13:1093063. [PMID: 36890830 PMCID: PMC9986438 DOI: 10.3389/fonc.2023.1093063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent malignancies, with high incidence and mortality. As the majority of HCC patients are diagnosed at an advanced stage and die of recurrence and metastasis, its pathology and new biomarkers are needed. Circular RNAs (circRNAs) are a large subclass of long non-coding RNAs (lncRNAs) with covalently closed loop structures and abundant, conserved, stable, tissue-specific expression in mammalian cells. CircRNAs exert multiple functions in HCC initiation, growth and progression, serving as promising biomarkers for diagnosis, prognosis and therapeutic targets for this disease. This review briefly describes the biogenesis and biological functions of circRNAs and elucidates the roles of circRNAs in the development and progression of HCC, especially regarding epithelial-mesenchymal transition (EMT), drug resistance and interactions with epigenetic modifications. In addition, this review highlights the implications of circRNAs as potential biomarkers and therapeutic targets for HCC. We hope to provide novel insight into the roles of circRNAs in HCC.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Combination of Traditional Chinese Medicine and Western Medicine, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Fangming Yang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhun Xiao
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuexuan Liu
- Department of Combination of Traditional Chinese Medicine and Western Medicine, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
11
|
Xu Y, Hao X, Ren Y, Xu Q, Liu X, Song S, Wang Y. Research progress of abnormal lactate metabolism and lactate modification in immunotherapy of hepatocellular carcinoma. Front Oncol 2023; 12:1063423. [PMID: 36686771 PMCID: PMC9853001 DOI: 10.3389/fonc.2022.1063423] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Tumors meet their energy, biosynthesis, and redox demands through metabolic reprogramming. This metabolic abnormality results in elevated levels of metabolites, particularly lactate, in the tumor microenvironment. Immune cell reprogramming and cellular plasticity mediated by lactate and lactylation increase immunosuppression in the tumor microenvironment and are emerging as key factors in regulating tumor development, metastasis, and the effectiveness of immunotherapies such as immune checkpoint inhibitors. Reprogramming of glucose metabolism and the "Warburg effect" in hepatocellular carcinoma (HCC) lead to the massive production and accumulation of lactate, so lactate modification in tumor tissue is likely to be abnormal as well. This article reviews the immune regulation of abnormal lactate metabolism and lactate modification in hepatocellular carcinoma and the therapeutic strategy of targeting lactate-immunotherapy, which will help to better guide the medication and treatment of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yiwei Xu
- Marine College, Shandong University, Weihai, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai, China,*Correspondence: Shuliang Song, ; Yunshan Wang,
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Shuliang Song, ; Yunshan Wang,
| |
Collapse
|
12
|
Habashy DA, Hamad MHM, Ragheb M, Khalil ZA, El Sobky SA, Hosny KA, Esmat G, El-Ekiaby N, Fawzy IO, Abdelaziz AI. Regulation of IGF2BP1 by miR-186 and its impact on downstream lncRNAs H19, FOXD2-AS1, and SNHG3 in HCC. Life Sci 2022; 310:121075. [DOI: 10.1016/j.lfs.2022.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
13
|
Niu ZS, Wang WH. Circular RNAs in hepatocellular carcinoma: Recent advances. World J Gastrointest Oncol 2022; 14:1067-1085. [PMID: 35949213 PMCID: PMC9244981 DOI: 10.4251/wjgo.v14.i6.1067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) have covalently closed loop structures at both ends, exhibiting characteristics dissimilar to those of linear RNAs. Emerging evidence suggests that aberrantly expressed circRNAs play crucial roles in hepatocellular carcinoma (HCC) by affecting the proliferation, apoptosis and invasive capacity of HCC cells. Certain circRNAs may be used as biomarkers to diagnose and predict the prognosis of HCC. Therefore, circRNAs are expected to become novel biomarkers and therapeutic targets for HCC. Herein, we briefly review the characteristics and biological functions of circRNAs, focusing on their roles in HCC to provide new insights for the early diagnosis and targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
14
|
Wu ZH, Li C, Zhang YJ, Lin R. Bioinformatics Study Revealed Significance of Exosome Transcriptome in Hepatocellular Carcinoma Diagnosis. Front Cell Dev Biol 2022; 10:813701. [PMID: 35573701 PMCID: PMC9091439 DOI: 10.3389/fcell.2022.813701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the fifty most common cancers globally, having a high mortality rate being the second most common cause of cancer-related deaths. However, little attention has been paid to the involvement of exosomes and ceRNA in HCC. Method: The study aimed to explore exosome data from exoRBase database and a free online database to estimate possible binding miRNA from mRNA, lncRNA, and circRNA and discover useful exosome biomarkers for HCC therapy. Results: The results indicated that a total of 159 mRNAs, 60 lncRNAs, and 13 circRNAs were differentially expressed, with HIST2H3C exhibiting the highest log2FC change, CTD-2031P19 exhibiting the most relevant lncRNA, and CTD-2031P19 exhibiting the most relevant lncRNA. MARCH8, SH3PXD2A, has-circ-0014088, hsa-miR-186-5p, and hsa-miR-613 were identified as hub biomarkers used by Cytoscape. According to the KEGG pathway analysis results, the differentially expressed proteins were primarily enriched in the MAPK signaling network, central carbon metabolism in cancer, the glucagon signaling pathway, glutamatergic synapse, and spliceosome. Furthermore, immunohistochemical images from the Human Protein Atlas (HPA) online tool were used to directly evaluate the protein expression of SMARCA5, CDC42, and UBC between normal and cancer tissues, and the results showed that these three gene expressions were significantly higher in tumor tissues. Conclusion: This study discovered atypical signature exosomes for HCC prognostic prediction based on an online database. The signals could mimic exosome microenvironmental disorders providing potential biomarkers for exosome treatment.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Li
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College Huazhong, University of Science and Technology, Wuhan, China
| | - You-Jing Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Rong Lin,
| |
Collapse
|
15
|
Lin G, Li J, Chen K, Wang A, Guo C. Circ_0000854 regulates the progression of hepatocellular carcinoma through miR-1294 /IRGQ axis. Clin Immunol 2022; 238:109007. [PMID: 35417749 DOI: 10.1016/j.clim.2022.109007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer disease with the second highest mortality. Circular RNAs (circRNAs) have been shown to play key roles in many tumors, including HCC. However, the function of circ_0000854 in the progression of HCC has not been clarified. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of circ_0000854, microRNA-1294 (miR-1294) and immunity related GTPase Q (IRGQ) in HCC cells and tissues. Western blot was used for protein expression analysis. Cell processes were detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium Bromide (MTT) assay, thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) assay, transwell assay, flow cytometry, and wound healing assay. Mechanically, the interaction of miR-1294 with circ_0000854 or IRGQ was notarized by dual-luciferase reporter assay and RNA pull-down assay. The xenotransplantation model was established to study the role of circ_0000854 in vivo. RESULTS Circ_0000854 and IRGQ were highly expressed in HCC tissues and cells, while miR-1294 was downregulated. Silencing circ_0000854 suppressed HCC cell malignant behaviors, including proliferation, cell cycle progression, migration and invasion. Circ_0000854 exhibited sponge effect on miR-1294 and miR-1294 inhibition reversed function of circ_0000854 knockdown. In addition, miR-1294 targeted IRGQ and circ_0000854 sponged miR-1294 to upregulate IRGQ. Overexpression of IRGQ restored miR-1294-induced anti-tumor regulation in HCC cells. Animal experiments confirmed that silencing circ_0000854 inhibited tumor growth and metastasis of HCC via mediating miR-1294 and IRGQ levels in vivo. CONCLUSION Circ_0000854 accelerated HCC progression via the miR-1294/IRGQ axis, providing a novel regulatory mechanism for HCC pathogenesis.
Collapse
Affiliation(s)
- Guanbin Lin
- Tongji University School of Medicine, Shanghai 200092, China; Department of Gastroenterology, Beilun People's Hospital in Ningbo, Ningbo 315800, Zhejiang, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Aiping Wang
- Department of Health Management Center, Beilun People's Hospital in Ningbo, Ningbo 315800, Zhejiang, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
16
|
Gan Y, Fang W, Zeng Y, Wang P, Shan R, Zhang L. Identification of a Novel Survival-Related circRNA–miRNA–mRNA Regulatory Network Related to Immune Infiltration in Liver Hepatocellular Carcinoma. Front Genet 2022; 13:800537. [PMID: 35309118 PMCID: PMC8924452 DOI: 10.3389/fgene.2022.800537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
Increasing studies have reported that circular RNAs (circRNAs) play critical roles in tumorigenesis and cancer progression. However, the underlying regulatory mechanisms of circRNA-related competing endogenous RNA (ceRNA) in liver hepatocellular carcinoma (LIHC) are still unclear. In the present study, we discovered dysregulated circRNAs through Gene Expression Omnibus (GEO) analysis and validated the expression of the top seven circRNAs with upregulated expression by qRT–PCR and Sanger sequencing. Then, the Cancer-Specific CircRNA Database (CSCD) was used to predict the downstream miRNAs of seven circRNAs, and expression and survival analyses through The Cancer Genome Atlas (TCGA) were performed to identify the key miRNA in LIHC. Thereafter, the hsa_circ_0017264-hsa-miR-195–5p subnetwork was successfully constructed. Subsequently, we predicted downstream target genes of hsa-miR-195–5p with TargetScan, miRDB, and mirtarbase and overlapped them with differentially expressed mRNAs to obtain 21 target genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to predict the biological and functional roles of these target genes. Finally, with Pearson correlation and prognostic value analysis, a survival-related hsa_circ_0017264-hsa-miR-195-5p-CHEK1/CDC25A/FOXK1 axis was established. Gene set enrichment analysis (GSEA) was performed to determine the function of CHEK1/CDC25A/FOXK1 in the ceRNA network. Moreover, immune infiltration analysis revealed that the ceRNA network was markedly associated with the levels of multiple immune cell infiltrates, immune cell biomarkers and immune checkpoints. Overall, the hsa_circ_0017264-hsa-miR-195-5p-CHEK1/CDC25A/FOXK1 network might provide novel insights into the potential mechanisms underlying LIHC onset and progression.
Collapse
Affiliation(s)
- Yu Gan
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weidan Fang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peijun Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Human Genetic Resources Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Ling Zhang,
| |
Collapse
|
17
|
Yan C, Ying J, Lu W, Changzhi Y, Qihong Q, Jingzhu M, Dongjie S, Tingting Z. MiR-1294 suppresses ROS-dependent inflammatory response in atopic dermatitis via restraining STAT3/NF-κB pathway. Cell Immunol 2021; 371:104452. [PMID: 34784561 DOI: 10.1016/j.cellimm.2021.104452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder that affects children and adults. Despite the pathology of AD involves in immune dysfunction and epidermal barrier function destruction has been found, the mechanism of immune activation and barrier damage remain largely unknown. In the present study, The TNF-α/IFN-γ-stimulated HaCaTs, organotypic AD-like 3D skin equivalents and AD-like mouse model were constructed. The mRNA, histological morphology, protein levels, cytokines were detected by real-time quantitative polymerasechain reaction (RT-qPCR), hematoxylin and eosin (H & E) staining, Immunohistochemistry (IHC), immunoblotting, immunofluorescence (IF) staining, and enzyme linked immunosorbent assay (ELISA), respectively. Cell viability, cell cycle, and apoptosis were respectively calculated using a Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and flow cytometry. A dual-luciferase reporter gene system was used to investigate the relationship between miR-1294 and STAT3. Compared with the control group, the expression of miR-1294 decreased in TNF-α/IFN-γ-stimulated HaCaTs (P < 0.001), AD-like skin model, and AD-like mouse model (P < 0.001). Moreover, STAT3 was documented as a direct target of miR-1294. Inflammation (P < 0.05) and epidermal barrier function destruction (P < 0.05) in AD was suppressed by overexpression of miR-1294 but enhanced by STAT3 upregulation and its downstream NF-κB pathway. We also found miR-1294 upregulation inhibited inflammation and epidermal barrier function destruction via targeting STAT3 to suppress NF-κB pathway activation in AD.
Collapse
Affiliation(s)
- Chen Yan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jiang Ying
- Department of Dermatology, The first affiliated hospital of Soochow University, No.188, Shizi Street, Suzhou 215006, China
| | - Wang Lu
- Department of Dermatology, The first affiliated hospital of Soochow University, No.188, Shizi Street, Suzhou 215006, China
| | - Yang Changzhi
- Department of Dermatology, The first affiliated hospital of Soochow University, No.188, Shizi Street, Suzhou 215006, China
| | - Qian Qihong
- Department of Dermatology, The first affiliated hospital of Soochow University, No.188, Shizi Street, Suzhou 215006, China
| | - Mao Jingzhu
- Department of Dermatology, The first affiliated hospital of Soochow University, No.188, Shizi Street, Suzhou 215006, China
| | - Sun Dongjie
- Department of Dermatology, The first affiliated hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan 650032, China.
| | - Zhu Tingting
- Department of Dermatology, The first affiliated hospital of Soochow University, No.188, Shizi Street, Suzhou 215006, China.
| |
Collapse
|
18
|
Huang J, Yu S, Ding L, Ma L, Chen H, Zhou H, Zou Y, Yu M, Lin J, Cui Q. The Dual Role of Circular RNAs as miRNA Sponges in Breast Cancer and Colon Cancer. Biomedicines 2021; 9:biomedicines9111590. [PMID: 34829818 PMCID: PMC8615412 DOI: 10.3390/biomedicines9111590] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) and colon cancer (CRC) are the two most deadly cancers in the world. These cancers partly share the same genetic background and are partially regulated by the same genes. The outcomes of traditional chemoradiotherapy and surgery remain suboptimal, with high postoperative recurrence and a low survival rate. It is, therefore, urgent to innovate and improve the existing treatment measures. Many studies primarily reported that the microRNA (miRNA) sponge functions of circular RNA (circRNA) in BC and CRC have an indirect relationship between the circRNA–miRNA axis and malignant behaviors. With a covalent ring structure, circRNAs can regulate the expression of target genes in multiple ways, especially by acting as miRNA sponges. Therefore, this review mainly focuses on the roles of circRNAs as miRNA sponges in BC and CRC based on studies over the last three years, thus providing a theoretical reference for finding new therapeutic targets in the future.
Collapse
Affiliation(s)
- Jiashu Huang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Shenghao Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Lingyuan Ma
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongjian Chen
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hui Zhou
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Yayan Zou
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (J.H.); (S.Y.); (L.D.); (L.M.); (H.C.); (H.Z.); (Y.Z.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence: ; Tel.: +86-871-65031412
| |
Collapse
|
19
|
Chu J, Geng G, Ai X, Jia W, Wang J, Xu B, Kong X, Kong L. LINC01291 promotes hepatocellular carcinoma development by targeting miR-186-5p/OXSR1 axis. J Gene Med 2021; 24:e3394. [PMID: 34665488 DOI: 10.1002/jgm.3394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Recent studies have demonstrated that lncRNAs play an important role in tumorigenesis. LINC01291 has been proven to be involved in the proliferation and migration of different cancers, but the function of LINC01291 in HCC is still unknown. METHODS First, the expression of LINC01291 in 50 paired HCC tissues, adjacent normal tissues and HCC cell lines was measured by qRT-PCR. Then, the function of LINC01291 in HCC cell proliferation, migration and invasion was measured by colony formation, Cell Counting Kit-8 (CCK8) assays, wound healing assays and Transwell assays. In addition, E-cadherin, N-cadherin, vimentin and OXSR1 protein expression levels were assessed via western blotting. Luciferase reporter assays were used to prove the relationship between LINC01291 and miR-186-5p as well as miR-186-5p and OXSR1 mRNA. Rescue assays and in vivo experiments further confirmed the LINC01291/miR-186-5p/OXSR1 axis in the progression of HCC. RESULTS LINC01291 was upregulated in both HCC tissues and cell lines. Knockdown of LINC01291 inhibited the proliferation, migration, invasion and EMT progression of HCC cells. In addition, LINC01291 could overexpress OXSR1 by sponging miR-186-5p, and OXSR1 overexpression or miR-186-5p inhibition could rescue the effect of LINC01291 knockdown in YY-8103 cell lines. In addition, lentiviral sh-LINC01291 could effectively inhibit the growth of subcutaneous YY-8103 xenograft tumors, while the anticancer effect could be reversed by cotransfection with in-miR-186-5p or ov-OXSR1. CONCLUSIONS LINC01291 can promote the proliferation, migration, invasion and EMT of HCC cells via the miR-186-5p/OXSR1 axis, and sh-LINC01291 can inhibit tumor growth in a xenograft mouse model.
Collapse
Affiliation(s)
- Jian Chu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Guangyong Geng
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Xiaoming Ai
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbo Jia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Jinyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Bin Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xiangxu Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| |
Collapse
|
20
|
Ji X, Sun W, Lv C, Huang J, Zhang H. Circular RNAs Regulate Glucose Metabolism in Cancer Cells. Onco Targets Ther 2021; 14:4005-4021. [PMID: 34239306 PMCID: PMC8259938 DOI: 10.2147/ott.s316597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) were originally thought to result from RNA splicing errors. However, it has been shown that circRNAs can regulate cancer onset and progression in various ways. They can regulate cancer cell proliferation, differentiation, invasion, and metastasis. Moreover, they modulate glucose metabolism in cancer cells through different mechanisms such as directly regulating glycolytic enzymes and glucose transporter (GLUT) or indirectly regulating signal transduction pathways. In this review, we elucidate on the role of circRNAs in regulating glucose metabolism in cancer cells, which partly explains the pathogenesis of malignant tumors, and provides new therapeutic targets or new diagnostic and prognostic markers for human cancers.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Chengzhou Lv
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Jiapeng Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| |
Collapse
|