1
|
Ngcobo NN, Sibiya NH. The role of high mobility group box-1 on the development of diabetes complications: A plausible pharmacological target. Diab Vasc Dis Res 2024; 21:14791641241271949. [PMID: 39271468 PMCID: PMC11406611 DOI: 10.1177/14791641241271949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diabetes mellitus has emerged as a pressing global concern, with a notable increase in recent years. Despite advancements in treatment, existing medications struggle to halt the progression of diabetes and its associated complications. Increasing evidence underscores inflammation as a significant driver in the onset of diabetes mellitus. Therefore, perspectives on new therapies must consider shifting focus from metabolic stress to inflammation. High mobility group box (HMGB-1), a nuclear protein regulating gene expression, gained attention as an endogenous danger signal capable of sparking inflammatory responses upon release into the extracellular environment in the late 1990s. PURPOSE Given the parallels between inflammatory responses and type 2 diabetes (T2D) development, this review paper explores HMGB-1's potential involvement in onset and progression of diabetes complications. Specifically, we will review and update the understanding of HMGB-1 and its inflammatory pathways in insulin resistance, diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy. CONCLUSIONS HMGB-1 and its receptors i.e. receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLRs) present promising targets for antidiabetic interventions. Ongoing and future projects in this realm hold promise for innovative approaches targeting HMGB-1-mediated inflammation to ameliorate diabetes and its complications.
Collapse
Affiliation(s)
- Nokwanda N Ngcobo
- Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo H Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
2
|
Liu F, Zhao L, Wu T, Yu W, Li J, Wang W, Huang C, Diao Z, Xu Y. Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Front Pharmacol 2024; 15:1364616. [PMID: 38659578 PMCID: PMC11039818 DOI: 10.3389/fphar.2024.1364616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic β-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.
Collapse
Affiliation(s)
- Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jixin Li
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenru Wang
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Zhihao Diao
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Hu X, Wang J, Jiang L, Liu X, Ge Q, Wang Q, Qi X, Wu Y. Rutaecarpine protects podocytes in diabetic kidney disease by targeting VEGFR2/NLRP3-mediated pyroptosis. Int Immunopharmacol 2024; 130:111790. [PMID: 38447417 DOI: 10.1016/j.intimp.2024.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease, which has limited treatment options. Rutaecarpine has anti-inflammatory effects, however, it has not been studied in DKD. Pyroptosis is a newly discovered mode of podocyte death related to inflammation. This study aimed to explore whether Rutaecarpine can ameliorate DKD and to clarify its possible mechanism. METHODS In this study, we investigated the effects of Rutaecarpine on DKD using diabetic mice model (db/db mice) and high glucose (HG)-stimulated mouse podocyte clone 5 (MPC5) cells. Quantitative reverse transcription polymerase chain reaction and western blot were performed to detect the related gene and protein levels. We applied pharmacological prediction, co-immunoprecipitation assay, cellular thermal shift assay, surface plasmon resonance to find the target and pathway of the substances. Gene knockdown experiments confirmed this view in HG-stimulated MPC5 cells. RESULTS Rutaecarpine significantly reduced proteinuria, histopathological damage, and pyroptosis of podocytes in a dose-dependent manner in db/db mice. Rutaecarpine also protected high glucose induced MPC5 injury in vitro experiments. Mechanistically, Rutaecarpine can inhibit pyroptosis in HG-stimulated MPC5 by reducing the expression of VEGFR2. VEGFR2 is a target of Rutaecarpine in MPC5 cells and directly binds to the pyroptosis initiation signal, NLRP3. VEGFR2-knockdown disrupted the beneficial effects of Rutaecarpine in HG-stimulated MPC5 cells. CONCLUSION Rutaecarpine inhibits renal inflammation and pyroptosis through VEGFR2/NLRP3 pathway, thereby alleviating glomerular podocyte injury. These findings highlight the potential of Rutaecarpine as a novel drug for DKD treatment.
Collapse
Affiliation(s)
- Xueru Hu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jingjing Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qingmiao Ge
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qianhui Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xiangming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
4
|
Hadpech S, Thongboonkerd V. Epithelial-mesenchymal plasticity in kidney fibrosis. Genesis 2024; 62:e23529. [PMID: 37345818 DOI: 10.1002/dvg.23529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-β (TGF-β), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1β, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-β1/Smad and Wnt/β-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-β1/Smad and Wnt/β-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
6
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
7
|
Wu H, Li A, Zheng Q, Gu J, Zhou W. LncRNA LZTS1-AS1 induces proliferation, metastasis and inhibits autophagy of pancreatic cancer cells through the miR-532 /TWIST1 signaling pathway. Cancer Cell Int 2023; 23:130. [PMID: 37403096 DOI: 10.1186/s12935-023-02979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
The 5 year survival rate after diagnosis of pancreatic cancer (PANC) is less than 5%, and it is one of the malignant tumors with the worst prognosis. Identification of novel oncogenes involved in the occurrence of pancreatic cancer is of great significance to improve the overall survival of PANC patients. Our previous study found that miR-532 is a key factor in PANC occurrence and development, and this study further explored its mechanism. We found that the expression of lncRNA LZTS1-AS1 was elevated in PANC tumor tissues and cells, and correlated with poor prognosis. In vitro experiments confirmed that LZTS1-AS1 could promote proliferation, oncogenicity, migration, and invasion of PANC cells, and inhibit apoptosis and autophagy. However, miR-532 had the completely opposite effect, and inhibition of miR-532 counteracted the effect of LZTS1-AS1 on PANC cells. Dual luciferase gene reporter assay and RNA immunoprecipitation assay confirmed the targeting relationship between LZTS1-AS1 and miR-532, and their expression levels were negatively correlated in PANC tissues. Overexpression of TWIST1 could counteract the effect of miR-532 in PANC cells, and the expression levels of both were negatively changed in PANC tissues and cells. Our results suggest that lncRNA LZTS1-AS1 acts as an oncogene to promote the metastasis of PANC and inhibit autophagy, and its mechanism may be to regulate TWIST1 through sponge miR-532. This study provides novel biomarkers and therapeutic targets for PANC.
Collapse
Affiliation(s)
- Hui Wu
- Research Center, Shanghai Healink Medical Information Consulting Co., LTD, Shanghai, 201102, China.
| | - Anshu Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qichang Zheng
- Liver Transplantation Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyang Gu
- Liver Transplantation Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhou
- Department of Pancreatic Surgery, Wuhan No.1 Hospital, No. 215 Zhongshan Road, Qiaokou District, Wuhan, 430022, Hubei, China.
| |
Collapse
|
8
|
Ruby M, Gifford CC, Pandey R, Raj VS, Sabbisetti VS, Ajay AK. Autophagy as a Therapeutic Target for Chronic Kidney Disease and the Roles of TGF-β1 in Autophagy and Kidney Fibrosis. Cells 2023; 12:cells12030412. [PMID: 36766754 PMCID: PMC9913737 DOI: 10.3390/cells12030412] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Autophagy is a lysosomal protein degradation system that eliminates cytoplasmic components such as protein aggregates, damaged organelles, and even invading pathogens. Autophagy is an evolutionarily conserved homoeostatic strategy for cell survival in stressful conditions and has been linked to a variety of biological processes and disorders. It is vital for the homeostasis and survival of renal cells such as podocytes and tubular epithelial cells, as well as immune cells in the healthy kidney. Autophagy activation protects renal cells under stressed conditions, whereas autophagy deficiency increases the vulnerability of the kidney to injury, resulting in several aberrant processes that ultimately lead to renal failure. Renal fibrosis is a condition that, if chronic, will progress to end-stage kidney disease, which at this point is incurable. Chronic Kidney Disease (CKD) is linked to significant alterations in cell signaling such as the activation of the pleiotropic cytokine transforming growth factor-β1 (TGF-β1). While the expression of TGF-β1 can promote fibrogenesis, it can also activate autophagy, which suppresses renal tubulointerstitial fibrosis. Autophagy has a complex variety of impacts depending on the context, cell types, and pathological circumstances, and can be profibrotic or antifibrotic. Induction of autophagy in tubular cells, particularly in the proximal tubular epithelial cells (PTECs) protects cells against stresses such as proteinuria-induced apoptosis and ischemia-induced acute kidney injury (AKI), whereas the loss of autophagy in renal cells scores a significant increase in sensitivity to several renal diseases. In this review, we discuss new findings that emphasize the various functions of TGF-β1 in producing not just renal fibrosis but also the beneficial TGF-β1 signaling mechanisms in autophagy.
Collapse
Affiliation(s)
- Miss Ruby
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India
| | - Cody C. Gifford
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - RamendraPati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India
- Correspondence: (R.P.); (A.K.A.); Tel.: +91-130-2203757 (R.P.); +1-(617)-525-7414 (A.K.A.); Fax: +1-(617)-525-7386 (A.K.A.)
| | - V. Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India
| | - Venkata S. Sabbisetti
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K. Ajay
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (R.P.); (A.K.A.); Tel.: +91-130-2203757 (R.P.); +1-(617)-525-7414 (A.K.A.); Fax: +1-(617)-525-7386 (A.K.A.)
| |
Collapse
|
9
|
Liu P, Zhu W, Wang Y, Ma G, Zhao H, Li P. Chinese herbal medicine and its active compounds in attenuating renal injury via regulating autophagy in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1142805. [PMID: 36942026 PMCID: PMC10023817 DOI: 10.3389/fendo.2023.1142805] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease worldwide, and there is a lack of effective treatment strategies. Autophagy is a highly conserved lysosomal degradation process that maintains homeostasis and energy balance by removing protein aggregates and damaged organelles. Increasing evidence suggests that dysregulated autophagy may contribute to glomerular and tubulointerstitial lesions in the kidney under diabetic conditions. Emerging studies have shown that Chinese herbal medicine and its active compounds may ameliorate diabetic kidney injury by regulating autophagy. In this review, we summarize that dysregulation or insufficiency of autophagy in renal cells, including podocytes, glomerular mesangial cells, and proximal tubular epithelial cells, is a key mechanism for the development of DKD, and focus on the protective effects of Chinese herbal medicine and its active compounds. Moreover, we systematically reviewed the mechanism of autophagy in DKD regulated by Chinese herb compound preparations, single herb and active compounds, so as to provide new drug candidates for clinical treatment of DKD. Finally, we also reviewed the candidate targets of Chinese herbal medicine regulating autophagy for DKD. Therefore, further research on Chinese herbal medicine with autophagy regulation and their targets is of great significance for the realization of new targeted therapies for DKD.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Guijie Ma
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Hailing Zhao, ; Ping Li,
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Hailing Zhao, ; Ping Li,
| |
Collapse
|
10
|
Li G, Huang D, Zou Y, Kidd J, Gehr TWB, Li N, Ritter JK, Li PL. Impaired autophagic flux and dedifferentiation in podocytes lacking Asah1 gene: Role of lysosomal TRPML1 channel. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119386. [PMID: 36302466 PMCID: PMC9869931 DOI: 10.1016/j.bbamcr.2022.119386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Podocytopathy and associated nephrotic syndrome have been reported in a mouse strain (Asah1fl/fl/Podocre) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy in these mice remains unclear. The present study tested whether Ac deficiency impairs autophagic flux in podocytes through blockade of transient receptor potential mucolipin 1 (TRPML1) channel as a potential pathogenic mechanism of podocytopathy in Asah1fl/fl/Podocre mice. We first demonstrated that impairment of autophagic flux occurred in podocytes lacking Asah1 gene, which was evidenced by autophagosome accumulation and reduced lysosome-autophagosome interaction. TRPML1 channel agonists recovered lysosome-autophagosome interaction and attenuated autophagosome accumulation in podocytes from Asah1fl/fl/Podocre mice, while TRPML1 channel inhibitors impaired autophagic flux in WT/WT podocytes and worsened autophagic deficiency in podocytes lacking Asah1 gene. The effects of TRPML1 channel agonist were blocked by dynein inhibitors, indicating a critical role of dynein activity in the control of lysosome movement due to TRPML1 channel-mediated Ca2+ release. It was also found that there is an enhanced phenotypic transition to dedifferentiation status in podocytes lacking Asah1 gene in vitro and in vivo. Such podocyte phenotypic transition was inhibited by TRPML1 channel agonists but enhanced by TRPML1 channel inhibitors. Moreover, we found that TRPML1 gene silencing induced autophagosome accumulation and dedifferentiation in podocytes. Based on these results, we conclude that Ac activity is essential for autophagic flux and maintenance of differentiated status of podocytes. Dysfunction or deficiency of Ac may impair autophagic flux and induce podocyte dedifferentiation, which may be an important pathogenic mechanism of podocytopathy and associated nephrotic syndrome.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Ala M. Sestrin2 Signaling Pathway Regulates Podocyte Biology and Protects against Diabetic Nephropathy. J Diabetes Res 2023; 2023:8776878. [PMID: 36818747 PMCID: PMC9937769 DOI: 10.1155/2023/8776878] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Sestrin2 regulates cell homeostasis and is an upstream signaling molecule for several signaling pathways. Sestrin2 leads to AMP-activated protein kinase- (AMPK-) and GTPase-activating protein activity toward Rags (GATOR) 1-mediated inhibition of mammalian target of rapamycin complex 1 (mTORC1), thereby enhancing autophagy. Sestrin2 also improves mitochondrial biogenesis via AMPK/Sirt1/peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathway. Blockade of ribosomal protein synthesis and augmentation of autophagy by Sestrin2 can prevent misfolded protein accumulation and attenuate endoplasmic reticulum (ER) stress. In addition, Sestrin2 enhances P62-mediated autophagic degradation of Keap1 to release nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 release by Sestrin2 vigorously potentiates antioxidant defense in diabetic nephropathy. Impaired autophagy and mitochondrial biogenesis, severe oxidative stress, and ER stress are all deeply involved in the development and progression of diabetic nephropathy. It has been shown that Sestrin2 expression is lower in the kidney of animals and patients with diabetic nephropathy. Sestrin2 knockdown aggravated diabetic nephropathy in animal models. In contrast, upregulation of Sestrin2 enhanced autophagy, mitophagy, and mitochondrial biogenesis and suppressed oxidative stress, ER stress, and apoptosis in diabetic nephropathy. Consistently, overexpression of Sestrin2 ameliorated podocyte injury, mesangial proliferation, proteinuria, and renal fibrosis in animal models of diabetic nephropathy. By suppressing transforming growth factor beta (TGF-β)/Smad and Yes-associated protein (YAP)/transcription enhancer factor 1 (TEF1) signaling pathways in experimental models, Sestrin2 hindered epithelial-mesenchymal transition and extracellular matrix accumulation in diabetic kidneys. Moreover, modulation of the downstream molecules of Sestrin2, for instance, augmentation of AMPK or Nrf2 signaling and inhibition of mTORC1, has been protective in diabetic nephropathy. Regarding the beneficial effects of Sestrin2 on diabetic nephropathy and its interaction with several signaling molecules, it is worth targeting Sestrin2 in diabetic nephropathy.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
12
|
Yang K, Cao F, Wang W, Tian Z, Yang L. The relationship between HMGB1 and autophagy in the pathogenesis of diabetes and its complications. Front Endocrinol (Lausanne) 2023; 14:1141516. [PMID: 37065747 PMCID: PMC10090453 DOI: 10.3389/fendo.2023.1141516] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels and has become the third leading threat to human health after cancer and cardiovascular disease. Recent studies have shown that autophagy is closely associated with diabetes. Under normal physiological conditions, autophagy promotes cellular homeostasis, reduces damage to healthy tissues and has bidirectional effects on regulating diabetes. However, under pathological conditions, unregulated autophagy activation leads to cell death and may contribute to the progression of diabetes. Therefore, restoring normal autophagy may be a key strategy to treat diabetes. High-mobility group box 1 protein (HMGB1) is a chromatin protein that is mainly present in the nucleus and can be actively secreted or passively released from necrotic, apoptotic, and inflammatory cells. HMGB1 can induce autophagy by activating various pathways. Studies have shown that HMGB1 plays an important role in insulin resistance and diabetes. In this review, we will introduce the biological and structural characteristics of HMGB1 and summarize the existing knowledge on the relationship between HMGB1, autophagy, diabetes, and diabetic complications. We will also summarize potential therapeutic strategies that may be useful for the prevention and treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Kun Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Cao
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture, Haidian District Shuangyushu Community Health Service Center, Beijing, China
| | - Weili Wang
- Institute of Basic Research in Clinical Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyu Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| | - Lu Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Yang, ; Zhenyu Tian,
| |
Collapse
|
13
|
Tao P, Ji J, Wang Q, Cui M, Cao M, Xu Y. The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Front Immunol 2022; 13:1080456. [PMID: 36601125 PMCID: PMC9806165 DOI: 10.3389/fimmu.2022.1080456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD), an emerging global health issue, is one of the most severe microvascular complications derived from diabetes and a primary pathology contributing to end-stage renal disease. The currently available treatment provides only symptomatic relief and has failed to delay the progression of DKD into chronic kidney disease. Recently, multiple studies have proposed a strong link between intestinal dysbiosis and the occurrence of DKD. The gut microbiota-derived short-chain fatty acids (SCFAs) capable of regulating inflammation, oxidative stress, fibrosis, and energy metabolism have been considered versatile players in the prevention and treatment of DKD. However, the underlying molecular mechanism of the intervention of the gut microbiota-kidney axis in the development of DKD still remains to be explored. This review provides insight into the contributory role of gut microbiota-derived SCFAs in DKD.
Collapse
Affiliation(s)
- Pengyu Tao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ji
- Department of Endocrinology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Taian, Taian, China,*Correspondence: Mingfeng Cao, ; Yuzhen Xu,
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China,*Correspondence: Mingfeng Cao, ; Yuzhen Xu,
| |
Collapse
|
14
|
Liu T, Jin Q, Ren F, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Potential therapeutic effects of natural compounds targeting autophagy to alleviate podocyte injury in glomerular diseases. Biomed Pharmacother 2022; 155:113670. [PMID: 36116248 DOI: 10.1016/j.biopha.2022.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Podocyte injury is a common cause of proteinuric kidney diseases. Uncontrollable progressive podocyte loss accelerates glomerulosclerosis and increases the risk of end-stage renal disease. To date, owing to the complex pathological mechanism, effective therapies for podocyte injury have been limited. Accumulating evidence supports the indispensable role of autophagy in the maintenance of podocyte homeostasis. A variety of natural compounds and their derivatives have been found to regulate autophagy through multiple targets, including promotes nuclear transfer of transcription factor EB and lysosomal repair. Here, we reviewed the recent studies on the use of natural compounds and their derivatives as autophagy regulators and discussed their potential applications in ameliorating podocyte injury. Several known natural compounds with autophagy-regulatory properties, such as quercetin, silibinin, kaempferol, and artemisinin, and their medical uses were also discussed. This review will help in improving the understanding of the podocyte protective mechanism of natural compounds and promote their development for clinical use.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Zhang J, Li SL, Lin W, Pan RH, Dai Y, Xia YF. Tripterygium glycoside tablet attenuates renal function impairment in diabetic nephropathy mice by regulating triglyceride metabolism. J Pharm Biomed Anal 2022; 221:115028. [PMID: 36108463 DOI: 10.1016/j.jpba.2022.115028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
Tripterygium glycoside tablet (TGT) has been used clinically to alleviate diabetic nephropathy (DN) for decades. However, the mechanism of its anti-DN has not been fully clarified. The aim of this study was to elucidate molecular mechanism of TGT in repairing renal function injury. The results of biochemical parameters and renal histopathology implied that TGT intervention could attenuate creatinine, albumin excretion rate and histological injury of kidney in DN mouse model. Moreover, UHPLC-QTOF-MS/MS-based untargeted metabolomic analysis indicated that 11 metabolites in kidney of mice with DN were restored after TGT treatment, and the most prominent metabolic alteration was triglyceride (TG) metabolism. Mechanistically, TGT effectively improved the function of impaired kidney by promoting TG catabolism via modulation of adipose triglyceride lipase in DN mice. Our findings identified the link between circulating metabolites and DN, suggesting that it might be a possibility to intervene in DN by targeting metabolism.
Collapse
Affiliation(s)
- Jing Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Si-Lan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Wen Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Rong-Hua Pan
- The Chinese Traditional Medical Hospital of Liyang City, Liyang 213300, China
| | - Yue Dai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Yu-Feng Xia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
16
|
Wang X, Liu XQ, Jiang L, Huang YB, Zeng HX, Zhu QJ, Qi XM, Wu YG. Paeoniflorin directly binds to TNFR1 to regulate podocyte necroptosis in diabetic kidney disease. Front Pharmacol 2022; 13:966645. [PMID: 36147345 PMCID: PMC9486100 DOI: 10.3389/fphar.2022.966645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Necroptosis was elevated in both tubulointerstitial and glomerular renal tissue in patients with diabetic kidney disease (DKD), and was most pronounced on glomerulus in the stage with macroalbuminuria. This study further explored whether paeoniflorin (PF) could affect podocyte necroptosis to protect kidney injure in vivo and in vitro. Our study firstly verified that there are obvious necroptosis-related changes in the glomeruli of DKD through bioinformatics analysis combined with clinicopathological data. STZ-induced mouse diabetes model and high-glucose induced podocyte injury model were used to evaluate the renoprotection, podocyte injury protection and necroptosis regulation of PF in DKD. Subsequently, the target protein-TNFR1 that PF acted on podocytes was found by computer target prediction, and then molecular docking and Surface plasmon resonance (SPR) experiments were performed to verify that PF had the ability to directly bind to TNFR1 protein. Finally, knockdown of TNFR1 on podocytes in vitro verified that PF mainly regulated the programmed necrosis of podocytes induced by high glucose through TNFR1. In conclusion, PF can directly bind and promote the degradation of TNFR1 in podocytes and then regulate the RIPK1/RIPK3 signaling pathway to affect necroptosis, thus preventing podocyte injury in DKD. Thus, TNFR1 may be used as a new potential target to treat DKD.
Collapse
Affiliation(s)
- Xian Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue-bo Huang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Han-xu Zeng
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi-jin Zhu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang-ming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Xiang-ming Qi, ; Yong-gui Wu,
| | - Yong-gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Center for Scientific Research of Anhui Medical University, Hefei, China
- *Correspondence: Xiang-ming Qi, ; Yong-gui Wu,
| |
Collapse
|
17
|
Lin L, Tian E, Ren J, Wu Z, Deng J, Yang J. Traditional Chinese Medicine in Treating Primary Podocytosis: From Fundamental Science to Clinical Research. Front Pharmacol 2022; 13:932739. [PMID: 36003509 PMCID: PMC9393213 DOI: 10.3389/fphar.2022.932739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Podocytes form a key component of the glomerular filtration barrier. Damage to podocytes is referred to as “podocyte disease.” There are many causes of podocyte injury, including primary injury, secondary injury, and gene mutations. Primary podocytosis mostly manifests as nephrotic syndrome. At present, first-line treatment is based on glucocorticoid administration combined with immunosuppressive therapy, but some patients still progress to end-stage renal disease. In Asia, especially in China, traditional Chinese medicine (TCM) still plays an important role in the treatment of kidney diseases. This study summarizes the potential mechanism of TCM and its active components in protecting podocytes, such as repairing podocyte injury, inhibiting podocyte proliferation, reducing podocyte apoptosis and excretion, maintaining podocyte skeleton structure, and upregulating podocyte-related protein expression. At the same time, the clinical efficacy of TCM in the treatment of primary podocytosis (including idiopathic membranous nephropathy, minimal change disease, and focal segmental glomerulosclerosis) is summarized to support the development of new treatment strategies for primary podocytosis.
Collapse
Affiliation(s)
- Lirong Lin
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - En Tian
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - Jiangwen Ren
- Department of Nephrology, Rheumatism and Immunology, Jiulongpo District People’s Hospital of Chongqing, Chongqing, China
| | - Zhifeng Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | | | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
18
|
Chen Y, Zou H, Lu H, Xiang H, Chen S. Research progress of endothelial-mesenchymal transition in diabetic kidney disease. J Cell Mol Med 2022; 26:3313-3322. [PMID: 35560773 PMCID: PMC9189345 DOI: 10.1111/jcmm.17356] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Renal fibrosis is an important pathological feature of diabetic kidney disease (DKD), manifested as tubular interstitial fibrosis, tubular atrophy, glomerulosclerosis and damage to the normal structure of the kidney. Renal fibrosis can eventually develop into renal failure. A better understanding of renal fibrosis in DKD is needed due to clinical limitations of current anti‐fibrotic drugs in terms of effectiveness, cost‐effectiveness and side effects. Fibrosis is characterized by local excessive deposition of extracellular matrix, which is derived from activated myofibroblasts to increase its production or specific tissue inhibitors of metalloproteinases to reduce its degradation. In recent years, endothelial‐mesenchymal transition (EndMT) has gradually integrated into the pathogenesis of fibrosis. In animal models of diabetic kidney disease, it has been found that EndMT is involved in the formation of renal fibrosis and multiple signalling pathways such as TGF‐β signalling pathway, Wnt signalling pathway and non‐coding RNA network participate in the regulation of EndMT during fibrosis. Here, we mainly review EndMT regulation and targeted therapy of renal fibrosis in DKD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hang Zou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
19
|
Tong X, Qiao Y, Yang Y, Liu H, Cao Z, Yang B, Wei L, Yang H. Applications and Mechanisms of Tripterygium Wilfordii Hook. F. and its Preparations in Kidney Diseases. Front Pharmacol 2022; 13:846746. [PMID: 35387327 PMCID: PMC8977547 DOI: 10.3389/fphar.2022.846746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Tripterygium wilfordii Hook. f. (TwHF) is a Chinese botanical drug containing a large number of metabolites. The discovered and recognized anti-inflammatory and immune-regulating effects have made it attract more and more attentions in trials and clinical researches. The extraction and processing of TwHF for pharmaceuticals is a manifestation of the role of traditional Chinese medicine. However, TwHF is toxic. Optimization of TwHF preparations has become a requirement for the development of TwHF pharmaceuticals. Our article introduces the main preparations of TwHF on the Chinese market and their characteristics. In particular, we summarize the clinical applications and influential mechanisms of TwHF and its preparations in kidney diseases. Considering that nephropathy is closely related to immune inflammation and TwHF is a botanical drug with a high number of metabolites, the application of TwHF in kidney diseases may be much more complicated. By revealing the role and mechanisms of TwHF in kidney diseases, this study aims to provide more insights to basic and clinical studies about nephropathy.
Collapse
Affiliation(s)
- Xue Tong
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanheng Qiao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanjian Yang
- Tianjin Jinnan Traditional Chinese Medicine Hospital, Tianjin, China
| | - Haizhao Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiyong Cao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Wei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Jiang T, Bao Y, Su H, Zheng R, Cao L. Mechanisms of Chinese Herbal Medicines for Diabetic Nephropathy Fibrosis Treatment. INTEGRATIVE MEDICINE IN NEPHROLOGY AND ANDROLOGY 2022; 9. [PMCID: PMC9549772 DOI: 10.4103/2773-0387.353727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus that is one of the main causes of end-stage renal disease, causing considerable health problems as well as significant financial burden worldwide. The pathological features of DN include loss of normal nephrons, massive fibroblast and myofibroblast hyperplasia, accumulation of extracellular matrix proteins, thickening of the basement membrane, and tubulointerstitial fibrosis. Renal fibrosis is a final and critical pathological change in DN. Although progress has been made in understanding the pathogenesis of DN fibrosis, current conventional treatment strategies may not be completely effective in preventing the disease’s progression. Traditionally, Chinese herbal medicines (CHMs) composed of natural ingredients have been used for symptomatic relief of DN. Increasing numbers of studies have confirmed that CHMs can exert a renoprotective effect in DN, and antifibrosis has been identified as a key mechanism. In this review, we summarize the antifibrotic efficacy of CHM preparations, single herbal medicines, and their bioactive compounds based on their effects on diminishing the inflammatory response and oxidative stress, regulating transforming growth factor, preventing epithelial-mesenchymal transition, and modulating microRNAs. We intend to provide patients of DN with therapeutic interventions that are complementary to existing options.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Yuhang Bao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Hong Su
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China
| | - Rendong Zheng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| | - Lin Cao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, China,Address for correspondence: Prof. Rendong Zheng, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China. E-mail:
Prof. Lin Cao, Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Shizi Street, Hongshan Road, Nanjing 210028, Jiangsu Province, China E-mail:
| |
Collapse
|
21
|
Li Q, Liu S, Yang G, Li M, Qiao P, Xue Q. Naringenin inhibits autophagy and epithelial-mesenchymal transition of human lens epithelial cells by regulating the Smad2/3 pathway. Drug Dev Res 2021; 83:389-396. [PMID: 34402084 DOI: 10.1002/ddr.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Cataract is the number one cause of blindness in the world. Fibrosis of the lens is the main cause of cataract. Pathological epithelial-mesenchymal transition (EMT) plays an important role in the development of fibrotic cataract. Inhibition of EMT may be an effective treatment for fibrosis of lens epithelial cells. Naringin (NRG) is one of the major citrus flavonoids, which has many pharmacological properties, including anti-inflammatory and cardioprotective. However, the effect of NRG on cataract induced by abnormal fibrosis of LECs is not clear. Herein, we found NRG inhibited transforming growth factor β2 (TGFβ2)-induced SRA01/04 cell viability. Additionally, NRG inhibited TGFβ2-induced cell migration and EMT. We further noticed that NRG inhibited autophagy and Smad2/3 phosphorylation in LECs. We therefore thought Naringenin inhibited autophagy and EMT of human LECs by regulating the Smad2/3 pathway. NRG could therefore serve as a promising drug for cataract treatment.
Collapse
Affiliation(s)
- Qingnan Li
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| | - Shuang Liu
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| | - Guang Yang
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| | - Mingming Li
- Department of Ophthalmology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Peng Qiao
- Department of Ophthalmology, 3201 Hospital, Hanzhong, Shanxi, China
| | - Qiang Xue
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|