1
|
Mao K, Liu C, Tang Z, Rao Z, Wen J. Advances in drug resistance of osteosarcoma caused by pregnane X receptor. Drug Metab Rev 2024; 56:385-398. [PMID: 38872275 DOI: 10.1080/03602532.2024.2366948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Osteosarcoma (OS) is a prevalent malignancy among adolescents, commonly manifesting during childhood and adolescence. It exhibits a high degree of malignancy, propensity for metastasis, rapid progression, and poses challenges in clinical management. Chemotherapy represents an efficacious therapeutic modality for OS treatment. However, chemotherapy resistance of OS is a major problem in clinical treatment. In order to treat OS effectively, it is particularly important to explore the mechanism of chemotherapy resistance in OS.The Pregnane X receptor (PXR) is a nuclear receptor primarily involved in the metabolism, transport, and elimination of xenobiotics, including chemotherapeutic agents. PXR involves three stages of drug metabolism: stage I: drug metabolism enzymes; stage II: drug binding enzyme; stage III: drug transporter.PXR has been confirmed to be involved in the process of chemotherapy resistance in malignant tumors. The expression of PXR is increased in OS, which may be related to drug resistance of OS. Therefore, wereviewed in detail the role of PXR in chemotherapy drug resistance in OS.
Collapse
Affiliation(s)
- Kunhong Mao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Can Liu
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
| | - Zhongwen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhouzhou Rao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Jie Wen
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
2
|
Sato T, Shizu R, Baba R, Ooka A, Hosaka T, Kanno Y, Yoshinari K. Pregnane X receptor inhibits the transdifferentiation of hepatic stellate cells by down-regulating periostin expression. Biochem J 2024; 481:1173-1186. [PMID: 39171361 DOI: 10.1042/bcj20240172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor that plays a key role in drug metabolism. Recently, PXR was found to attenuate the development of liver cancer by suppressing epithelial-mesenchymal transition (EMT) in liver cancer cells in a mouse model of two-stage chemical carcinogenesis. To elucidate the role of PXR in the EMT of liver cancer cells, we focused on its role in hepatic stellate cells (HSCs), which are components of the tumor microenvironment in hepatocellular carcinoma (HCC). Human HSC-derived LX-2 cells stably expressed destabilization domain (DD)-fused human PXR (hPXR-LX2 cells). Human HCC-derived HepG2 cells were transfected with the EMT marker VIM promoter-regulated reporter plasmid and co-cultured with hPXR-LX2 cells or treated with hPXR-LX2-derived conditioned medium (CM). Co-culture or CM treatment increased reporter activity in HepG2 cells. This induction was attenuated upon PXR activation in hPXR-LX2 cells by treatment with the DD-stabilizing chemical Shield-1 and the human PXR ligand rifampicin. PXR activation in hPXR-LX2 cells exhibited inhibition of TGF-β1-induced transdifferentiation, supported by observations of morphological changes and protein or mRNA levels of the transdifferentiation markers COL1A1 and FN1. PXR activation in hPXR-LX2 cells also attenuated the mRNA levels of the key transdifferentiation factor, POSTN. Treatment of hPXR-LX2 cells with recombinant POSTN restored the PXR-mediated suppression of transdifferentiation. Reporter assays with the POSTN promoter showed that PXR inhibited the NF-κB-mediated transcription of POSTN. Consequently, PXR activation in HSCs is expected to inhibit transdifferentiation by down-regulating POSTN expression, thereby suppressing EMT of liver cancer cells.
Collapse
Affiliation(s)
- Takumi Sato
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 Japan
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 Japan
| | - Ryonosuke Baba
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 Japan
| | - Akira Ooka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 Japan
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 Japan
| |
Collapse
|
3
|
Sládeková L, Li H, DesMarais VM, Beck AP, Guzik H, Vyhlídalová B, Gu H, Mani S, Dvořák Z. Unlocking the Potential: FKK6 as a Microbial Mimicry-Based Therapy for Chronic Inflammation-Associated Colorectal Cancer in a Murine Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605845. [PMID: 39211241 PMCID: PMC11360961 DOI: 10.1101/2024.07.30.605845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chronic intestinal inflammation significantly contributes to the development of colorectal cancer (CRC) and remains a pertinent clinical challenge, necessitating novel therapeutic approaches. Indole-based microbial metabolite mimics FKK6, which is a ligand and agonist of the pregnane X receptor (PXR), was recently demonstrated to have PXR-dependent anti-inflammatory and protective effects in a mouse model of dextran sodium sulfate (DSS)-induced acute colitis. Here, we examined the therapeutic potential of FKK6 in a mouse model (C57BL/6 FVB humanized PXR mice) of colitis-associated colon cancer (CAC) induced by azoxymethane (AOM) and dextran sodium sulfate (DSS). FKK6 (2 mg/kg) displayed substantial anti-tumor activity, as revealed by reduced size and number of colon tumors, improved colon histopathology, and decreased expression of tumor markers (c-MYC, β-catenin, Ki-67, cyclin D) in the colon. In addition, we carried out the chronic toxicity (30 days) assessment of FKK6 (1 mg/kg and 2 mg/kg) in C57BL/6 mice. Histological examination of tissues, biochemical blood analyses, and immunohistochemical staining for Ki-67 and γ-H2AX showed no difference between FKK6-treated and control mice. Comparative metabolomic analyses in mice exposed for 5 days to DSS and administered with FKK6 (0.4 mg/kg) revealed no significant effects on several classes of metabolites in the mouse fecal metabolome. Ames and micronucleus tests showed no genotoxic and mutagenic potential of FKK6 in vitro . In conclusion, anticancer effects of FKK6 in AOM/DSS-induced CAC, together with FKK6 safety data from in vitro tests and in vivo chronic toxicity study, and comparative metabolomic study, are supportive of the potential therapeutic use of FKK6 in the treatment of CAC.
Collapse
|
4
|
Barzegar S, Pirouzpanah S. Zinc finger proteins and ATP-binding cassette transporter-dependent multidrug resistance. Eur J Clin Invest 2024; 54:e14120. [PMID: 37930002 DOI: 10.1111/eci.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer treatment, leading to poor clinical outcomes. Dysregulation of ATP-binding cassette (ABC) transporters has been identified as a key contributor to MDR. Zinc finger proteins (ZNPs) are key regulators of transcription and have emerged as potential contributors to cancer drug resistance. Bridging the knowledge gap between ZNPs and MDR is essential to understand a source of heterogeneity in cancer treatment. This review sought to elucidate how different ZNPs modulate the transcriptional regulation of ABC genes, contributing to resistance to cancer therapies. METHODS The search was conducted using PubMed, Google Scholar, EMBASE and Web of Science. RESULTS In addition to ABC-blockers, the transcriptional features regulated by ZNP are expected to play a role in reversing ABC-mediated MDR and predicting the efficacy of anticancer treatments. Among the ZNP-induced epithelial to mesenchymal transition, SNAIL, SLUG and Zebs have been identified as important factors in promoting MDR through activation of ATM, NFκB and PI3K/Akt pathways, exposing the metabolism to potential ZNP-MDR interactions. Additionally, nuclear receptors, such as VDR, ER and PXR have been found to modulate certain ABC regulations. Other C2H2-type zinc fingers, including Kruppel-like factors, Gli and Sp also have the potential to contribute to MDR. CONCLUSION Besides reviewing evidence on the effects of ZNP dysregulation on ABC-related chemoresistance in malignancies, significant markers of ZNP functions are discussed to highlight the clinical implications of gene-to-gene and microenvironment-to-gene interactions on MDR prospects. Future research on ZNP-derived biomarkers is crucial for addressing heterogeneity in cancer therapy.
Collapse
Affiliation(s)
- Sanaz Barzegar
- Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Neal WM, Pandey P, Khan SI, Khan IA, Chittiboyina AG. Machine learning and traditional QSAR modeling methods: a case study of known PXR activators. J Biomol Struct Dyn 2024; 42:903-917. [PMID: 37059719 DOI: 10.1080/07391102.2023.2196701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023]
Abstract
Pregnane X receptor (PXR), extensively expressed in human tissues related to digestion and metabolism, is responsible for recognizing and detoxifying diverse xenobiotics encountered by humans. To comprehend the promiscuous nature of PXR and its ability to bind a variety of ligands, computational approaches, viz., quantitative structure-activity relationship (QSAR) models, aid in the rapid dereplication of potential toxicological agents and mitigate the number of animals used to establish a meaningful regulatory decision. Recent advancements in machine learning techniques accommodating larger datasets are expected to aid in developing effective predictive models for complex mixtures (viz., dietary supplements) before undertaking in-depth experiments. Five hundred structurally diverse PXR ligands were used to develop traditional two-dimensional (2D) QSAR, machine-learning-based 2D-QSAR, field-based three-dimensional (3D) QSAR, and machine-learning-based 3D-QSAR models to establish the utility of predictive machine learning methods. Additionally, the applicability domain of the agonists was established to ensure the generation of robust QSAR models. A prediction set of dietary PXR agonists was used to externally-validate generated QSAR models. QSAR data analysis revealed that machine-learning 3D-QSAR techniques were more accurate in predicting the activity of external terpenes with an external validation squared correlation coefficient (R2) of 0.70 versus an R2 of 0.52 in machine-learning 2D-QSAR. Additionally, a visual summary of the binding pocket of PXR was assembled from the field 3D-QSAR models. By developing multiple QSAR models in this study, a robust groundwork for assessing PXR agonism from various chemical backbones has been established in anticipation of the identification of potential causative agents in complex mixtures.
Collapse
Affiliation(s)
- William M Neal
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Shabana I Khan
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
6
|
Malhotra P, Palanisamy R, Caparros-Martin JA, Falasca M. Bile Acids and Microbiota Interplay in Pancreatic Cancer. Cancers (Basel) 2023; 15:3573. [PMID: 37509236 PMCID: PMC10377396 DOI: 10.3390/cancers15143573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence suggests the involvement of the microbiota, including oral, intra-tumoral and gut, in pancreatic cancer progression and response to therapy. The gut microbiota modulates the bile acid pool and is associated with maintaining host physiology. Studies have shown that the bile acid/gut microbiota axis is dysregulated in pancreatic cancer. Bile acid receptor expression and bile acid levels are dysregulated in pancreatic cancer as well. Studies have also shown that bile acids can cause pancreatic cell injury and facilitate cancer cell proliferation. The microbiota and its metabolites, including bile acids, are also altered in other conditions considered risk factors for pancreatic cancer development and can alter responses to chemotherapeutic treatments, thus affecting patient outcomes. Altogether, these findings suggest that the gut microbial and/or bile acid profiles could also serve as biomarkers for pancreatic cancer detection. This review will discuss the current knowledge on the interaction between gut microbiota interaction and bile acid metabolism in pancreatic cancer.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Ranjith Palanisamy
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | | | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
7
|
Kiouri DP, Ntallis C, Kelaidonis K, Peana M, Tsiodras S, Mavromoustakos T, Giuliani A, Ridgway H, Moore GJ, Matsoukas JM, Chasapis CT. Network-Based Prediction of Side Effects of Repurposed Antihypertensive Sartans against COVID-19 via Proteome and Drug-Target Interactomes. Proteomes 2023; 11:21. [PMID: 37368467 PMCID: PMC10305495 DOI: 10.3390/proteomes11020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The potential of targeting the Renin-Angiotensin-Aldosterone System (RAAS) as a treatment for the coronavirus disease 2019 (COVID-19) is currently under investigation. One way to combat this disease involves the repurposing of angiotensin receptor blockers (ARBs), which are antihypertensive drugs, because they bind to angiotensin-converting enzyme 2 (ACE2), which in turn interacts with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. However, there has been no in silico analysis of the potential toxicity risks associated with the use of these drugs for the treatment of COVID-19. To address this, a network-based bioinformatics methodology was used to investigate the potential side effects of known Food and Drug Administration (FDA)-approved antihypertensive drugs, Sartans. This involved identifying the human proteins targeted by these drugs, their first neighbors, and any drugs that bind to them using publicly available experimentally supported data, and subsequently constructing proteomes and protein-drug interactomes. This methodology was also applied to Pfizer's Paxlovid, an antiviral drug approved by the FDA for emergency use in mild-to-moderate COVID-19 treatment. The study compares the results for both drug categories and examines the potential for off-target effects, undesirable involvement in various biological processes and diseases, possible drug interactions, and the potential reduction in drug efficiency resulting from proteoform identification.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (C.N.)
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Charalampos Ntallis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (C.N.)
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - John M. Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (C.N.)
| |
Collapse
|
8
|
Kumar S, Sherman MY. Resistance to TOP-1 Inhibitors: Good Old Drugs Still Can Surprise Us. Int J Mol Sci 2023; 24:ijms24087233. [PMID: 37108395 PMCID: PMC10138578 DOI: 10.3390/ijms24087233] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Irinotecan (SN-38) is a potent and broad-spectrum anticancer drug that targets DNA topoisomerase I (Top1). It exerts its cytotoxic effects by binding to the Top1-DNA complex and preventing the re-ligation of the DNA strand, leading to the formation of lethal DNA breaks. Following the initial response to irinotecan, secondary resistance is acquired relatively rapidly, compromising its efficacy. There are several mechanisms contributing to the resistance, which affect the irinotecan metabolism or the target protein. In addition, we have demonstrated a major resistance mechanism associated with the elimination of hundreds of thousands of Top1 binding sites on DNA that can arise from the repair of prior Top1-dependent DNA cleavages. Here, we outline the major mechanisms of irinotecan resistance and highlight recent advancements in the field. We discuss the impact of resistance mechanisms on clinical outcomes and the potential strategies to overcome resistance to irinotecan. The elucidation of the underlying mechanisms of irinotecan resistance can provide valuable insights for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| | - Michael Y Sherman
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
| |
Collapse
|
9
|
Zhang L, Ye B, Chen Z, Chen ZS. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm Sin B 2022; 13:982-997. [PMID: 36970215 PMCID: PMC10031261 DOI: 10.1016/j.apsb.2022.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022] Open
Abstract
Chemotherapy is one of the important methods to treat cancer, and the emergence of multidrug resistance (MDR) is one major cause for the failure of cancer chemotherapy. Almost all anti-tumor drugs develop drug resistance over a period of time of application in cancer patients, reducing their effects on killing cancer cells. Chemoresistance can lead to a rapid recurrence of cancers and ultimately patient death. MDR may be induced by multiple mechanisms, which are associated with a complex process of multiple genes, factors, pathways, and multiple steps, and today the MDR-associated mechanisms are largely unknown. In this paper, from the aspects of protein-protein interactions, alternative splicing (AS) in pre-mRNA, non-coding RNA (ncRNA) mediation, genome mutations, variance in cell functions, and influence from the tumor microenvironment, we summarize the molecular mechanisms associated with MDR in cancers. In the end, prospects for the exploration of antitumor drugs that can reverse MDR are briefly discussed from the angle of drug systems with improved targeting properties, biocompatibility, availability, and other advantages.
Collapse
|
10
|
Bautista-Olivier CD, Elizondo G. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism. Biochem Pharmacol 2022; 202:115147. [PMID: 35714683 DOI: 10.1016/j.bcp.2022.115147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Pregnane X receptor (PXR) is a xenosensor that acts as a transcription factor in the cell nucleus to protect cells from toxic insults. In response to exposure to several chemical agents, PXR induces the expression of enzymes and drug transporters that biotransform xenobiotic and endobiotic and eliminate metabolites. Recently, PXR has been shown to have immunomodulatory effects that involve cross-communication with molecular pathways in innate immunity cells. Conversely, several inflammatory factors regulate PXR signaling. This review examines the crosstalk between PXR and nuclear factor kappa B (NFkB), Toll-like receptors (TLRs), and inflammasome components. Discussions of the consequences of these interactions on immune responses to infections caused by viruses, bacteria, fungi, and parasites are included together with a review of the effects of microorganisms on PXR-associated drug metabolism. This paper aims to encourage researchers to pursue studies that will better elucidate the relationship between PXR and the immune system and thus inform treatment development.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Dubey S, Jaiswal B, Gupta A. TIP60 acts as a regulator of genes involved in filopodia formation and cell migration during wound healing. J Biol Chem 2022; 298:102015. [PMID: 35525269 PMCID: PMC9249863 DOI: 10.1016/j.jbc.2022.102015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex phenomenon that requires coordination of numerous molecular and cellular changes to facilitate timely and efficient repair of the damaged tissue. Although many of these molecular pathways have been detailed, others remain to be elucidated. In the present work, we show for the first time, roles for the acetyltransferase TIP60 and nuclear receptor transcription factor PXR in this process, participating in wound healing by altering actin dynamics and cellular motility. We found that in response to wound-injury, TIP60 induces rapid formation of filopodia at the wounded cell front, leading to enhanced cell migration and faster closure of the wound. Further, qPCR analysis revealed heightened expression of Cdc42 and ROCK1 genes, key regulators involved in filopodia formation and actin reorganization, exclusively in TIP60-PXR-expressing cells upon wound-induction. We also performed ChIP assays to confirm the context-specific binding of TIP60 on the ROCK1 promoter and demonstrated that the TIP60 chromodomain is essential for loading of the TIP60–PXR complex onto the chromatin. Results from immunoprecipitation assays revealed that during the wounded condition, TIP60 alters the chromatin microenvironment by specifically acetylating histones H2B and H4, thereby modulating the expression of target genes. Overall, findings of this study show that TIP60 is a novel regulator of the wound healing process by regulating the expression of wound repair-related genes.
Collapse
Affiliation(s)
- Shraddha Dubey
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, India
| | - Bharti Jaiswal
- Integrative Chemical Biology, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Uttar Pradesh, India.
| |
Collapse
|
12
|
Niu X, Cui H, Gu X, Wu T, Sun M, Zhou C, Ma M. Nuclear Receptor PXR Confers Irradiation Resistance by Promoting DNA Damage Response Through Stabilization of ATF3. Front Oncol 2022; 12:837980. [PMID: 35372071 PMCID: PMC8965888 DOI: 10.3389/fonc.2022.837980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/10/2022] [Indexed: 12/26/2022] Open
Abstract
Low response rate to radiotherapy remains a problem for liver and colorectal cancer patients due to inappropriate DNA damage response in tumors. Here, we report that pregnane X receptor (PXR) contributes to irradiation (IR) resistance by promoting activating transcription factor 3 (ATF3)-mediated ataxia-telangiectasia-mutated protein (ATM) activation. PXR stabilized ATF3 protein by blocking its ubiquitination. PXR–ATF3 interaction is required for regulating ATF3, as one mutant of lysine (K) 42R of ATF3 lost binding with PXR and abolished PXR-reduced ubiquitination of ATF3. On the other hand, threonine (T) 432A of PXR lost binding with ATF3 and further compromised ATM activation. Moreover, the PXR–ATF3 interaction increases ATF3 stabilization through disrupting ATF3–murine double minute 2 (MDM2) interaction and negatively regulating MDM2 protein expression. PXR enhanced MDM2 auto-ubiquitination and shortened its half-life, therefore compromising the MDM2-mediated degradation of ATF3 protein. Structurally, both ATF3 and PXR bind to the RING domain of MDM2, and on the other hand, MDM2 binds with PXR on the DNA-binding domain (DBD), which contains zinc finger sequence. Zinc finger sequence is well known for nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) playing E3 ligase activity to degrade nuclear factor κB (NFκB)/p65. However, whether zinc-RING sequence grants E3 ligase activity to PXR remains elusive. Taken together, these results provide a novel mechanism that PXR contributes to IR resistance by promoting ATF3-mediated ATM activation through stabilization of ATF3. Our result suggests that targeting PXR may sensitize liver and colon cancer cells to IR therapy.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Changlong Zhou
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Liu A, Li X, Hao Z, Cao J, Li H, Sun M, Zhang Z, Liang R, Zhang H. Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo[a]pyrene. Toxicol Ind Health 2022; 38:127-138. [PMID: 35193440 DOI: 10.1177/07482337211069233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a known human carcinogen and plays a major function in the initiation of lung cancer at its first proximity. However, the underlying molecular mechanisms are less well understood. In this study, we investigated the impact of B[a]P treatment on the DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells (16HBEs), and provide scientific evidence for the mechanism study on the carcinogenesis of B[a]P. We treated 16HBEs with DMSO or concentrations of B[a]P at 1, 2, and 5 mmol/L for 24 h, observed the morphological changes, determined the cell viability, DNA methylation, and mRNA levels of CYP1A1, GSTP1, and GSTM1. Compared to the DMSO controls, B[a]P treatment had significantly increased the neoplastic cell number and cell viability in 16HBEs at all three doses (1, 2, and 5 mmol/L), and had significantly reduced the CYP1A1 and GSTP1 DNA promoter methylation levels. Following B[a]P treatment, the GSTM1 promoter methylation level in 16HBEs was profoundly reduced at low dose group compared to the DMSO controls, yet it was significantly increased at both middle and high dose groups. The mRNA levels of CYP1A1, GSTP1, and GSTM1 were significantly decreased in 16HBEs following B[a]P treatment at all three doses. The findings demonstrate that B[a]P promoted cell proliferation in 16HBEs, which was possibly related to the altered DNA methylations and the inhibited mRNA levels in CYP1A1, GSTP1, and GSTM1.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Health Information Management, 74648Shanxi Medical University Fenyang College, Fenyang, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, 442190Taiyuan Iron and Steel Co Ltd, Taiyuan, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Sun
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
The Nuclear Receptor PXR in Chronic Liver Disease. Cells 2021; 11:cells11010061. [PMID: 35011625 PMCID: PMC8750019 DOI: 10.3390/cells11010061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR), a nuclear receptor known for modulating the transcription of drug metabolizing enzymes and transporters (DMETs), such as cytochrome P450 3A4 and P-glycoprotein, is functionally involved in chronic liver diseases of different etiologies. Furthermore, PXR activity relates to that of other NRs, such as constitutive androstane receptor (CAR), through a crosstalk that in turn orchestrates a complex network of responses. Thus, besides regulating DMETs, PXR signaling is involved in both liver damage progression and repair and in the neoplastic transition to hepatocellular carcinoma. We here summarize the present knowledge about PXR expression and function in chronic liver diseases characterized by different etiologies and clinical outcome, focusing on the molecular pathways involved in PXR activity. Although many molecular details of these finely tuned networks still need to be fully understood, we conclude that PXR and its modulation could represent a promising pharmacological target for the identification of novel therapeutical approaches to chronic liver diseases.
Collapse
|
15
|
Schneider M, Delfosse V, Gelin M, Grimaldi M, Granell M, Heriaud L, Pons JL, Cohen Gonsaud M, Balaguer P, Bourguet W, Labesse G. Structure-Based and Knowledge-Informed Design of B-Raf Inhibitors Devoid of Deleterious PXR Binding. J Med Chem 2021; 65:1552-1566. [PMID: 34958586 DOI: 10.1021/acs.jmedchem.1c01354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dabrafenib is an anticancer drug currently used in the clinics, alone or in combination. However, dabrafenib was recently shown to potently activate the human nuclear receptor pregnane X receptor (PXR). PXR activation increases the clearance of various chemicals and drugs, including dabrafenib itself. It may also enhance cell proliferation and tumor aggressiveness. Therefore, there is a need for rational design of a potent protein kinase B-Raf inhibitor devoid of binding to the secondary target PXR and resisting rapid metabolism. By determining the crystal structure of dabrafenib bound to PXR and analyzing its mode of binding to both PXR and its primary target, B-Raf-V600E, we were able to derive new compounds with nanomolar activity against B-Raf and no detectable affinity for PXR. The crystal structure of B-Raf in complex with our lead compound revealed a subdomain swapping of the activation loop with potentially important functional implications for a prolonged inhibition of B-Raf-V600E.
Collapse
Affiliation(s)
- Melanie Schneider
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Vanessa Delfosse
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Meritxell Granell
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Laurène Heriaud
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Jean-Luc Pons
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Martin Cohen Gonsaud
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - William Bourguet
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| |
Collapse
|
16
|
High Pregnane X Receptor (PXR) Expression Is Correlated with Poor Prognosis in Invasive Breast Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11111946. [PMID: 34829293 PMCID: PMC8624096 DOI: 10.3390/diagnostics11111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnane X Receptor (PXR) is involved in human cancer, either by directly affecting carcinogenesis or by inducing drug-drug interactions and chemotherapy resistance. The clinical significance of PXR expression in invasive breast carcinoma was evaluated in the present study. PXR protein expression was assessed immunohistochemically on formalin fixed paraffin-embedded breast invasive carcinoma tissue sections, obtained from 148 patients, and was correlated with clinicopathological parameters, molecular phenotypes, tumor cells' proliferative capacity, and overall disease-free patients' survival. Additionally, the expression of PXR was examined on human breast carcinoma cell lines of different histological grade, hormonal status, and metastatic potential. PXR positivity was noted in 79 (53.4%) and high PXR expression in 48 (32.4%), out of 148 breast carcinoma cases. High PXR expression was positively associated with nuclear grade (p = 0.0112) and histological grade of differentiation (p = 0.0305), as well as with tumor cells' proliferative capacity (p = 0.0051), and negatively with luminal A subtype (p = 0.0295). Associations between high PXR expression, estrogen, and progesterone receptor negative status were also recorded (p = 0.0314 and p = 0.0208, respectively). High PXR expression was associated with shorter overall patients' survival times (log-rank test, p = 0.0009). In multivariate analysis, high PXR expression was identified as an independent prognostic factor of overall patients' survival (Cox-regression analysis, p = 0.0082). PXR expression alterations were also noted in breast cancer cell lines of different hormonal status. The present data supported evidence that PXR was related to a more aggressive invasive breast carcinoma phenotype, being a strong and independent poor prognosticator.
Collapse
|
17
|
Skandalaki A, Sarantis P, Theocharis S. Pregnane X Receptor (PXR) Polymorphisms and Cancer Treatment. Biomolecules 2021; 11:1142. [PMID: 34439808 PMCID: PMC8394562 DOI: 10.3390/biom11081142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Pregnane X Receptor (PXR) belongs to the nuclear receptors' superfamily and mainly functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR's regulation. Antineoplastic agents are of particular interest since cancer patients are characterized by significant intra-variability to treatment response and severe toxicities. Various PXR polymorphisms may alter the function of the protein and are linked with significant effects on the pharmacokinetics of chemotherapeutic agents and clinical outcome variability. The purpose of this review is to summarize the roles of PXR polymorphisms in the metabolism and pharmacokinetics of chemotherapeutic drugs. It is also expected that this review will highlight the importance of PXR polymorphisms in selection of chemotherapy, prediction of adverse effects and personalized medicine.
Collapse
Affiliation(s)
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.S.); (P.S.)
| |
Collapse
|
18
|
Jayaseelan VP, Ramesh A, Arumugam P. Breast cancer and DDT: putative interactions, associated gene alterations, and molecular pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27162-27173. [PMID: 33506412 DOI: 10.1007/s11356-021-12489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The global burden of cancer has recorded an ever-increasing trend in the developing world. The GLOBOCAN, 2018 report has ranked breast cancer (BC) as the second (11.6%) most common form of cancer afflicting the female population worldwide. BC presents as a multi-factorial trait with numerous risk factors associated with the disease phenotype. Besides, genetic predisposition, exposure to environmental chemicals, and pollutants are considered to increase the magnitude of disease in susceptible individuals. Hence, the present observational study aims to investigate those proteins in the host which interact with the persistent organic pollutant, 2,4-dichlorodiphenyltrichloroethane (DDT), and associated alterations in genes encoding these proteins using a computational approach. The genetic alterations were ascertained using the Breast Invasive Carcinoma dataset available in the cBioportal database. The possible functional consequences of mutations identified in the selected dataset were further assessed using tools such as I-Mutant and PROVEAN. The ERBB2 (14%) and FASLG (10%) genes were found to harbor the highest frequency of gene alterations. Gene amplification and deep deletions were the most commonly observed alteration in almost all the genes investigated. Additionally, several synonymous, non-synonymous, frameshift, splice site mutations were also documented. The gnomAD analysis revealed three polymorphic variants in HTR2A (rs539430264), ESR2 (rs905821436), and CYP2B6 (rs757834610), all of which had a minor allele frequency < 0.01. Population-wide screening of observed gene alterations can provide clues on the putative association of these gross and single nucleotide substitutions with the pathophysiology and progression of breast cancer. Experimental genotyping and functional analysis of mutations is warranted to further prove the adverse effects of organochlorine compounds on female health.
Collapse
Affiliation(s)
- Vijayashree Priyadharsini Jayaseelan
- Biomedical Research Unit and Laboratory Animal Centre - Dental Research Cell, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Poonamallee High Road, Chennai, Tamilnadu, 600 077, India.
| | - Anita Ramesh
- Department of Medical Oncology, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Saveetha Nagar, Thandalam, Chennai, Tamilnadu, 602 105, India
| | - Paramasivam Arumugam
- Biomedical Research Unit and Laboratory Animal Centre - Dental Research Cell, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Poonamallee High Road, Chennai, Tamilnadu, 600 077, India
| |
Collapse
|
19
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
20
|
Zhang XQ, Ding YW, Chen JJ, Xiao X, Zhang W, Zhou L, Kong QW, Shi MZ, Yang J, Jiang B, Guo C, Han YL. Xiaoaiping injection enhances paclitaxel efficacy in ovarian cancer via pregnane X receptor and its downstream molecules. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113067. [PMID: 32505840 DOI: 10.1016/j.jep.2020.113067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoaiping injection, a traditional Chinese medical injection extracted from root of Marsdenia tenacissima (Roxb.) Moon, has been exclusively used on curing malignant tumor in China and as adjuvant therapeutic agent for chemotherapeutics, including paclitaxel. AIM OF THE STUDY The goal of this study was to investigate the synergistic inhibitory efficacy of Xiaoaiping injection and paclitaxel on ovarian cancer. The mechanism may be associated with nuclear receptor pregnane X receptor (PXR) regulating its downstream molecules. MATERIALS AND METHODS In vitro, MTT assay, flow cytometry and Hoechst dyeing were used to evaluate the SK-OV-3 cell proliferation, apoptosis and cell cycle respectively. The mRNA and protein expression of PXR and its downstream CYP450 enzymes, transporters and Bcl-2 families were measured by qRT-PCR and Western blot. Rhodamine 123 efflux experiment was conducted to detect the P-gp efflux ability. PXR plasmid and PXR siRNA were transiently transfected into SK-OV-3 cells respectively to establish PXR-overexpressed or PXR-interfered cells. In vivo, xenograft tumor mice model was established by SK-OV-3 cells to estimate the antitumor effect of Xiaoaiping injection combined with paclitaxel. The expressions of PXR and its downstream molecules in tumor tissues were determined to further clarify the potential mechanism. RESULTS Xiaoaiping injection significantly enhanced the anti-proliferation, pro-apoptosis effect of paclitaxel on SK-OV-3 cells. The synergetic effect was displayed by Xiaoaiping injection inhibiting paclitaxel-induced PXR and CAR expression, which subsequently inhibited CYP450 enzymes CYP2C8 and CYP3A4, transporter P-gp and anti-apoptotic proteins Bcl-2 and Bcl-xl in SK-OV-3 cells. In PXR-overexpressed cells, Xiaoaiping injection down-regulated the expression of PXR and its downstream molecules. The result of xenograft tumor model showed that Xiaoaiping injection combined with paclitaxel enhanced anti-tumor effect on ovarian cancer in vivo. CONCLUSIONS Xiaoaiping injection enhances anti-tumor effect of paclitaxel by inhibiting cell proliferation, inducing apoptosis process. The mechanism may be associated with Xiaoaiping injection inhibiting PXR and its downstream metabolic enzymes CYP2C8, CYP3A4, transporter P-gp and anti-apoptosis protein Bcl-2.
Collapse
Affiliation(s)
- Xiang-Qi Zhang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Ya-Wei Ding
- College of Food Science and Technology, Shanghai Ocean University, 999 Huan Hucheng Road, Shanghai, 201306, China
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China
| | - Xiao Xiao
- Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China; Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai, 201203, China
| | - Wei Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999 Huan Hucheng Road, Shanghai, 201306, China
| | - Li Zhou
- College of Food Science and Technology, Shanghai Ocean University, 999 Huan Hucheng Road, Shanghai, 201306, China
| | - Qian-Wen Kong
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Mei-Zhi Shi
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China
| | - Jiao Yang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China
| | - Bo Jiang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China; Department of Pharmacy, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, 222 Huan Hu Xi San Road, Shanghai, 201306, China.
| |
Collapse
|
21
|
Differences in the early stage gene expression profiles of lung adenocarcinoma and lung squamous cell carcinoma. Oncol Lett 2019; 18:6572-6582. [PMID: 31788115 PMCID: PMC6865721 DOI: 10.3892/ol.2019.11013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The discovery of lung carcinoma subtype-specific gene expression changes has the potential to elucidate the molecular differences and provide personalized therapeutic targets for these pathologies. The aim of the present study was to characterize the genetic profiles of the early stages (IA/IB) of two non-small cell lung cancer subtypes, adenocarcinoma (AD) and squamous cell carcinoma (SC). RNA-Seq gene expression data from The Cancer Genome Atlas was analyzed to compare the gene expression differences between AD and SC. The gene sets specific to each subtype were further analyzed to identify the enriched Gene Ontology terms, Kyoto Encyclopedia of Genes and Genomes pathways and biological functions. The results demonstrated that a unique set of genes (145 upregulated and 27 downregulated) was altered in AD, but not in SC; another set of genes (146 upregulated and 103 downregulated) was significantly altered in SC, but not in AD. Genes highly upregulated specifically in AD included albumin (1,732-fold), protein lin-28 homolog A, which is a positive regulator of cyclin-dependent kinase 2 (150-fold) and gastric lipase (81-fold). Genes highly upregulated specifically in SC included amelotin (618-fold), alcohol dehydrogenase 7 (57-fold), aclerosteosis (55-fold) and claudin-22 (54-fold). Several cancer/testis antigen family genes were notably upregulated in SC, but not in AD, whereas mucins were upregulated only in AD. Functional pathway analysis demonstrated that the dysregulation of genes associated with retinoid X receptors was common in AD and SC, genes associated with ‘lipid metabolism’ and ‘drug metabolism’ were dysregulated only in SC, whereas genes associated with ‘molecular transport’ and ‘cellular growth and proliferation’ were significantly enriched in AD specifically. These results reveal fundamental differences in the gene expression profiles of early-stage AD and SC. In addition, the present study identified molecular pathways that are uniquely associated with the pathogenesis of these subtypes.
Collapse
|
22
|
Zhao L, Li M, Sun H. Effects of dietary calcium to available phosphorus ratios on bone metabolism and osteoclast activity of the OPG /RANK/RANKL signalling pathway in piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:1224-1232. [PMID: 31062421 DOI: 10.1111/jpn.13115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/19/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022]
Abstract
Hydroxyapatite, a mineral form of calcium (Ca) and phosphorus (P) that gives bones their rigidity, is the major and essential component of bones and teeth in the human and animal body. A suitable ratio of Ca and P is vital for bone growth. The aim of this study was to explore the effects of dietary calcium to available phosphorus ratios (Ca/AP) on bone metabolism and osteoclast activity of the osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL) signalling pathway in piglets. At days 15 and 29, the piglets were assessed for growth performance, blood indicators, cytokines and the OPG/RANK/RANKL signalling pathway. Our results showed that piglets fed a dietary Ca/AP ratio of 2:1 increases growth performance and regulates blood indicators and cytokines (parathyroid hormone (PTH), calcitonin (CT), vitamin D3 (VD3 ), insulin-like growth factor-1 (IGF-1), transforming growth factor-β (TGF-β), interleukin-1 (IL-1), interleukin-6 (IL-6), carboxyterminal propeptide of type I procollagen (PICP), tartrate-resistant acid phosphatase (TRACP), alkaline phosphatase (ALP) and osteocalcin (OCN) content). We also demonstrated that this ratio affects hormone secretion and further bone metabolism through the OPG/RANK/RANKL signalling pathway of osteoclasts. These results indicate that a suitable dietary Ca/AP ratio is vital for bone growth and reduce the incidence of bone diseases such as osteoporosis, providing a practical basis for the raising of piglets.
Collapse
Affiliation(s)
- Lei Zhao
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, China.,Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Muyang Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, China.,Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, China.,Ministry of education laboratory of animal production and quality security, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
23
|
Leopold Wager CM, Arnett E, Schlesinger LS. Mycobacterium tuberculosis and macrophage nuclear receptors: What we do and don't know. Tuberculosis (Edinb) 2019; 116S:S98-S106. [PMID: 31060958 DOI: 10.1016/j.tube.2019.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.
Collapse
|
24
|
Alameh G, Emptoz-Bonneton A, Rolland de Ravel M, Matera EL, Mappus E, Balaguer P, Rocheblave L, Lomberget T, Dumontet C, Le Borgne M, Pugeat M, Grenot C, Cuilleron CY. In vitro modulation of multidrug resistance by pregnane steroids and in vivo inhibition of tumour development by 7α-OBz-11α(R)-OTHP-5β-pregnanedione in K562/R7 and H295R cell xenografts. J Enzyme Inhib Med Chem 2019; 34:684-691. [PMID: 30777494 PMCID: PMC6383615 DOI: 10.1080/14756366.2019.1575825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Synthetic progesterone and 5α/β-pregnane-3,20-dione derivatives were evaluated as in vitro and in vivo modulators of multidrug-resistance (MDR) using two P-gp-expressing human cell lines, the non-steroidogenic K562/R7 erythroleukaemia cells and the steroidogenic NCI-H295R adrenocortical carcinoma cells, both resistant to doxorubicin. The maximal effect in both cell lines was observed for 7α-O-benzoyloxy,11α(R)-O-tetrahydropyranyloxy-5β-pregnane-3,20-dione 4. This modulator co-injected with doxorubicin significantly decreased the tumour size and increased the survival time of immunodeficient mice xenografted with NCI-H295R or K562/R7 cells.
Collapse
Affiliation(s)
- Ghina Alameh
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| | - Agnès Emptoz-Bonneton
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,b Fédération d'Endocrinologie du pôle Est, Hospices Civils de Lyon , Lyon , France
| | - Marc Rolland de Ravel
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,c Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM, Centre Léon Bérard , Lyon , France
| | - Eva L Matera
- c Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM, Centre Léon Bérard , Lyon , France
| | - Elisabeth Mappus
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| | - Patrick Balaguer
- d Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier , Montpellier , France
| | - Luc Rocheblave
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,e Faculté de Pharmacie-ISPB, Department of Bioactive Molecules and Medicinal Chemistry , Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Thierry Lomberget
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,e Faculté de Pharmacie-ISPB, Department of Bioactive Molecules and Medicinal Chemistry , Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Charles Dumontet
- c Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM, Centre Léon Bérard , Lyon , France
| | - Marc Le Borgne
- e Faculté de Pharmacie-ISPB, Department of Bioactive Molecules and Medicinal Chemistry , Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Michel Pugeat
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,b Fédération d'Endocrinologie du pôle Est, Hospices Civils de Lyon , Lyon , France
| | - Catherine Grenot
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| | - Claude Y Cuilleron
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| |
Collapse
|
25
|
Leopold Wager CM, Arnett E, Schlesinger LS. Macrophage nuclear receptors: Emerging key players in infectious diseases. PLoS Pathog 2019; 15:e1007585. [PMID: 30897154 PMCID: PMC6428245 DOI: 10.1371/journal.ppat.1007585] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a variety of cells, including macrophages. For decades, NRs have been therapeutic targets because their activity can be pharmacologically modulated by specific ligands and small molecule inhibitors. NRs regulate a variety of processes, including those intersecting metabolic and immune functions, and have been studied in regard to various autoimmune diseases. However, the complex roles of NRs in host response to infection are only recently being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptors (LXRs) have been most studied in the context of infectious diseases; however, recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor (VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs), and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmacological inhibition or antagonism of certain NRs can greatly influence overall disease outcome, and NRs that are protective against some diseases can lead to susceptibility to others. Targeting NRs as a novel host-directed treatment approach to infectious diseases appears to be a viable option, considering that these transcription factors play a pivotal role in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and production of antimicrobial byproducts. In the current review, we discuss recent findings concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the two most studied. We also highlight newer work on the activity of emerging NRs during infection.
Collapse
Affiliation(s)
| | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Larry S. Schlesinger
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
26
|
Oladimeji PO, Wright WC, Wu J, Chen T. RNA interference screen identifies NAA10 as a regulator of PXR transcription. Biochem Pharmacol 2018; 160:92-109. [PMID: 30566892 DOI: 10.1016/j.bcp.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 01/22/2023]
Abstract
The pregnane X receptor (PXR) is a principal xenobiotic receptor crucial in the detection, detoxification, and clearance of toxic substances from the body. PXR plays a vital role in the metabolism and disposition of drugs, and elevated PXR levels contribute to cancer drug resistance. Therefore, to modulate PXR activity and mitigate drug resistance, it is imperative to fully understand its regulation. To this end, we screened a transcription factor siRNA library in pancreatic cancer cells that express high levels of PXR. Through a comprehensive deconvolution process, we identified N-alpha-acetyltransferase 10 (NAA10) as a factor in the transcriptional machinery regulating PXR transcription. Because no one single factor has 100% operational control of PXR transcriptional regulation, our results together with other previous findings suggest that the transcriptional regulation of PXR is complex and that multiple factors contribute to the process including NAA10.
Collapse
Affiliation(s)
- Peter O Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
27
|
Lee HJ, Pyo MC, Shin HS, Ryu D, Lee KW. Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells. Food Chem Toxicol 2018; 122:59-68. [DOI: 10.1016/j.fct.2018.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/22/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
|
28
|
Suman S, Mishra A. An interaction network driven approach for identifying biomarkers for progressing cervical intraepithelial neoplasia. Sci Rep 2018; 8:12927. [PMID: 30150654 PMCID: PMC6110773 DOI: 10.1038/s41598-018-31187-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 08/10/2018] [Indexed: 12/13/2022] Open
Abstract
Overlapping genes across high-grade squamous intraepithelial lesions (CIN2 and 3) and cancer may serve as potential biomarkers for this progressive disease. Differentially expressed genes (DEGs) of dysplastic (CIN2 and CIN3) and cancer cells were identified by microarray data analysis. Gene interaction network was constructed using the 98 common DEGs among the dysplastic and cancer cells and analysed for the identification of common modules, hubs and significant motifs. Two significant modules and 10 hubs of the common gene interaction network, with 125 nodes and 201 edges were found. DEGs namely NDC80, ZWINT, CDC7, MCM4, MCM2 and MCM6 were found to be common in both the significant modules as well as the hubs. Of these, ZWINT, CDC7, MCM4, MCM2 and MCM6 were further identified to be part of most significant motifs. This overlapping relationship provides a list of common disease related genes among pre-cancerous and cancer stages which could help in targeting the proliferating cancerous cells during onset. Capitalizing upon and targeting Minichromosome maintenance protein complex - specifically the MCM2, MCM4 and MCM6 subunits, ZWINT and CDC7 for experimental validation, may provide valuable insights in understanding and detection of progressing cervical neoplasia to cervical cancer at an early stage.
Collapse
Affiliation(s)
- Shikha Suman
- Division of Applied Sciences, Indian Institute of Information Technology (IIIT), Allahabad, 211012, India.
| | - Ashutosh Mishra
- Division of Applied Sciences, Indian Institute of Information Technology (IIIT), Allahabad, 211012, India
| |
Collapse
|
29
|
Sang H, Hulvey JP, Green R, Xu H, Im J, Chang T, Jung G. A Xenobiotic Detoxification Pathway through Transcriptional Regulation in Filamentous Fungi. mBio 2018; 9:e00457-18. [PMID: 30018104 PMCID: PMC6050962 DOI: 10.1128/mbio.00457-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Fungi are known to utilize transcriptional regulation of genes that encode efflux transporters to detoxify xenobiotics; however, to date it is unknown how fungi transcriptionally regulate and coordinate different phases of detoxification system (phase I, modification; phase II, conjugation; and phase III, secretion). Here we present evidence of an evolutionary convergence between the fungal and mammalian lineages, whereby xenobiotic detoxification genes (phase I coding for cytochrome P450 monooxygenases [CYP450s] and phase III coding for ATP-binding cassette [ABC] efflux transporters) are transcriptionally regulated by structurally unrelated proteins. Following next-generation RNA sequencing (RNA-seq) analyses of a filamentous fungus, Sclerotinia homoeocarpa, the causal agent of dollar spot on turfgrasses, a multidrug resistant (MDR) field strain was found to overexpress phase I and III genes, coding for CYP450s and ABC transporters for xenobiotic detoxification. Furthermore, there was confirmation of a gain-of-function mutation of the fungus-specific transcription factor S. homoeocarpa XDR1 (ShXDR1), which is responsible for constitutive and induced overexpression of the phase I and III genes, resulting in resistance to multiple classes of fungicidal chemicals. This fungal pathogen detoxifies xenobiotics through coordinated transcriptional control of CYP450s, biotransforming xenobiotics with different substrate specificities and ABC transporters, excreting a broad spectrum of xenobiotics or biotransformed metabolites. A Botrytis cinerea strain harboring the mutated ShXDR1 showed increased expression of phase I (BcCYP65) and III (BcatrD) genes, resulting in resistance to fungicides. This indicates the regulatory system is conserved in filamentous fungi. This molecular genetic mechanism for xenobiotic detoxification in fungi holds potential for facilitating discovery of new antifungal drugs and further studies of convergent and divergent evolution of xenobiotic detoxification in eukaryote lineages.IMPORTANCE Emerging multidrug resistance (MDR) in pathogenic filamentous fungi is a significant threat to human health and agricultural production. Understanding mechanisms of MDR is essential to combating fungal pathogens; however, there is still limited information on MDR mechanisms conferred by xenobiotic detoxification. Here, we report for the first time that overexpression of phase I drug-metabolizing monooxygenases (cytochrome P450s) and phase III ATP-binding cassette efflux transporters is regulated by a gain-of-function mutation in the fungus-specific transcription factor in the MDR strains of the filamentous plant-pathogenic fungus Sclerotinia homoeocarpa This study establishes a novel molecular mechanism of MDR through the xenobiotic detoxification pathway in filamentous fungi, which may facilitate the discovery of new antifungal drugs to control pathogenic fungi.
Collapse
Affiliation(s)
- Hyunkyu Sang
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jonathan P Hulvey
- Department of Biology, Eastern Connecticut State University, Willimantic, Connecticut, USA
| | - Robert Green
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hao Xu
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jeongdae Im
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas, USA
| | - Taehyun Chang
- School of Ecology and Environmental System, Kyungpook National University, Sangju, South Korea
| | - Geunhwa Jung
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
30
|
Association between PXR polymorphisms and cancer risk: a systematic review and meta-analysis. Biosci Rep 2018; 38:BSR20171614. [PMID: 29654162 PMCID: PMC5997801 DOI: 10.1042/bsr20171614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
Current studies have explored the correlation between the single nucleotide polymorphisms (SNPs) of pregnane X receptor (PXR) and cancer risk. However, the findings were conflicting. Hence, we performed a comprehensive review and meta-analysis for these researches to determine the effect of PXR polymorphisms on the risk of cancer. Eligible publications were collected based on a series of rigorous inclusion and exclusion criteria. In consequence, a total of eight case–control studies (from seven citations) covering 11143 cases and 12170 controls were involved in a meta-analysis of ten prevalent PXR SNPs (rs10504191 G/A, rs3814058 C/T, rs6785049 A/G, rs1464603 A/G, rs1523127 A/C, rs2276706 G/A, rs2276707 C/T, rs3732360 C/T, rs3814055 C/T, rs3814057 A/C). The correlations between PXR SNPs and cancer risk were estimated by odds ratios (ORs) with their 95% confidence intervals (95%CIs). The findings demonstrated that rs3814058 polymorphism (CT compared with CC: pooled OR = 1.280, P=6.36E-05; TT compared with CC: pooled OR = 1.663, P=2.40E-04; dominant model: pooled OR = 1.382, P=2.58E-08; recessive model: pooled OR = 1.422, P=0.002; T compared with C: pooled OR = 1.292, P=6.35E-05) and rs3814057 polymorphism (AC compared with AA: pooled OR = 1.170, P=0.036; dominant model: pooled OR = 1.162, P=0.037) were associated with the risk of overall cancer. In stratified analyses, rs3814058 polymorphism was revealed to increase the cancer risk in lung cancer subgroup. In summary, this meta-analysis indicates that the rs3814057 and rs3814058 polymorphisms of PXR gene play crucial roles in the pathogenesis of cancer and may be novel biomarkers for cancer-forewarning in overall population or in some particular subgroups.
Collapse
|
31
|
Planque C, Rajabi F, Grillet F, Finetti P, Bertucci F, Gironella M, Lozano JJ, Beucher B, Giraud J, Garambois V, Vincent C, Brown D, Caillo L, Kantar J, Pelegrin A, Prudhomme M, Ripoche J, Bourgaux JF, Ginestier C, Castells A, Hollande F, Pannequin J, Pascussi JM. Pregnane X-receptor promotes stem cell-mediated colon cancer relapse. Oncotarget 2018; 7:56558-56573. [PMID: 27448961 PMCID: PMC5302934 DOI: 10.18632/oncotarget.10646] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/29/2016] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer lethality usually results from post-treatment relapse in the majority of stage II-IV patients, due to the enhanced resistance of Cancer Stem Cells (CSCs). Here, we show that the nuclear receptor Pregnane X Receptor (PXR, NR1I2), behaves as a key driver of CSC-mediated tumor recurrence. First, PXR is specifically expressed in CSCs, where it drives the expression of genes involved in self-renewal and chemoresistance. Clinically, high levels of PXR correlate with poor recurrence-free survival in a cohort of >200 stage II/III colorectal cancer patients treated with chemotherapy, for whom finding biomarkers of treatment outcome is an urgent clinical need. shRNA silencing of PXR increased the chemo-sensitivity of human colon CSCs, reduced their self-renewal and tumor-initiating potential, and drastically delayed tumor recurrence in mice following chemotherapy. This study uncovers PXR as a key factor for CSC self-renewal and chemoresistance and targeting PXR thus represents a promising strategy to minimize colorectal cancer relapse by selectively sensitizing CSCs to chemotherapy.
Collapse
Affiliation(s)
- Chris Planque
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Fatemeh Rajabi
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Fanny Grillet
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - Meritxell Gironella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigaciones Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigaciones Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Bertrand Beucher
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Julie Giraud
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | | | - Charles Vincent
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | - Daniel Brown
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Ludovic Caillo
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Jovana Kantar
- Laboratoire de Biochimie, CHU Carémeau, Nîmes, France
| | - André Pelegrin
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
| | | | | | | | - Christophe Ginestier
- Centre de Recherche en Cancérologie de Marseille, U1068 Inserm, Marseille, France
| | - Antoni Castells
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigaciones Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Frédéric Hollande
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France.,Department of Pathology, University of Melbourne, Parkville, Australia
| | - Julie Pannequin
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| | - Jean Marc Pascussi
- CNRS UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM U1191, Montpellier, France.,Université Montpellier, Montpellier, France
| |
Collapse
|
32
|
Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 2018; 7:42661-42682. [PMID: 26894976 PMCID: PMC5173165 DOI: 10.18632/oncotarget.7410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.
Collapse
|
33
|
Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol 2017; 9:1210-1226. [PMID: 29184608 PMCID: PMC5696604 DOI: 10.4254/wjh.v9.i32.1210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial translocation (BT) has been impeccably implicated as a driving factor in the pathogenesis of a spectrum of chronic liver diseases (CLD). Scientific evidence accumulated over the last four decades has implied that the disease pathologies in CLD and BT are connected as a loop in the gut-liver axis and exacerbate each other. Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor that is expressed ubiquitously along the gut-liver-axis. PXR has been intricately associated with the regulation of various mechanisms attributed in causing BT. The importance of PXR as the mechanistic linker molecule in the gut-liver axis and its role in regulating bacterial interactions with the host in CLD has not been explored. PubMed was used to perform an extensive literature search using the keywords PXR and bacterial translocation, PXR and chronic liver disease including cirrhosis. In an adequate expression state, PXR acts as a sensor for bile acid dysregulation and bacterial derived metabolites, and in response shapes the immune profile beneficial to the host. Activation of PXR could be therapeutic in CLD as it counter-regulates endotoxin mediated inflammation and maintains the integrity of intestinal epithelium. This review mainly focuses PXR function and its regulation in BT in the context of chronic liver diseases.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| |
Collapse
|
34
|
Choi S, Neequaye P, French SW, Gonzalez FJ, Gyamfi MA. Pregnane X receptor promotes ethanol-induced hepatosteatosis in mice. J Biol Chem 2017; 293:1-17. [PMID: 29123032 DOI: 10.1074/jbc.m117.815217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-sensing nuclear receptor that modulates the metabolic response to drugs and toxic agents. Both PXR activation and deficiency promote hepatic triglyceride accumulation, a hallmark feature of alcoholic liver disease. However, the molecular mechanism of PXR-mediated activation of ethanol (EtOH)-induced steatosis is unclear. Here, using male wildtype (WT) and Pxr-null mice, we examined PXR-mediated regulation of chronic EtOH-induced hepatic lipid accumulation and hepatotoxicity. EtOH ingestion for 8 weeks significantly (1.8-fold) up-regulated Pxr mRNA levels in WT mice. The EtOH exposure also increased mRNAs encoding hepatic constitutive androstane receptor (3-fold) and its target, Cyp2b10 (220-fold), in a PXR-dependent manner. Furthermore, WT mice had higher serum EtOH levels and developed hepatic steatosis characterized by micro- and macrovesicular lipid accumulation. Consistent with the development of steatosis, lipogenic gene induction was significantly increased in WT mice, including sterol regulatory element-binding protein 1c target gene fatty-acid synthase (3.0-fold), early growth response-1 (3.2-fold), and TNFα (3.0-fold), whereas the expression of peroxisome proliferator-activated receptor α target genes was suppressed. Of note, PXR deficiency suppressed these changes and steatosis. Protein levels, but not mRNAs levels, of EtOH-metabolizing enzymes, including alcohol dehydrogenase 1, aldehyde dehydrogenase 1A1, and catalase, as well as the microsomal triglyceride transfer protein, involved in regulating lipid output were higher in Pxr-null than in WT mice. These findings establish that PXR signaling contributes to ALD development and suggest that PXR antagonists may provide a new approach for ALD therapy.
Collapse
Affiliation(s)
- Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California 90509
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707.
| |
Collapse
|
35
|
Oladimeji PO, Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol Pharmacol 2017; 93:119-127. [PMID: 29113993 DOI: 10.1124/mol.117.110155] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is a nuclear receptor considered to be a master xenobiotic receptor that coordinately regulates the expression of genes encoding drug-metabolizing enzymes and drug transporters to essentially detoxify and eliminate xenobiotics and endotoxins from the body. In the past several years, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied, and the role of PXR as a xenobiotic sensor has been well established. It is now clear, however, that PXR plays many other roles in addition to its xenobiotic-sensing function. For instance, recent studies have discovered previously unidentified roles of PXR in inflammatory response, cell proliferation, and cell migration. PXR also contributes to the dysregulation of these processes in diseases states. These recent discoveries of the role of PXR in the physiologic and pathophysiologic conditions of other cellular processes provides the possibility of novel targets for drug discovery. This review highlights areas of PXR regulation that require further clarification and summarizes the recent progress in our understanding of the nonxenobiotic functions of PXR that can be explored for relevant therapeutic applications.
Collapse
Affiliation(s)
- Peter O Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
36
|
Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, Chapkin RS. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology. Annu Rev Nutr 2017; 36:543-70. [PMID: 27431370 DOI: 10.1146/annurev-nutr-071715-051039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.
Collapse
Affiliation(s)
- Tim Y Hou
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843
| | - Karen Triff
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843;
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
37
|
Bakshi K, Ranjitha B, Dubey S, Jagannadham J, Jaiswal B, Gupta A. Novel complex of HAT protein TIP60 and nuclear receptor PXR promotes cell migration and adhesion. Sci Rep 2017. [PMID: 28623334 PMCID: PMC5473911 DOI: 10.1038/s41598-017-03783-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PXR is a member of nuclear receptor superfamily and a well-characterized mediator of xenobiotic metabolism. The classical mode of PXR activation involves its binding to appropriate ligand and subsequent heterodimerization with its partner RXR. However, various factors such as post-translational modifications and crosstalk with different cellular factors may also regulate the functional dynamics and behavior of PXR. In the present study, we have identified that TIP60, an essential lysine acetyltransferase protein interacts with unliganded PXR and together this complex promotes cell migration & adhesion. TIP60 utilizes its NR Box to interact with LBD region of PXR and acetylates PXR at lysine 170 to induce its intranuclear reorganization. Also, RXR is not required for TIP60-PXR complex formation and this complex does not induce ligand-dependent PXR target gene transactivation. Interestingly, we observed that PXR augments the catalytic activity of TIP60 for histones. This is the first report demonstrating the exclusive interaction of TIP60 with PXR and uncovers a potential role for the TIP60-PXR complex in cell migration and adhesion.
Collapse
Affiliation(s)
- Karishma Bakshi
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - B Ranjitha
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Shraddha Dubey
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Jaisri Jagannadham
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, India.
| |
Collapse
|
38
|
Dong Y, Wang Z, Xie GF, Li C, Zuo WW, Meng G, Xu CP, Li JJ. Pregnane X receptor is associated with unfavorable survival and induces chemotherapeutic resistance by transcriptional activating multidrug resistance-related protein 3 in colorectal cancer. Mol Cancer 2017; 16:71. [PMID: 28356150 PMCID: PMC5372326 DOI: 10.1186/s12943-017-0641-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background Although chemotherapy represents a predominant anti-cancer therapeutic modality, drug treatment efficacy is often limited due to the development of resistant tumor cells. The pregnane X receptor (PXR) affects chemotherapeutic effects by regulating targets involved in drug metabolism and transportation, but the regulatory mechanism is poorly understood. Methods Oxaliplatin (L-OHP) content in tumor cells was analyzed by mass cytometry. The roles of PXR on cancer cell proliferation, apoptosis and tumor growth with L-OHP-treated were investigated by MTS, colony formation, flow cytometry and xenograft tumor assays. Luciferase reporter, Chromatin-immunoprecipitation and Site-directed mutagenesis were evaluated the mechanisms. The PXR and multidrug resistance-related protein 3 (MRP3) expressions were examined by western blot, RT-PCR or immunohistochemistry of TMA. Kaplan-Meier and Cox regression were adopted to analyze the prognostic value of PXR in colorectal cancer (CRC). Results PXR over-expression significantly increased oxaliplatin (L-OHP) transport capacity with a reduction of its content and repressed the effects of L-OHP on tumour cell proliferation and apoptosis. Conversely, PXR knockdown augments L-OHP-mediated cellular proliferation and apoptosis. Moreover, PXR significantly reduced the therapeutic effects of L-OHP on tumor growth in nude mice. Further studies indicated a positive correlation between PXR and MRP3 expression and this finding was confirmed in two independent cohorts. Significantly increased MRP3 expression was also found in PXR over-expressing cell lines. Mechanistically, PXR could directly bind to the MRP3 promoter, activating its transcription. The PXR binding sites were determined to be at -796 to -782bp (CTGAAGCAGAGGGAA) and the key binding sites were the “AGGGA” (-787 to -783bp) on the MRP3 promoter. Accordingly, blockade of MRP3 diminishes the effects on drug resistance of PXR. In addition, PXR expression is significantly associated with poor overall survival and represents an unfavorable and independent factor for male or stage I + II CRC patient prognosis. Conclusions PXR is a potential biomarker for predicting outcome and activates MRP3 transcription by directly binding to its promoter resulting in an increased L-OHP efflux capacity, and resistance to L-OHP or platinum drugs in CRC. Our work reveals a novel and unique mechanism of drug resistance in CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0641-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Zhe Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Gan-Feng Xie
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Chong Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Wen-Wei Zuo
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Cheng-Ping Xu
- Department of Pathology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jian-Jun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University, No. 29, Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
39
|
Okada N, Murakami A, Urushizaki S, Matsuda M, Kawazoe K, Ishizawa K. Extracts of Immature Orange (Aurantii fructus immaturus) and Citrus Unshiu Peel (Citri unshiu pericarpium) Induce P-Glycoprotein and Cytochrome P450 3A4 Expression via Upregulation of Pregnane X Receptor. Front Pharmacol 2017; 8:84. [PMID: 28270768 PMCID: PMC5318391 DOI: 10.3389/fphar.2017.00084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/09/2017] [Indexed: 01/23/2023] Open
Abstract
P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) are expressed in the intestine and are associated with drug absorption and metabolism. Pregnane X receptor (PXR) is the key molecule that regulates the expression of P-gp and CYP3A4. Given that PXR activity is regulated by a variety of compounds, it is possible that unknown PXR activators exist among known medicines. Kampo is a Japanese traditional medicine composed of various natural compounds. In particular, immature orange [Aurantii fructus immaturus (IO)] and citrus unshiu peel [Citri unshiu pericarpium (CP)] are common ingredients of kampo. A previous study reported that kampo containing IO or CP decreased the blood concentration of concomitant drugs via upregulation of CYP3A4 although the mechanism was unclear. Some flavonoids are indicated to alter P-gp and CYP3A4 activity via changes in PXR activity. Because IO and CP include various flavonoids, we speculated that the activity of P-gp and CYP3A4 in the intestine may be altered via changes in PXR activity when IO or CP is administered. We tested this hypothesis by using LS180 intestinal epithelial cells. The ethanol extract of IO contained narirutin and naringin, and that of CP contained narirutin and hesperidin. Ethanol extracts of IO and CP induced P-gp, CYP3A4, and PXR expression. The increase of P-gp and CYP3A4 expression by the IO and CP ethanol extracts was inhibited by ketoconazole, an inhibitor of PXR activation. The ethanol extract of IO and CP decreased the intracellular concentration of digoxin, a P-gp substrate, and this decrease was inhibited by cyclosporine A, a P-gp inhibitor. In contrast, CP, but not IO, stimulated the metabolism of testosterone, a CYP3A4 substrate, and this was inhibited by a CYP3A4 inhibitor. These findings indicate that the ethanol extract of IO and CP increased P-gp and CYP3A4 expression via induction of PXR protein. Moreover, this induction decreased the intracellular substrate concentration.
Collapse
Affiliation(s)
- Naoto Okada
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan; Department of Pharmacy, Tokushima University HospitalTokushima, Japan
| | - Aki Murakami
- Department of Pharmacy, Tokushima University Hospital Tokushima, Japan
| | - Shiori Urushizaki
- Faculty of Pharmaceutical Sciences, Tokushima University Tokushima, Japan
| | - Misa Matsuda
- Faculty of Pharmaceutical Sciences, Tokushima University Tokushima, Japan
| | - Kazuyoshi Kawazoe
- Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, Tokushima University Graduate School Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University HospitalTokushima, Japan; Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| |
Collapse
|
40
|
QSAR development and profiling of 72,524 REACH substances for PXR activation and CYP3A4 induction. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.comtox.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Lolodi O, Wang YM, Wright WC, Chen T. Differential Regulation of CYP3A4 and CYP3A5 and its Implication in Drug Discovery. Curr Drug Metab 2017; 18:1095-1105. [PMID: 28558634 PMCID: PMC5709240 DOI: 10.2174/1389200218666170531112038] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer cells use several mechanisms to resist the cytotoxic effects of drugs, resulting in tumor progression and invasion. One such mechanism capitalizes on the body's natural defense against xenobiotics by increasing the rate of xenobiotic efflux and metabolic inactivation. Xenobiotic metabolism typically involves conversion of parent molecules to more soluble and easily excreted derivatives in reactions catalyzed by Phase I and Phase II drug metabolizing enzymes. METHODS We performed a structured search of peer-reviewed literature on P450 (CYP) 3A, with a focus on CYP3A4 and CYP3A5. RESULTS Recent reports indicate that components of the xenobiotic response system are upregulated in some diseases, including many cancers. Such components include the pregnane X receptor (PXR), CYP3A4 and CYP3A5 enzymes. The CYP3A enzymes are a subset of the numerous enzymes that are transcriptionally activated following the interaction of PXR and many ligands. CONCLUSION Intense research is ongoing to understand the functional ramifications of aberrant expression of these components in diseased states with the goal of designing novel drugs that can selectively target them.
Collapse
Affiliation(s)
- Ogheneochukome Lolodi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
42
|
Chen Y, Huang W, Chen F, Hu G, Li F, Li J, Xuan A. Pregnane X receptors regulate CYP2C8 and P-glycoprotein to impact on the resistance of NSCLC cells to Taxol. Cancer Med 2016; 5:3564-3571. [PMID: 27878971 PMCID: PMC5224856 DOI: 10.1002/cam4.960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 08/24/2016] [Accepted: 09/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 2C8 (CYP2C8) is one of the enzymes that primarily participate in producing metabolisms of medications and P‐glycoprotein (P‐gp) has been regarded as one of the important molecules in chemotherapeutically induced multidrug resistance (MDR). In addition, the pregnane X receptor (PXR) is involved in regulating both CYP2C8 and P‐gp. We aim to research the effect of PXR on Taxol‐resistant non–small‐cell lung cancer (NSCLC cells) via regulating CYP2C8 and P‐gp. NSCLC cells were treated with SR12813, LY335979, or PXR siRNA. Cell counting kit (CCK‐8) assay was used to detect cell vitality. Colony formation assay was used to observe cell proliferation. Western blotting, real‐time polymerase chain reaction (RT‐PCR), and immunofluorescence staining were conducted to analyze the expressions of PXR, CYP2C8, and P‐gp. Taxol and its metabolic products were detected by high‐performance liquid chromatography (HPLC). The expression of PXR in A549 cell line was higher than that in other cell lines. The accumulation of PXR was observed in the nucleus after cells were treated with SR12813. Besides, SR12813 induced higher expressions of CYP2C8 and P‐gp proteins. We also discovered that pretreatment with SR12813 reversed the inhibition of cell viability and proliferation after the Taxol treatment in comparison to the SR12813 untreated group. Furthermore, the hydroxylation products of Taxol analyzed by HPLC were increased in comparison to the SR12813 untreated group, indicating that high expressions of CYP2C8 and P‐gp enhanced the resistance of A549 cells to Taxol. For cells treated with PXR siRNA, cell viability, cell proliferation, and Taxol metabolites were significantly reduced after the Taxol treatment in comparison to the siRNA‐negative group. The cell viability, cell proliferation, and Taxol metabolites were regulated by the expressions of PXR, P‐gp, and CYP2C8. That is, PXR expression has an important effect on the resistance of NSCLC cells to Taxol via upregulating P‐gp and CYP2C8.
Collapse
Affiliation(s)
- Yan Chen
- Department of Respiratory, Liwan Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Wandan Huang
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Feiyu Chen
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Guoping Hu
- Department of Respiratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Fenglei Li
- Department of Respiratory, Liwan Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510170, China
| | - Jianhua Li
- Department of Physiology, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Aiguo Xuan
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Collaborative Innovation Center for Neurogenetics and Channelopathies, Guangzhou, Guangdong, 510260, China
| |
Collapse
|
43
|
Jin G, Li Y, Zhu Y, Du L, Yan J, Yang Q. SMS regulates the expression and function of P-gp and MRP2 in Caco-2 cells. Cell Biol Toxicol 2016; 32:483-497. [PMID: 27394416 DOI: 10.1007/s10565-016-9348-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/28/2016] [Indexed: 02/03/2023]
Abstract
Sphingomyelin synthase (SMS) has two isoforms of SMS1 and SMS2, the last enzyme involved in the biosynthesis of sphingomyelin (SM), and has impact on the expression of membrane proteins. In the present study, we explored the potential effects of SMS on drug transporters, a special family of membrane proteins in human intestinal epithelial Caco-2 cells. The specific knockdown of SMS1 or SMS2 with siRNA in Caco-2 cells substantially decreased the expression and function of P-glycoprotein (P-gp) and multidrug resistance protein 2 (MRP2) rather than other drug transporters MRP1, MRP3, PEPT1, OATP2B1, and BCRP. In the SMS1 stable overexpressed Caco-2 cell line, the expression levels of P-gp and MRP2 and transcription factor pregnane X receptor (PXR) were upregulated and the phosphorylation levels of signaling pathways janus protein tyrosine kinase 2 (JAK-2) and extracellular signal-regulated kinases (ERK) were also evidently increased; however, the upregulated mRNA expression levels of PXR, P-gp, and MRP2 were diminished by inhibiting the phosphorylation of ERK and JAK-2. Furthermore, the SMS1 overexpression in Caco-2 cells altered the expression levels of ERM proteins ezrin and moesin, which are closely connected to the function of drug transporters. In conclusion, we herein demonstrate for the first time that in Caco-2 cells SMS regulates the expression and function of drug transporters P-gp and MRP2, and their regulator PXR is mediated by phosphorylated ERK and JAK-2 signaling pathways.
Collapse
Affiliation(s)
- Guiying Jin
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Yang Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Yuwen Zhu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Lisha Du
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Junkai Yan
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Industrial Microorganisms, Songhu Road 2005, Shanghai, 200438, China.
| |
Collapse
|
44
|
Pondugula SR, Pavek P, Mani S. Pregnane X Receptor and Cancer: Context-Specificity is Key. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27617265 DOI: 10.11131/2016/101198] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR) is an adopted orphan nuclear receptor that is activated by a wide-range of endobiotics and xenobiotics, including chemotherapy drugs. PXR plays a major role in the metabolism and clearance of xenobiotics and endobiotics in liver and intestine via induction of drug-metabolizing enzymes and drug-transporting proteins. However, PXR is expressed in several cancer tissues and the accumulating evidence strongly points to the differential role of PXR in cancer growth and progression as well as in chemotherapy outcome. In cancer cells, besides regulating the gene expression of enzymes and proteins involved in drug metabolism and transport, PXR also regulates other genes involved in proliferation, metastasis, apoptosis, anti-apoptosis, inflammation, and oxidative stress. In this review, we focus on the differential role of PXR in a variety of cancers, including prostate, breast, ovarian, endometrial, and colon. We also discuss the future directions to further understand the differential role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators to target PXR in PXR-expressing cancers.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Petr Pavek
- Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, Hradec Králové 500 05, Czech Republic, European Union
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
45
|
Bhagyaraj E, Nanduri R, Saini A, Dkhar HK, Ahuja N, Chandra V, Mahajan S, Kalra R, Tiwari D, Sharma C, Janmeja AK, Gupta P. Human Xenobiotic Nuclear Receptor PXR Augments Mycobacterium tuberculosis Survival. THE JOURNAL OF IMMUNOLOGY 2016; 197:244-55. [PMID: 27233963 DOI: 10.4049/jimmunol.1600203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/03/2016] [Indexed: 01/16/2023]
Abstract
Mycobacterium tuberculosis can evade host defense processes, thereby ensuring its survival and pathogenesis. In this study, we investigated the role of nuclear receptor, pregnane X receptor (PXR), in M. tuberculosis infection in human monocyte-derived macrophages. In this study, we demonstrate that PXR augments M. tuberculosis survival inside the host macrophages by promoting the foamy macrophage formation and abrogating phagolysosomal fusion, inflammation, and apoptosis. Additionally, M. tuberculosis cell wall lipids, particularly mycolic acids, crosstalk with human PXR (hPXR) by interacting with its promiscuous ligand binding domain. To confirm our in vitro findings and to avoid the reported species barrier in PXR function, we adopted an in vivo mouse model expressing hPXR, wherein expression of hPXR in mice promotes M. tuberculosis survival. Therefore, pharmacological intervention and designing antagonists to hPXR may prove to be a promising adjunct therapy for tuberculosis.
Collapse
Affiliation(s)
- Ella Bhagyaraj
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Ravikanth Nanduri
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Ankita Saini
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Hedwin Kitdorlang Dkhar
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Nancy Ahuja
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Vemika Chandra
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Sahil Mahajan
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Rashi Kalra
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Drishti Tiwari
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | - Charu Sharma
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| | | | - Pawan Gupta
- Council for Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India; and
| |
Collapse
|
46
|
Kong Q, Han Z, Zuo X, Wei H, Huang W. Co-expression of pregnane X receptor and ATP-binding cassette sub-family B member 1 in peripheral blood: A prospective indicator for drug resistance prediction in non-small cell lung cancer. Oncol Lett 2016; 11:3033-3039. [PMID: 27123059 PMCID: PMC4840610 DOI: 10.3892/ol.2016.4369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the protein expression profiling of pregnane X receptor (PXR) and ATP-binding cassette sub-family B member 1 (ABCB1; also known as MDR1 or P-gp), present in the peripheral blood mononuclear cells (PBMCs) and cancerous tissues of cases of non-small cell lung cancer (NSCLC). Furthermore, the study aimed to assess the feasibility of predicting drug resistance through the medium of PBMCs. Of the subjects included in the study, 37 were histopathologically diagnosed with NSCLC and 17 were control patients without cancer. ThinPrep liquid-based smears with cytosine were applied in the examination of the PBMCs and proved quite effective in preserving the morphology and surface antigens of the lymphocytes. Measurements of expression levels in the PBMCs and cancerous tissues were obtained by immunohistochemical means. The results showed that, with the exception of the selective PXR expression in the normal lung tissues, the two types of proteins existed extensively throughout the PBMCs, normal tissues and tumors. Among the cancer patients, prior to chemotherapy, a significant rise in ABCB1 expression could be observed in the PBMCs, together with a similar rise in ABCB1 and PXR expression in the tumor specimens. Marked upregulation of the two proteins was detected in the PBMCs following 1 cycle of first-line chemotherapy. ABCB1 expression, correlated with PXR, persisted mostly in the PBMCs and tissue samples. When bound to and activated by ligands, PXR translocates from the cytoplasm to the nucleus of the cells. PXR subsequently binds to its DNA response elements as a heterodimer with the retinoid X receptor. A PXR translocation of moderate or low differentiation was identified in 3 cases of adenocarcinoma, which were co-expressing the two genes in the PBMCs prior to chemotherapy. During follow-up visits, tumor recurrence was observed within 3 months in 5 cases, which were characterized by PXR translocation. These findings indicate that the combined expression of PXR and ABCB1 in PBMCs may be used as a prospective indicator in diagnosis prior to histopathological diagnosis, and therefore may function as a novel biomarker for the prediction of drug resistance.
Collapse
Affiliation(s)
- Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zenglei Han
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiaoli Zuo
- Department of Pathology, Qingdao Hiser Hospital, Qingdao, Shandong 266011, P.R. China
| | - Hongjun Wei
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Weiqing Huang
- Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
47
|
Rana M, Devi S, Gourinath S, Goswami R, Tyagi RK. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1183-1197. [PMID: 26962022 DOI: 10.1016/j.bbagrm.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
Abstract
Pregnane & Xenobiotic Receptor (PXR) acts as a xenosensing transcriptional regulator of many drug metabolizing enzymes and transporters of the 'detoxification machinery' that coordinate in elimination of xenobiotics and endobiotics from the cellular milieu. It is an accepted view that some individuals or specific populations display considerable differences in their ability to metabolize different drugs, dietary constituents, herbals etc. In this context we speculated that polymorphisms in PXR gene might contribute to variability in cytochrome P450 (CYP450) metabolizing enzymes of phase I, drug metabolizing components of phase II and efflux components of the detoxification machinery. Therefore, in this study, we have undertaken a comprehensive functional analysis of seventeen naturally occurring non-synonymous variants of human PXR. When compared, we observed that some of the PXR SNP variants exhibit distinct functional and dynamic responses on parameters which included transcriptional function, sub-cellular localization, mitotic chromatin binding, DNA-binding properties and other molecular interactions. One of the unique SNP located within the DNA-binding domain of PXR was found to be functionally null and distinct on other parameters. Similarly, some of the non-synonymous SNPs in PXR imparted reduced transactivation function as compared to wild type PXR. Interestingly, PXR is reported to be a mitotic chromatin binding protein and such an association has been correlated to an emerging concept of 'transcription memory' and altered transcription output. In view of the observations made herein our data suggest that some of the natural PXR variants may have adverse physiological consequences owing to its influence on the expression levels and functional output of drug-metabolizing enzymes and transporters. The present study is expected to explain not only the observed inter-individual responses to different drugs but may also highlight the mechanistic details and importance of PXR in drug clearance, drug-drug interactions and diverse metabolic disorders. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Manjul Rana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneeta Devi
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samudrala Gourinath
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravinder Goswami
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
48
|
Zhao J, Bai Z, Feng F, Song E, Du F, Zhao J, Shen G, Ji F, Li G, Ma X, Hang X, Xu B. Cross-talk between EPAS-1/HIF-2α and PXR signaling pathway regulates multi-drug resistance of stomach cancer cell. Int J Biochem Cell Biol 2016; 72:73-88. [DOI: 10.1016/j.biocel.2016.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 12/27/2015] [Accepted: 01/15/2016] [Indexed: 01/14/2023]
|
49
|
Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. Oncotarget 2016; 6:6431-47. [PMID: 25669983 PMCID: PMC4467447 DOI: 10.18632/oncotarget.3237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 01/22/2023] Open
Abstract
Resistance to chemotherapy is a major limitation of cancer treatments with several molecular mechanisms involved, in particular altered local drug metabolism and detoxification process. The role of drug metabolism and clearance system has not been satisfactorily investigated in Multiple Myeloma (MM), a malignant plasma cell cancer for which a majority of patients escapes treatment. The expression of 350 genes encoding for uptake carriers, xenobiotic receptors, phase I and II Drug Metabolizing Enzymes (DMEs) and efflux transporters was interrogated in MM cells (MMCs) of newly-diagnosed patients in relation to their event free survival. MMCs of patients with a favourable outcome have an increased expression of genes coding for xenobiotic receptors (RXRα, LXR, CAR and FXR) and accordingly of their gene targets, influx transporters and phase I/II DMEs. On the contrary, MMCs of patients with unfavourable outcome displayed a global down regulation of genes coding for xenobiotic receptors and the downstream detoxification genes but had a high expression of genes coding for ARNT and Nrf2 pathways and ABC transporters. Altogether, these data suggests ARNT and Nrf2 pathways could be involved in MM primary resistance and that targeting RXRα, PXR, LXR and FXR through agonists could open new perspectives to alleviate or reverse MM drug resistance.
Collapse
|
50
|
Krisnamurti DGB, Louisa M, Anggraeni E, Wanandi SI. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells. Adv Pharmacol Sci 2016; 2016:6702424. [PMID: 26981116 PMCID: PMC4769734 DOI: 10.1155/2016/6702424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 11/17/2022] Open
Abstract
Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance.
Collapse
Affiliation(s)
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Erlia Anggraeni
- Master Program in Biomedicine, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|