1
|
Zhang L, Shi X, Zhang L, Mi Y, Zuo L, Gao S. A first-in-class TIMM44 blocker inhibits bladder cancer cell growth. Cell Death Dis 2024; 15:204. [PMID: 38467612 PMCID: PMC10928220 DOI: 10.1038/s41419-024-06585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Mitochondria play a multifaceted role in supporting bladder cancer progression. Translocase of inner mitochondrial membrane 44 (TIMM44) is essential for maintaining function and integrity of mitochondria. We here tested the potential effect of MB-10 (MitoBloCK-10), a first-in-class TIMM44 blocker, against bladder cancer cells. TIMM44 mRNA and protein expression is significantly elevated in both human bladder cancer tissues and cells. In both patient-derived primary bladder cancer cells and immortalized (T24) cell line, MB-10 exerted potent anti-cancer activity and inhibited cell viability, proliferation and motility. The TIMM44 blocker induced apoptosis and cell cycle arrest in bladder cancer cells, but failed to provoke cytotoxicity in primary bladder epithelial cells. MB-10 disrupted mitochondrial functions in bladder cancer cells, causing mitochondrial depolarization, oxidative stress and ATP reduction. Whereas exogenously-added ATP and the antioxidant N-Acetyl Cysteine mitigated MB-10-induced cytotoxicity of bladder cancer cells. Genetic depletion of TIMM44 through CRISPR-Cas9 method also induced robust anti-bladder cancer cell activity and MB-10 had no effect in TIMM44-depleted cancer cells. Contrarily, ectopic overexpression of TIMM44 using a lentiviral construct augmented proliferation and motility of primary bladder cancer cells. TIMM44 is important for Akt-mammalian target of rapamycin (mTOR) activation. In primary bladder cancer cells, Akt-S6K1 phosphorylation was decreased by MB-10 treatment or TIMM44 depletion, but enhanced after ectopic TIMM44 overexpression. In vivo, intraperitoneal injection of MB-10 impeded bladder cancer xenograft growth in nude mice. Oxidative stress, ATP reduction, Akt-S6K1 inhibition and apoptosis were detected in MB-10-treated xenograft tissues. Moreover, genetic depletion of TIMM44 also arrested bladder cancer xenograft growth in nude mice, leading to oxidative stress, ATP reduction and Akt-S6K1 inhibition in xenograft tissues. Together, targeting overexpressed TIMM44 by MB-10 significantly inhibits bladder cancer cell growth in vitro and in vivo.
Collapse
Affiliation(s)
- Lifeng Zhang
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Department of Urology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lei Zhang
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
- Department of Urology, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
- Department of Urology, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai, Province, China.
| |
Collapse
|
2
|
Wang H, Cheng W, Hu P, Ling T, Hu C, Chen Y, Zheng Y, Wang J, Zhao T, You Q. Integrative analysis identifies oxidative stress biomarkers in non-alcoholic fatty liver disease via machine learning and weighted gene co-expression network analysis. Front Immunol 2024; 15:1335112. [PMID: 38476236 PMCID: PMC10927810 DOI: 10.3389/fimmu.2024.1335112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease globally, with the potential to progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. Given the absence of effective treatments to halt its progression, novel molecular approaches to the NAFLD diagnosis and treatment are of paramount importance. Methods Firstly, we downloaded oxidative stress-related genes from the GeneCards database and retrieved NAFLD-related datasets from the GEO database. Using the Limma R package and WGCNA, we identified differentially expressed genes closely associated with NAFLD. In our study, we identified 31 intersection genes by analyzing the intersection among oxidative stress-related genes, NAFLD-related genes, and genes closely associated with NAFLD as identified through Weighted Gene Co-expression Network Analysis (WGCNA). In a study of 31 intersection genes between NAFLD and Oxidative Stress (OS), we identified three hub genes using three machine learning algorithms: Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine - Recursive Feature Elimination (SVM-RFE), and RandomForest. Subsequently, a nomogram was utilized to predict the incidence of NAFLD. The CIBERSORT algorithm was employed for immune infiltration analysis, single sample Gene Set Enrichment Analysis (ssGSEA) for functional enrichment analysis, and Protein-Protein Interaction (PPI) networks to explore the relationships between the three hub genes and other intersecting genes of NAFLD and OS. The distribution of these three hub genes across six cell clusters was determined using single-cell RNA sequencing. Finally, utilizing relevant data from the Attie Lab Diabetes Database, and liver tissues from NASH mouse model, Western Blot (WB) and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) assays were conducted, this further validated the significant roles of CDKN1B and TFAM in NAFLD. Results In the course of this research, we identified 31 genes with a strong association with oxidative stress in NAFLD. Subsequent machine learning analysis and external validation pinpointed two genes: CDKN1B and TFAM, as demonstrating the closest correlation to oxidative stress in NAFLD. Conclusion This investigation found two hub genes that hold potential as novel targets for the diagnosis and treatment of NAFLD, thereby offering innovative perspectives for its clinical management.
Collapse
Affiliation(s)
- Haining Wang
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Cheng
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Hu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ling
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Hu
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongzhen Chen
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Zheng
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junqi Wang
- Department of Medical Oncology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Ting Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiang You
- Medical Center for Digestive Diseases, Department of Geriatrics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
4
|
Huang CC, Liu HY, Hsu TW, Lee WC. Updates on the Pivotal Roles of Mitochondria in Urothelial Carcinoma. Biomedicines 2022; 10:biomedicines10102453. [PMID: 36289714 PMCID: PMC9599371 DOI: 10.3390/biomedicines10102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are important organelles responsible for energy production, redox homeostasis, oncogenic signaling, cell death, and apoptosis. Deregulated mitochondrial metabolism and biogenesis are often observed during cancer development and progression. Reports have described the crucial roles of mitochondria in urothelial carcinoma (UC), which is a major global health challenge. This review focuses on research advances in the role of mitochondria in UC. Here, we discuss the pathogenic roles of mitochondria in UC and update the mitochondria-targeted therapies. We aim to offer a better understanding of the mitochondria-modulated pathogenesis of UC and hope that this review will allow the development of novel mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Chiang-Chi Huang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hui-Ying Liu
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Tsuen-Wei Hsu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8306)
| |
Collapse
|
5
|
Metabolic Reprogramming in Response to Alterations of Mitochondrial DNA and Mitochondrial Dysfunction in Gastric Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23031857. [PMID: 35163779 PMCID: PMC8836428 DOI: 10.3390/ijms23031857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
We used gastric cancer cell line AGS and clinical samples to investigate the roles of mitochondrial DNA (mtDNA) alterations and mitochondrial respiratory dysfunction in gastric adenocarcinoma (GAC). A total of 131 clinical samples, including 17 normal gastric mucosa (N-GM) from overweight patients who had received sleeve gastrectomy and 57 paired non-cancerous gastric mucosae (NC-GM) and GAC from GAC patients who had undergone partial/subtotal/total gastrectomy, were recruited to examine the copy number and D310 sequences of mtDNA. The gastric cancer cell line AGS was used with knockdown (KD) mitochondrial transcription factor A (TFAM) to achieve mitochondrial dysfunction through a decrease of mtDNA copy number. Parental (PT), null-target (NT), and TFAM-KD-(A/B/C) represented the parental, control, and TFAM knocked-down AGS cells, respectively. These cells were used to compare the parameters reflecting mitochondrial biogenesis, glycolysis, and cell migration activity. The median mtDNA copy numbers of 17 N-GM, 57 NC-GM, and 57 GAC were 0.058, 0.055, and 0.045, respectively. The trend of decrease was significant (p = 0.030). In addition, GAC had a lower mean mtDNA copy number of 0.055 as compared with the paired NC-GM of 0.078 (p < 0.001). The mean mtDNA copy number ratio (mtDNA copy number of GAC/mtDNA copy number of paired NC-GM) was 0.891. A total of 35 (61.4%) GAC samples had an mtDNA copy number ratio ≤0.804 (p = 0.017) and 27 (47.4%) harbored a D310 mutation (p = 0.047), and these patients had shorter survival time and poorer prognosis. After effective knockdown of TFAM, TFAM-KD-B/C cells expressed higher levels of hexokinase II (HK-II) and v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT, but lower levels of phosphorylated pyruvate dehydrogenase (p-PDH) than did the NT/PT AGS cells. Except for a higher level of p-PDH, the expression levels of these proteins remained unchanged in TFAM-KD-A, which had a mild knockdown of TFAM. Compared to those of NT, TFAM-KD-C had not only a lower mtDNA copy number (p = 0.050), but also lower oxygen consumption rates (OCR), including basal respiration (OCRBR), ATP-coupled respiration (OCRATP), reserve capacity (OCRRC), and proton leak (OCRPL)(all with p = 0.050). In contrast, TFAM-KD-C expressed a higher extracellular acidification rate (ECAR)/OCRBR ratio (p = 0.050) and a faster wound healing migration at 6, 12, and 18 h, respectively (all with p = 0.050). Beyond a threshold, the decrease in mtDNA copy number, the mtDNA D310 mutation, and mitochondrial dysfunction were involved in the carcinogenesis and progression of GACs. Activation of PDH might be considered as compensation for the mitochondrial dysfunction in response to glucose metabolic reprogramming or to adjust mitochondrial plasticity in GAC.
Collapse
|
6
|
Albeltagy RS, Mumtaz F, Abdel Moneim AE, El-Habit OH. N-Acetylcysteine Reduces miR-146a and NF-κB p65 Inflammatory Signaling Following Cadmium Hepatotoxicity in Rats. Biol Trace Elem Res 2021; 199:4657-4665. [PMID: 33454892 DOI: 10.1007/s12011-021-02591-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
We performed a thorough screening and analysis of the impact of cadmium chloride (CdCl2) and N-acetylcysteine (NAC) on the miR146a/NF-κB p65 inflammatory pathway and mitochondrial biogenesis dysfunction in male albino rats. A total of 24 male albino rats were divided into three groups: a control group, a CdCl2-treated group (3 mg/kg, orally), and a CdCl2 + NAC-treated group (200 mg/kg of NAC, 1 h after CdCl2 treatment), for 60 consecutive days. Real-time quantitative PCR was used to analyze the expression of miR146a, Irak1, Traf6, Nrf1, Nfe2l2, Pparg, Prkaa, Stat3, Tfam, Tnfa, and Il1b, whereas tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 protein levels were assessed using ELISA, and NF-κB p65 was detected using western blotting. A significant restoration of homeostatic inflammatory processes as well as mitochondrial biogenesis was observed after NAC and CdCl2 treatment. Decreased miR146a and NF-κB p65 were also found after treatment with NAC and CdCl2 compared with CdCl2 treatment alone. Collectively, our findings demonstrate that CdCl2 caused mtDNA release because of Tfam loss, leading to NF-κB p65 activation. Co-treatment with NAC could alleviate Cd-induced genotoxicity in liver tissue. We concluded that adding NAC to CdCl2 resulted in a decreased signaling of the NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Rasha S Albeltagy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Farah Mumtaz
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Ola H El-Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
7
|
Hsieh YT, Tu HF, Yang MH, Chen YF, Lan XY, Huang CL, Chen HM, Li WC. Mitochondrial genome and its regulator TFAM modulates head and neck tumourigenesis through intracellular metabolic reprogramming and activation of oncogenic effectors. Cell Death Dis 2021; 12:961. [PMID: 34663785 PMCID: PMC8523524 DOI: 10.1038/s41419-021-04255-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022]
Abstract
Mitochondrial transcriptional factor A (TFAM) acts as a key regulatory to control mitochondrial DNA (mtDNA); the impact of TFAM and mtDNA in modulating carcinogenesis is controversial. Current study aims to define TFAM mediated regulations in head and neck cancer (HNC). Multifaceted analyses in HNC cells genetically manipulated for TFAM were performed. Clinical associations of TFAM and mtDNA encoded Electron Transport Chain (ETC) genes in regulating HNC tumourigenesis were also examined in HNC specimens. At cellular level, TFAM silencing led to an enhanced cell growth, motility and chemoresistance whereas enforced TFAM expression significantly reversed these phenotypic changes. These TFAM mediated cellular changes resulted from (1) metabolic reprogramming by directing metabolism towards aerobic glycolysis, based on the detection of less respiratory capacity in accompany with greater lactate production; and/or (2) enhanced ERK1/2-Akt-mTORC-S6 signalling activity in response to TFAM induced mtDNA perturbance. Clinical impacts of TFAM and mtDNA were further defined in carcinogen-induced mouse tongue cancer and clinical human HNC tissues; as the results showed that TFAM and mtDNA expression were significantly dropped in tumour compared with their normal counterparts and negatively correlated with disease progression. Collectively, our data uncovered a tumour-suppressing role of TFAM and mtDNA in determining HNC oncogenicity and potentially paved the way for development of TFAM/mtDNA based scheme for HNC diagnosis.
Collapse
Affiliation(s)
- Yi-Ta Hsieh
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsi-Feng Tu
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Medical Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fen Chen
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Xiang-Yun Lan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Ling Huang
- Department of Health Technology and Informatics (HTI), The Hong Kong Polytechnic University (PolyU), Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Hsin-Ming Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis 2021; 12:325. [PMID: 33771980 PMCID: PMC7997956 DOI: 10.1038/s41419-021-03618-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
TEFM (transcription elongation factor of mitochondria) has been identified as a novel nuclear-encoded transcription elongation factor in the transcription of mitochondrial genome. Our bioinformatics analysis of TCGA data revealed an aberrant over-expression of TEFM in hepatocellular carcinoma (HCC). We analyzed its biological effects and clinical significance in this malignancy. TEFM expression was analyzed by quantitative real-time PCR, western blot, and immunohistochemistry analysis in HCC tissues and cell lines. The effects of TEFM on HCC cell growth and metastasis were determined by cell proliferation, colony formation, flow cytometric cell cycle and apoptosis, migration, and invasion assays. TEFM expression was significantly increased in HCC tissues mainly caused by down-regulation of miR-194-5p. Its increased expression is correlated with poor prognosis of HCC patients. TEFM promoted HCC growth and metastasis both in vitro and in vivo by promoting G1–S cell transition, epithelial-to-mesenchymal transition (EMT), and suppressing cell apoptosis. Mechanistically, TEFM exerts its tumor growth and metastasis promoting effects at least partly through increasing ROS production and subsequently by activation of ERK signaling. Our study suggests that TEFM functions as a vital oncogene in promoting growth and metastasis in HCC and may contribute to the targeted therapy of HCC.
Collapse
|
9
|
Vozáriková V, Kunová N, Bauer JA, Frankovský J, Kotrasová V, Procházková K, Džugasová V, Kutejová E, Pevala V, Nosek J, Tomáška Ľ. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules 2020; 10:biom10081193. [PMID: 32824374 PMCID: PMC7463775 DOI: 10.3390/biom10081193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.
Collapse
Affiliation(s)
- Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Ján Frankovský
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia;
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
- Correspondence: ; Tel.: +421-2-90149-433
| |
Collapse
|
10
|
Pandey AK, Verma S. Combination drug therapy for multimodal treatment of cancer by targeting mitochondrial transcriptional pathway: An in-silico approach. Med Hypotheses 2020; 143:110075. [PMID: 32652430 DOI: 10.1016/j.mehy.2020.110075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/26/2022]
Abstract
Cancer pathologies are deeply associated with mitochondrial dysfunction. TFAM, transcription factor A of mitochondria plays eminent role in transcription and replication of mtDNA to synthesize different mitochondrial proteins, has been reported to have elevated levels during malignancy and can be a compelling target of the disease. We hypothesize that violacein and silver nanoparticles, as a dyad drug system, can structurally bind and inhibit TFAM at the interface of TFAM-DNA complex during replication and thus can hinder majority of pathways contributing to cancer proliferation. It is evident from our molecular docking analysis of violacein and silver nanoparticles with the TFAM-DNA complex which gave resulting negative binding energy of -8.836 kcal/mol for violacein with inhibition constant (Ki value) of 1.51 μM and high binding score of 9518 for silver nanoparticle in the DNA interacting cavity of TFAM. Hence, our hypothesis of employing violacein and silver nanoparticle for cancer treatment by TFAM inhibition seems highly promising and further in-vitro and in-vivo studies are extremely demanded in this concern.
Collapse
Affiliation(s)
- Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, India.
| | - Shalja Verma
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, India; Department of Biochemical Engineering and Biotechnology. Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
11
|
Shan Q, Qu F, Yang W, Chen N. Effect of LINC00657 on Apoptosis of Breast Cancer Cells by Regulating miR-590-3p. Cancer Manag Res 2020; 12:4561-4571. [PMID: 32606949 PMCID: PMC7305342 DOI: 10.2147/cmar.s249576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate the effect of LINC00657 on breast carcinoma by regulating miR-590-3p. Methods Ninety-seven cases with breast carcinoma who were admitted to Qingdao Chengyang People’s Hospital were collected. The breast carcinoma (n=97) and tumor-adjacent tissues (n=97) of patients were collected during the operation with the permission of the patients. The expressions of LINC00657 and miR-590-3p were detected in breast carcinoma cells and tissues. The breast carcinoma cells were transfected and their proliferation, migration, invasion and apoptosis were detected. Results LINC00657 was highly expressed in breast carcinoma tissues, while miR-590-3p was reduced (P<0.05). The proliferation, invasion and migration of cells transfected with si-LINC00657 or miR-590-3p-mimics were significantly inhibited, and the apoptosis rate increased, resulting in the up-regulation of the expressions of apoptosis-related proteins Bax and Caspase-3 and the reduction of Bcl-2 (P<0.05). After si-LINC00657 or miR-590-3p-mimics, the level of GOLPH3 decreased. Through double luciferase report and RIP experiment, it was confirmed that LINC00657 could act as a sponge of miR-590-3p to negatively regulate its expression. After correlation analysis, it was concluded that there was a negative correlation between LINC00657 and miR-590-3p. Rescue experiments concluded that co-transfection of si-LINC00657+miR-590-3P-inhibitor could reverse the inhibitory action of si-LINC00657 on breast carcinoma cells. Conclusion LINC00657 can participate in the biological behavior process of breast carcinoma by regulating miR-590-3p/GOLPH3 signal.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| | - Weiping Yang
- Department of Thyroid Breast Surgery, Qingdao Chengyang People's Hospital, Qingdao, People's Republic of China
| | - Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
12
|
Dong Z, Pu L, Cui H. Mitoepigenetics and Its Emerging Roles in Cancer. Front Cell Dev Biol 2020; 8:4. [PMID: 32039210 PMCID: PMC6989428 DOI: 10.3389/fcell.2020.00004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Post-translational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Jiang PY, Zhu XJ, Jiang RA, Zhang YN, Liu L, Yang XF. MicroRNAs derived from urinary exosomes act as novel biomarkers in the diagnosis of intrahepatic cholestasis of pregnancy. Am J Transl Res 2019; 11:6249-6261. [PMID: 31632591 PMCID: PMC6789280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
We aimed to investigate the value of cholestasis-related miRNAs in the diagnosis of intra-hepatic cholestasis of pregnancy (ICP) as well as the molecular mechanisms underlying the role of these miRNAs in the pathogenesis of ICP. In this study, electron microscopy was utilized to observe the exosomes present in the urine samples collected from both ICP patients and healthy pregnant women. Real-time PCR and area under curve (AUC) analysis were performed to predict the values of several miRNAs in the diagnosis of ICP. Bioinformatics analysis and luciferase assays were conducted to identify the target genes of miR-21, miR-29a and miR-590-3p, whose regulatory relationships were then established using real-time PCR, immunohistochemistry (IHC) assay and Western Blot. In the exosomes isolated from urine samples, several miRNAs, including miR-21, miR-29a and miR-590-3p, were differentially expressed between ICP patients and healthy pregnant women. In addition, the gene of intercellular adhesion molecule 1 (ICAM1) was identified as a shared target of miR-21, miR-29a and miR-590-3p, all of which inhibited ICAM1 expression. Therefore, up-regulated expression of miR-21, miR-29a and miR-590-3p in urinary exosomes reduced the expression of ICAM1, which in turn increased the incidence of ICP.
Collapse
Affiliation(s)
- Pei-Yue Jiang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Xiao-Jun Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Ruo-An Jiang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Yi-Na Zhang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Liu Liu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| | - Xiao-Fu Yang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
14
|
|
15
|
Abdolvahabi Z, Nourbakhsh M, Hosseinkhani S, Hesari Z, Alipour M, Jafarzadeh M, Ghorbanhosseini SS, Seiri P, Yousefi Z, Yarahmadi S, Golpour P. MicroRNA-590-3P suppresses cell survival and triggers breast cancer cell apoptosis via targeting sirtuin-1 and deacetylation of p53. J Cell Biochem 2019; 120:9356-9368. [PMID: 30520099 DOI: 10.1002/jcb.28211] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022]
Abstract
Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.
Collapse
Affiliation(s)
- Zohreh Abdolvahabi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Hesari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Alipour
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Parvaneh Seiri
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Yousefi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Golpour
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Wang G, Wang Q, Huang Q, Chen Y, Sun X, He L, Zhan L, Guo X, Yin C, Fang Y, He X, Xing J. Upregulation of mtSSB by interleukin-6 promotes cell growth through mitochondrial biogenesis-mediated telomerase activation in colorectal cancer. Int J Cancer 2018; 144:2516-2528. [PMID: 30415472 DOI: 10.1002/ijc.31978] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
It is now widely accepted that mitochondrial biogenesis is inhibited in most cancer cells. Interestingly, one of the possible exceptions is colorectal cancer (CRC), in which the content of mitochondria has been found to be higher than in normal colon mucosa. However, to date, the causes and effects of this phenomenon are still unclear. In the present study, we systematically investigated the functional role of mitochondrial single-strand DNA binding protein (mtSSB), a key molecule in the regulation of mitochondrial DNA (mtDNA) replication, in the mitochondrial biogenesis and CRC cell growth. Our results demonstrated that mtSSB was frequently upregulated in CRC tissues and that upregulated mtSSB was associated with poor prognosis in CRC patients. Furthermore, overexpression of mtSSB promoted CRC cell growth in vitro by regulating cell proliferation. The in vivo assay confirmed these results, indicating that the forced expression of mtSSB significantly increases the growth capacity of xenograft tumors. Mechanistically, the survival advantage conferred by mtSSB was primarily caused by increased mitochondrial biogenesis and subsequent ROS production, which induced telomerase reverse transcriptase (TERT) expression and telomere elongation via Akt/mTOR pathway in CRC cells. In addition, FOXP1, a member of the forkhead box family, was identified as a new transcription factor for mtSSB. Moreover, our results also demonstrate that proinflammatory IL-6/STAT3 signaling facilitates mtSSB expression and CRC cell proliferation via inducing FOXP1 expression. Collectively, our findings demonstrate that mtSSB induced by inflammation plays a critical role in the regulation of mitochondrial biogenesis, telomerase activation, and subsequent CRC proliferation, providing a strong evidence for mtSSB as drug target in CRC treatment.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Wang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yibing Chen
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Center of Genetic & Prenatal Diagnosis, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiacheng Sun
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Linjie He
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lei Zhan
- Department of Gastroenterology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Chun Yin
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Ahmed MAH, Ali MH, Abbas HH, Elatrash GA, Foda AAM. Expression of TOMM34 and Its Clinicopathological Correlations in Urothelial Carcinoma of the Bladder. Pathol Oncol Res 2018; 26:411-418. [PMID: 30382527 DOI: 10.1007/s12253-018-0524-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
The substantial difference between normal cells and cancer cells in terms of their energy metabolism in mitochondria provides an interesting basis for the development of novel therapeutic agents targeting energy machinery of tumour cells. TOMM34 is one of the Tom (translocase of the outer membrane of mitochondria) family that was found to be overexpressed in colorectal, hepatocellular, lung and early invasive breast carcinomas. The expression profile of mitochondrial translocases in bladder cancer compared to normal urinary bladder tissues has not been investigated yet. Therefore, the aim of the current study is to investigate the expression pattern of TOMM34 in bladder cancer tissues and explore its correlation with the clinico-pathological parameters of those cases. Sixty patients who underwent either transurethral resection or radical cystectomy for bladder cancer were included in this study with revision of all their clinicopathological data and tumor slides. Ten histologically normal urothelial biopsies were also included. Immunohistochemical staining for TOMM34 was done and semi-quantitatively scored using the modified H-score. All relations were analysed using established statistical methodologies. TOMM34 overexpression was significantly associated with high tumour stage, muscle invasion and high grade. Significant positive association was observed between TOMM34 expression and poor outcome in terms of shorter disease-specific survival. This study suggests TOMM34 as a biomarker of progression and poor prognosis in urothelial cell carcinoma patients. Furthermore, we suggest a role played by mitochondrial machinery in urothelial cell carcinoma progression, which is a potential target for the newly-discovered vaccine therapy for urothelial cell carcinoma.
Collapse
Affiliation(s)
- Mohamed A H Ahmed
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,East Sussex Health Care Trust, Eastbourne District General Hospital, Eastbourne, UK
| | - Mohamed Hassan Ali
- Department of Urology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hashem Hafez Abbas
- Department of Urology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Gamal Ali Elatrash
- Department of Urology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
18
|
Noruzi S, Azizian M, Mohammadi R, Hosseini SA, Rashidi B, Mohamadi Y, Nesaei A, Seiri P, Sahebkar A, Salarinia R, Aghdam AM, Mirzaei H. Micro-RNAs as critical regulators of matrix metalloproteinases in cancer. J Cell Biochem 2018; 119:8694-8712. [PMID: 30132957 DOI: 10.1002/jcb.27182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022]
Abstract
Metastasis is known to be one of the important factors associated with cancer-related deaths worldwide. Several cellular and molecular targets are involved in the metastasis process. Among these targets, matrix metalloproteinases (MMPs) play central roles in promoting cancer metastasis. MMPs could contribute toward tumor growth, angiogenesis, migration, and invasion via degradation of the extracellular matrix and activation of pre-pro-growth factors. Therefore, identification of various cellular and molecular pathways that affect MMPs could contribute toward a better understanding of the metastatic pathways involved in various tumors. Micro-RNAs are important targets that could affect MMPs. Multiple lines of evidence have indicated that deregulation of various micro-RNAs, including miR-9, Let-7, miR-10b, and miR-15b, affects metastasis of tumor cells via targeting MMPs.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Mitra Azizian
- Department of Clinical Biochemistry, Ftabaculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Rezvan Mohammadi
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Mohamadi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of medicine, Qom University of Medical Sciences, Qom, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parvaneh Seiri
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Arad Mobasher Aghdam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Abstract
MicroRNAs (miRNAs) are known as the master regulators of gene expression, and for the last two decades our knowledge of their functional reach keeps expanding. Recent studies have shown that a miRNA’s role in regulation extends to extracellular and intracellular organelles. Several studies have shown a role for miRNA in regulating the mitochondrial genome in normal and disease conditions. Mitochondrial dysfunction occurs in many human pathologies, such as cardiovascular disease, diabetes, cancer, and neurological diseases. These studies have shed some light on regulation of the mitochondrial genome as well as helped to explain the role of miRNA in altering mitochondrial function and the ensuing effects on cells. Although the field has grown in recent years, many questions still remain. For example, little is known about how nuclear-encoded miRNAs translocate to the mitochondrial matrix. Knowledge of the mechanisms of miRNA transport into the mitochondrial matrix is likely to provide important insights into our understanding of disease pathophysiology and could represent new targets for therapeutic intervention. For this review, our focus will be on the role of a subset of miRNAs, known as MitomiR, in mitochondrial function. We also discuss the potential mechanisms used by these nuclear-encoded miRNAs for import into the mitochondrial compartment. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/microrna-translocation-into-the-mitochondria/ .
Collapse
Affiliation(s)
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
20
|
Woolbright BL, Ayres M, Taylor JA. Metabolic changes in bladder cancer. Urol Oncol 2018; 36:327-337. [DOI: 10.1016/j.urolonc.2018.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
|
21
|
Salem M, O'Brien JA, Bernaudo S, Shawer H, Ye G, Brkić J, Amleh A, Vanderhyden BC, Refky B, Yang BB, Krylov SN, Peng C. miR-590-3p Promotes Ovarian Cancer Growth and Metastasis via a Novel FOXA2-Versican Pathway. Cancer Res 2018; 78:4175-4190. [PMID: 29748371 DOI: 10.1158/0008-5472.can-17-3014] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/23/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022]
Abstract
miRNAs play important roles in gene regulation, and their dysregulation is associated with many diseases, including epithelial ovarian cancer (EOC). In this study, we determined the expression and function of miR-590-3p in EOC. miR-590-3p levels were higher in high-grade carcinoma when compared with low-grade or tumors with low malignant potential. Interestingly, plasma levels of miR-590-3p were significantly higher in patients with EOC than in subjects with benign gynecologic disorders. Transient transfection of miR-590-3p mimics or stable transfection of mir-590 increased cell proliferation, migration, and invasion. In vivo studies revealed that mir-590 accelerated tumor growth and metastasis. Using a cDNA microarray, we identified forkhead box A2 (FOXA2) and versican (VCAN) as top downregulated and upregulated genes by mir-590, respectively. miR-590-3p targeted FOXA2 3' UTR to suppress its expression. In addition, knockdown or knockout of FOXA2 enhanced cell proliferation, migration, and invasion. Overexpression of FOXA2 decreased, whereas knockout of FOXA2 increased VCAN mRNA and protein levels, which was due to direct binding and regulation of the VCAN gene by FOXA2. Interrogation of the TCGA ovarian cancer database revealed a negative relationship between FOXA2 and VCAN mRNA levels in EOC tumors, and high FOXA2/low VCAN mRNA levels in tumors positively correlated with patient survival. Finally, overexpression of FOXA2 or silencing of VCAN reversed the effects of mir-590. These findings demonstrate that miR-590-3p promotes EOC development via a novel FOXA2-VCAN pathway.Significance: Low FOXA2/high VCAN levels mediate the tumor-promoting effects of miR-590-3p and negatively correlate with ovarian cancer survival. Cancer Res; 78(15); 4175-90. ©2018 AACR.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology, York University, Toronto, Canada
| | | | | | - Heba Shawer
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | - Gang Ye
- Department of Biology, York University, Toronto, Canada
| | - Jelena Brkić
- Department of Biology, York University, Toronto, Canada
| | - Asma Amleh
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | | | - Basel Refky
- Department of Surgical Oncology, Mansoura Oncology Center, Mansoura, Egypt
| | - Burton B Yang
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sergey N Krylov
- Department of Chemistry, York University, Toronto, Canada.,Centre for Research on Molecular Interactions, York University, Toronto, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Canada. .,Centre for Research on Molecular Interactions, York University, Toronto, Canada
| |
Collapse
|
22
|
Franco DG, Moretti IF, Marie SKN. Mitochondria Transcription Factor A: A Putative Target for the Effect of Melatonin on U87MG Malignant Glioma Cell Line. Molecules 2018; 23:molecules23051129. [PMID: 29747444 PMCID: PMC6099566 DOI: 10.3390/molecules23051129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
The disruption of mitochondrial activity has been associated with cancer development because it contributes to regulating apoptosis and is the main source of reactive oxygen species (ROS) production. Mitochondrial transcription factor A (TFAM) is a protein that maintains mitochondrial DNA (mtDNA) integrity, and alterations in its expression are associated with mitochondrial damage and cancer development. In addition, studies have shown that mitochondria are a known target of melatonin, the pineal gland hormone that plays an important anti-tumorigenic role. Thus, we hypothesized that melatonin decreases the expression of TFAM (RNA and protein) in the human glioblastoma cell line U87MG, which disrupts mtDNA expression and results in cell death due to increased ROS production and mitochondrial damage. Our results confirm the hypothesis, and also show that melatonin reduced the expression of other mitochondrial transcription factors mRNA (TFB1M and TFB2M) and interfered with mtDNA transcription. Moreover, melatonin delayed cell cycle progression and potentiated the reduction of cell survival due to treatment with the chemotherapeutic agent temozolomide. In conclusion, elucidating the effect of melatonin on TFAM expression should help to understand the signaling pathways involved in glioblastoma progression, and melatonin could be potentially applied in the treatment of this type of brain tumor.
Collapse
Affiliation(s)
- Daiane G Franco
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brazil.
| | - Isabele F Moretti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brazil.
| | - Suely K N Marie
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brazil.
| |
Collapse
|
23
|
Valdebenito S, Lou E, Baldoni J, Okafo G, Eugenin E. The Novel Roles of Connexin Channels and Tunneling Nanotubes in Cancer Pathogenesis. Int J Mol Sci 2018; 19:E1270. [PMID: 29695070 PMCID: PMC5983846 DOI: 10.3390/ijms19051270] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neoplastic growth and cellular differentiation are critical hallmarks of tumor development. It is well established that cell-to-cell communication between tumor cells and "normal" surrounding cells regulates tumor differentiation and proliferation, aggressiveness, and resistance to treatment. Nevertheless, the mechanisms that result in tumor growth and spread as well as the adaptation of healthy surrounding cells to the tumor environment are poorly understood. A major component of these communication systems is composed of connexin (Cx)-containing channels including gap junctions (GJs), tunneling nanotubes (TNTs), and hemichannels (HCs). There are hundreds of reports about the role of Cx-containing channels in the pathogenesis of cancer, and most of them demonstrate a downregulation of these proteins. Nonetheless, new data demonstrate that a localized communication via Cx-containing GJs, HCs, and TNTs plays a key role in tumor growth, differentiation, and resistance to therapies. Moreover, the type and downstream effects of signals communicated between the different populations of tumor cells are still unknown. However, new approaches such as artificial intelligence (AI) and machine learning (ML) could provide new insights into these signals communicated between connected cells. We propose that the identification and characterization of these new communication systems and their associated signaling could provide new targets to prevent or reduce the devastating consequences of cancer.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - John Baldoni
- GlaxoSmithKline, In-Silico Drug Discovery Unit, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | - George Okafo
- GlaxoSmithKline, In-Silico Drug Discovery Unit, Stevenage SG1 2NY, UK.
| | - Eliseo Eugenin
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| |
Collapse
|
24
|
Zu C, Liu S, Cao W, Liu Z, Qiang H, Li Y, Cheng C, Ji L, Li J, Li J. MiR-590-3p suppresses epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma by inhibiting SIP1 expression. Oncotarget 2018; 8:34698-34708. [PMID: 28423728 PMCID: PMC5471004 DOI: 10.18632/oncotarget.16150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022] Open
Abstract
The functional roles and clinical significances of miR-590-3p in ICC remain unclear. In the current study, we investigated the expression of miR-590-3p in tissues and sera of ICC by real-time quantitative polymerase chain reaction. We found miR-590-3p was significantly down-regulated in the sera and tissues of ICC patients, especially in those patients with lymph node metastasis or distant metastasis. AUC curves and Cox proportional hazards mode revealed serum miR-590-3p could be novel diagnostic and prognostic biomarker for ICC patients. MiR-590-3p dramatically suppressed epithelial-mesenchymal transition, cell migration, and invasion of ICC cells. SIP1 was identified as direct and functional target of miR-590-3p in ICC cells by luciferase assays. Finally, we found SIP1 expression was inversely correlated with miR-590-3p and closely related to diminished survival in ICC patients. These findings reveal functional and mechanistic roles of miR-590-3p and EMT activator SIP1 in the pathogenesis of ICC.
Collapse
Affiliation(s)
- Chao Zu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Shizhang Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Wei Cao
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Zongzhi Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Hui Qiang
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Yong Li
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Chong Cheng
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Le Ji
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Jingyuan Li
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| |
Collapse
|
25
|
Gao W, Wu M, Wang N, Zhang Y, Hua J, Tang G, Wang Y. Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 predicts a poor clinical outcome of breast cancer. Oncol Lett 2017; 15:1449-1458. [PMID: 29434836 PMCID: PMC5774493 DOI: 10.3892/ol.2017.7487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/11/2017] [Indexed: 01/19/2023] Open
Abstract
Nuclear respiratory factor-1 (Nrf1) and mitochondrial transcription factor A (TFAM) are involved in the regulation of a variety of mitochondrial functional genes, which are associated with decreased sensitivity of tumor cells to chemotherapy. However, the expression status of Nrf1 and TFAM, as well as their clinical significance in breast cancer, is unknown. In the present study, tumor tissues and corresponding adjacent normal tissues were collected from 336 patients with breast cancer, and Nrf1 and TFAM expression was analyzed by immunohistochemistry using a tissue microarray. Expression of Nrf1 and TFAM was significantly increased in breast cancer tissue compared with adjacent normal tissues. In addition, patients positive for Nrf1 or TFAM had a poorer clinical prognosis than patients who were negative, and those positive for Nrf1 and TFAM had the shortest survival time. These results suggest that Nrf1 and TFAM are potential biomarkers for the determination of individualized therapy and the prognosis of breast cancer, and molecular targeting of Nrf1 and TFAM is a promising strategy for the sensitization of breast cancer cells to chemotherapeutics.
Collapse
Affiliation(s)
- Wei Gao
- Department of Radiation Oncology, Shanghai 9th People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200433, P.R. China.,Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Ning Wang
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yingyi Zhang
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jing Hua
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Gusheng Tang
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
26
|
Cormio A, Sanguedolce F, Musicco C, Pesce V, Calò G, Bufo P, Carrieri G, Cormio L. Mitochondrial dysfunctions in bladder cancer: Exploring their role as disease markers and potential therapeutic targets. Crit Rev Oncol Hematol 2017; 117:67-72. [DOI: 10.1016/j.critrevonc.2017.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/02/2017] [Indexed: 01/19/2023] Open
|
27
|
Sun ZQ, Shi K, Zhou QB, Zeng XY, Liu J, Yang SX, Wang QS, Li Z, Wang GX, Song JM, Yuan WT, Wang HJ. MiR-590-3p promotes proliferation and metastasis of colorectal cancer via Hippo pathway. Oncotarget 2017; 8:58061-58071. [PMID: 28938537 PMCID: PMC5601633 DOI: 10.18632/oncotarget.19487] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 01/06/2023] Open
Abstract
Studies reported that miR-590-3p was involved in human cancer progression. However, its roles of oncogene or anti-oncogene in malignancies still remain elusive. This study was aimed to investigate the effect of miR-590-3p on the cell proliferation and metastasis via Hippo pathway in colorectal cancer (CRC). In our study, miR-590-3p was demonstrated highly expressed in CRC tissues, compared with adjacent normal tissues (P<0.05). In addition, miR-590-3p was positively associated with TNM stage and distant metastasis. Survival analysis showed that high miR-590-3p was related with poor overall survival rate. Then, over-expressed miR-590-3p was demonstrated to promote proliferation, invasion and migration of colon caner cells. What’s more, MST1, LATS1 and SAV1 mRNA were showed lowly expressed and YAP1 expression in mRNA and protein levels were highly expressed in CRC tissues, compared with adjacent normal tissues (all P<0.05). miR-590-3p expression was negatively associated with LATS1 and SAV1 mRNA respectively and positively related with YAP1 mRNA in CRC tissues, meanwhile, there was no relationship between miR-590-3p and MST1 mRNA. Furthermore, over-expressing miR-590-3p inhibited expressions of LATS1 and SAV1, promoted YAP1 expression and didn’t effect MST1 expression in colon cancer cells. And luciferase assay showed that miR-590-3p over-expression inhibited the luciferase activity of LATS1 and SAV1 3’UTR, meanwhile it had no effect on the mutated form of these two plasmids. Taken together, these data suggest that highly-expressed miR-590-3p promotes biological effect of proliferation and metastasis via targeting Hippo pathway, and predicts worse clinical outcomes of CRC patients.
Collapse
Affiliation(s)
- Zhen-Qiang Sun
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Ke Shi
- Department of Orthopedic Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Quan-Bo Zhou
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Xiang-Yue Zeng
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Jinbo Liu
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Shuai-Xi Yang
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Qi-San Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi 830011, China
| | - Zhen Li
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Gui-Xian Wang
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Jun-Min Song
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wei-Tang Yuan
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Hai-Jiang Wang
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
28
|
Zheng B, Jeong S, Zhu Y, Chen L, Xia Q. miRNA and lncRNA as biomarkers in cholangiocarcinoma(CCA). Oncotarget 2017; 8:100819-100830. [PMID: 29246025 PMCID: PMC5725067 DOI: 10.18632/oncotarget.19044] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
The microRNAs are a group of 20 nucleotides-long non-coding RNAs. By binding to the 3'UTR region of target mRNA, microRNAs can perform extensive actions mediating gene expression at post-trancriptional stages. It makes microRNAs serve as very crucial regulators in various biological progress including carcinogenesis. Long non-coding RNAs, however, are a subgroup of RNA with the length of 200 nucleotides. Unlike microRNAs, long non-coding RNAs can form secondary of tertiary domain based on their length. With the ability of directly interacting with DNA, RNA, protein, long non-coding RNAs have promoting or inhibitive functions in gene expression regulation. Furthermore, the abnormal expression of certain long non-coding RNAs has roused people's interest in the role of long non-coding RNAs in tumorigenesis. Although the connection between microRNA/long non-coding RNA and CCA has been a hot field to researchers, the link between molecular mechanism and clinical outcome has been barely built. This review takes a retrospect at the latest researches on the link between microRNA/long non-coding RNA and cholangiocarcinoma and the potential of microRNA/long non-coding RNA serving as distinctive biomarkers for CCA in clinical practice.
Collapse
Affiliation(s)
- Bo Zheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer, Shanghai 201805, P.R. China
| | - Seogsong Jeong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yanjing Zhu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer, Shanghai 201805, P.R. China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, P.R. China.,National Center for Liver Cancer, Shanghai 201805, P.R. China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
29
|
Chen H, Luo Q, Li H. MicroRNA-590-3p promotes cell proliferation and invasion by targeting inositol polyphosphate 4-phosphatase type II in human prostate cancer cells. Tumour Biol 2017; 39:1010428317695941. [PMID: 28345464 DOI: 10.1177/1010428317695941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Inositol polyphosphate 4-phosphatase type II emerges as a tumor suppressor in prostate cancer, and its loss of expression is associated with poor prognosis for prostate cancer. However, the mechanism of downregulation of inositol polyphosphate 4-phosphatase type II in prostate cancer development has not yet been fully clarified. In this study, microRNA-590-3p was found to be upregulated in both prostate cancer tissues and cell lines. Overexpression of microRNA-590-3p by microRNA-590-3p mimics promoted prostate cancer cell proliferation and invasion and accelerated the growth of xenografted tumors, while microRNA-590-3p inhibitors contributed to inhibition of cellular proliferation and invasion as well as tumor growth. A dual-luciferase reporter assay and expression analysis further confirmed that inositol polyphosphate 4-phosphatase type II was a direct target of microRNA-590-3p. Enforced expression of microRNA-590-3p led to repression of inositol polyphosphate 4-phosphatase type II messenger RNA and protein expression, as well as upregulation of p-Akt, p-FoxO3a, and cyclin D1 and downregulation of p21 expression in prostate cancer cell lines. Overexpression of inositol polyphosphate 4-phosphatase type II could reduce microRNA-590-3p-induced cell proliferation and invasion as well as tumor growth, and decrease microRNA-590-3p-mediated upregulation of cyclin D1 and downregulation of p21 expression in prostate cancer cells. Taken together, our findings reveal that microRNA-590-3p is a potential onco-microRNA that participates in carcinogenesis of human prostate cancer by suppressing inositol polyphosphate 4-phosphatase type II expression and involving the Akt/FoxO3a pathway. MicroRNA-590-3p may represent a potential therapeutic target for prostate cancer patients.
Collapse
Affiliation(s)
- Haiwen Chen
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qidong Luo
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongliang Li
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
30
|
Mitash N, Tiwari S, Agnihotri S, Mandhani A. Bladder cancer: Micro RNAs as biomolecules for prognostication and surveillance. Indian J Urol 2017; 33:127-133. [PMID: 28469300 PMCID: PMC5396400 DOI: 10.4103/0970-1591.203412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction: Bladder cancer (BC) has varied clinical behavior in terms of recurrence and progression. Current pathological characteristics are insufficient to prognosticate the outcome of a given treatment. Cellular metabolic regulatory molecules, such as micro RNA (miRNA), could be a potential biomarker to prognosticate the treatment outcomes. Materials and Methods: PubMed and Google Scholar databases were searched for publications from 1990 to 2016, related to miRNA biogenesis, its function, and role in the pathogenesis of bladder as well as other cancers. Articles were searched using MeSH terms micrornas, micrornas AND neoplasm, and micrornas AND urinary bladder neoplasm. Out of the 108 publications reviewed 75 references were selected based on the clinical relevance. Articles were reviewed to assess the role of miRNA in various cancers and those in BC as a diagnostic or therapeutic tool. Results: More than 35 miRNAs were found to be associated with different pathways of cellular dedifferentiation, proliferation, and progression of BC as well as other cancers. A normal looking mucosa may show molecular changes preceding phenotypic changes in the form of varied expression of miR-129, miR-200a, and miR-205. miR-214, miR-99a, and miR-125b have been shown to be potential urinary biomarkers of BC. miRNAs could act as a repressor for protein molecule functioning or activator of different pathways to be used as a therapeutic target too. Conclusions: Despite certain limitations, such as instability, rapid plasma clearance, and targeting antagonist proteins of cellular metabolic pathways, miRNAs have potential to be studied as a biomarker or a therapeutic target for BC.
Collapse
Affiliation(s)
- Nilay Mitash
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shalini Agnihotri
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Anil Mandhani
- Department of Urology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
31
|
Sigloch FC, Burk UC, Biniossek ML, Brabletz T, Schilling O. miR-200c dampens cancer cell migration via regulation of protein kinase A subunits. Oncotarget 2016. [PMID: 26203557 PMCID: PMC4695158 DOI: 10.18632/oncotarget.4381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expression of miR-200c is a molecular switch to determine cellular fate towards a mesenchymal or epithelial phenotype. miR-200c suppresses the early steps of tumor progression by preventing epithelial-mesenchymal transition (EMT) and intravasation of tumor cells. Unraveling the underlying molecular mechanisms might pinpoint to novel therapeutic options. To better understand these mechanisms it is crucial to identify targets of miR-200c. Here, we employ a combination of quantitative proteomic and bioinformatic strategies to identify novel miR-200c targets. We identify and confirm two subunits of the central cellular kinase protein kinase A (PKA), namely PRKAR1A and PRKACB, to be directly regulated by miR-200c. Notably, siRNA-mediated downregulation of both proteins phenocopies the migratory behavior of breast cancer cells after miR-200c overexpression. Patient data from publicly accessible databases supports a miR-200c-PKA axis. Thus, our study identifies the PKA heteroprotein as an important mediator of miR-200c induced repression of migration in breast cancer cells. By bioinformatics, we define a miRNA target cluster consisting of PRKAR1A, PRKAR2B, PRKACB, and COF2, which is targeted by a group of 14 miRNAs.
Collapse
Affiliation(s)
- Florian Christoph Sigloch
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ulrike Christina Burk
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Martin Lothar Biniossek
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Thomas Brabletz
- Experimental Medicine I, Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Prasadam I, Batra J, Perry S, Gu W, Crawford R, Xiao Y. Systematic Identification, Characterization and Target Gene Analysis of microRNAs Involved in Osteoarthritis Subchondral Bone Pathogenesis. Calcif Tissue Int 2016; 99:43-55. [PMID: 26944279 DOI: 10.1007/s00223-016-0125-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/20/2016] [Indexed: 12/20/2022]
Abstract
This study aimed to identify the microRNAs associated with sclerotic status of subchondral bone in the pathogenesis of osteoarthritis (OA). Total RNA was extracted from non-sclerotic and sclerotic OA subchondral bone from patients undergoing knee replacement surgeries. miRCURY™ LNA miRNA chip and qRT-PCR were used to profile and validate differential microRNA expression. In addition, we further confirmed profiles of altered miRNAs in an OA rat meniscectomy animal model and their putative targets of the miRNAs were predicted using ingenuity (IPA) software. Finally, five short-listed miRNAs were reactivated by transient in vitro overexpression (miRNA mimics) in subchondral bone osteoblasts and their phenotypes were assessed. Functional screening identified 30 differentiated miRNAs in sclerotic subchondral bone compared to non-sclerotic bone of OA patients. Data integration resulted in confirmation of the eight miRNAs, with aberrant expression in independent human OA bone sample set. In silico analysis (IPA) identified 732 mRNA transcripts as putative targets of the eight altered miRNAs, of which twenty genes were validated to be differentially expressed in sclerotic compared to non-sclerotic bone samples. Out of eight dysregulated miRNA's, five of them showed consistent time-dependent downregulation in a rat OA model. Furthermore, synthetic miR-199a-3p, miR-199a-5p, miR-590-5p, and miR-211-5p mimics rescued the abnormal osteoarthritic subchondral bone osteoblast gene expression and mineralization. We have identified four novel miRNAs that play important roles in subchondral bone pathogenesis in OA. Additional studies are required to develop these miRNAs into therapeutic modalities for OA.
Collapse
Affiliation(s)
- Indira Prasadam
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| | - Jyotsna Batra
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Australian Prostate Cancer Research Centre, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Samuel Perry
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Orthopaedic Department, Prince Charles Hospital, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| |
Collapse
|
33
|
Enokida H, Yoshino H, Matsushita R, Nakagawa M. The role of microRNAs in bladder cancer. Investig Clin Urol 2016; 57 Suppl 1:S60-76. [PMID: 27326409 PMCID: PMC4910767 DOI: 10.4111/icu.2016.57.s1.s60] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/17/2016] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is the fifth most common cancer worldwide and is associated with significant morbidity and mortality. The prognosis of muscle invasive BC is poor, and recurrence is common after radical surgery or chemotherapy. Therefore, new diagnostic methods and treatment modalities are critical. MicroRNAs (miRNAs), a class of small noncoding RNAs, regulate the expression of protein-coding genes by repressing translation or cleaving RNA transcripts in a sequence-specific manner. miRNAs have important roles in the regulation of genes involved in cancer development, progression, and metastasis. The availability of genomewide miRNA expression profiles by deep sequencing technology has facilitated rapid and precise identification of aberrant miRNA expression in BC. Indeed, several miRNAs that are either upregulated or downregulated have been shown to have associations with significant cancer pathways. Furthermore, many miRNAs, including those that can be detected in urine and blood, have been studied as potential noninvasive tumor markers for diagnostic and prognostic purposes. Here, we searched PubMed for publications describing the role of miRNAs in BC by using the keywords "bladder cancer" and "microRNA" on March 1, 2016. We found 374 papers and selected articles written in English in which the level of scientific detail and reporting were sufficient and in which novel findings were demonstrated. In this review, we summarize these studies from the point of view of miRNA-related molecular networks (specific miRNAs and their targets) and miRNAs as tumor markers in BC. We also discuss future directions of miRNA studies in the context of therapeutic modalities.
Collapse
Affiliation(s)
- Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
34
|
A complex genome-microRNA interplay in human mitochondria. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206382. [PMID: 25695052 PMCID: PMC4324738 DOI: 10.1155/2015/206382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 10/13/2014] [Accepted: 10/27/2014] [Indexed: 01/10/2023]
Abstract
Small noncoding regulatory RNA exist in wide spectrum of organisms ranging from prokaryote bacteria to humans. In human, a systematic search for noncoding RNA is mainly limited to the nuclear and cytosolic compartments. To investigate whether endogenous small regulatory RNA are present in cell organelles, human mitochondrial genome was also explored for prediction of precursor microRNA (pre-miRNA) and mature miRNA (miRNA) sequences. Six novel miRNA were predicted from the organelle genome by bioinformatics analysis. The structures are conserved in other five mammals including chimp, orangutan, mouse, rat, and rhesus genome. Experimentally, six human miRNA are well accumulated or deposited in human mitochondria. Three of them are expressed less prominently in Northern analysis. To ascertain their presence in human skeletal muscles, total RNA was extracted from enriched mitochondria by an immunomagnetic method. The expression of six novel pre-miRNA and miRNA was confirmed by Northern blot analysis; however, low level of remaining miRNA was found by sensitive Northern analysis. Their presence is further confirmed by real time RT-PCR. The six miRNA find their multiple targets throughout the human genome in three different types of software. The luciferase assay was used to confirm that MT-RNR2 gene was the potential target of hsa-miR-mit3 and hsa-miR-mit4.
Collapse
|
35
|
Braicu C, Cojocneanu-Petric R, Chira S, Truta A, Floares A, Petrut B, Achimas-Cadariu P, Berindan-Neagoe I. Clinical and pathological implications of miRNA in bladder cancer. Int J Nanomedicine 2015; 10:791-800. [PMID: 25653521 PMCID: PMC4309789 DOI: 10.2147/ijn.s72904] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20–22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anamaria Truta
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Medical Genetics, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Floares
- Solutions of Artificial Intelligence Applications, Cluj-Napoca, Romania
| | - Bogdan Petrut
- Department of Urology, The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania ; Department of Urology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Patriciu Achimas-Cadariu
- Department of Surgery, The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania ; Department of Surgical Oncology and Gynaecological Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Immunology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuta", Cluj-Napoca, Romania ; Department of Experimental Therapeutics M.D. Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
36
|
Liu Q, Wang G, Chen Y, Li G, Yang D, Kang J. A miR-590/Acvr2a/Rad51b axis regulates DNA damage repair during mESC proliferation. Stem Cell Reports 2014; 3:1103-17. [PMID: 25458897 PMCID: PMC4264031 DOI: 10.1016/j.stemcr.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022] Open
Abstract
Embryonic stem cells (ESCs) enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF), which maintains the self-renewal capability of mouse ESCs (mESCs), significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB) and double-strand break (DSB) damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a) to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR) gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal. miR-590 promotes DNA damage repair and slows proliferation by targeting Acvr2a miR-590/Acvr2a/Rad51b axis balances SSB and DSB damage repair in mESCs
Collapse
Affiliation(s)
- Qidong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yafang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Dandan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
37
|
Zhao H, Yuan X, Jiang J, Wang P, Sun X, Wang D, Zheng Q. Antimetastatic Effects of Licochalcone B on Human Bladder Carcinoma T24 by Inhibition of Matrix Metalloproteinases-9 and NF-кB Activity. Basic Clin Pharmacol Toxicol 2014; 115:527-33. [DOI: 10.1111/bcpt.12273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/14/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Zhao
- Institute of traditional Chinese medicine; Binzhou Medical University; Yantai China
- School of Pharmacy; Shihezi University; Shihezi China
| | - Xuan Yuan
- School of Pharmacy; Shihezi University; Shihezi China
| | | | - Penglong Wang
- School of Pharmacy; Shihezi University; Shihezi China
| | - Xiling Sun
- Institute of traditional Chinese medicine; Binzhou Medical University; Yantai China
| | - Dong Wang
- Qianfoshan Hospital of Shandong Province; Jinan China
| | - Qiusheng Zheng
- Institute of traditional Chinese medicine; Binzhou Medical University; Yantai China
- School of Pharmacy; Shihezi University; Shihezi China
| |
Collapse
|
38
|
MicroRNAs in the Regulation of MMPs and Metastasis. Cancers (Basel) 2014; 6:625-45. [PMID: 24670365 PMCID: PMC4074795 DOI: 10.3390/cancers6020625] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs are integral molecules in the regulation of numerous physiological cellular processes including cellular differentiation, proliferation, metabolism and apoptosis. Their function transcends normal physiology and extends into several pathological entities including cancer. The matrix metalloproteinases play pivotal roles, not only in tissue remodeling, but also in several physiological and pathological processes, including those supporting cancer progression. Additionally, the contribution of active MMPs in metastatic spread and the establishment of secondary metastasis, via the targeting of several substrates, are also well established. This review focuses on the important miRNAs that have been found to impact cancer progression and metastasis through direct and indirect interactions with the matrix metalloproteinases.
Collapse
|
39
|
MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos. Biochem Biophys Res Commun 2013; 441:976-81. [PMID: 24220339 DOI: 10.1016/j.bbrc.2013.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/02/2013] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-protein-coding sequences that play a crucial role in tumorigenesis by negatively regulating gene expression. Here, we found that miR-490-5p is down-regulated in human bladder cancer tissue and cell lines compared to normal adjacent tissue and a non-malignant cell line. To better characterize the function of miR-490-5p in bladder cancer, we over-expressed miR-490-5p in bladder cancer cell lines with chemically synthesized mimics. Enforced expression of miR-490-5p in bladder cancer cells significantly inhibited the cell proliferation via G1-phase arrest. Further studies found the decreased c-Fos expression at both mRNA and protein levels and Luciferase reporter assays demonstrated that c-Fos is a direct target of miR-490-5p in bladder cancer. These findings indicate miR-490-5p to be a novel tumor suppressor of bladder cancer cell proliferation through targeting c-Fos.
Collapse
|