1
|
Liu S, Kang M, Ren Y, Zhang Y, Ba Y, Deng J, Luo P, Cheng Q, Xu H, Weng S, Zuo A, Han X, Liu Z, Pan T, Gao L. The Interaction Between Vasculogenic Mimicry and the Immune System: Mechanistic Insights and Dual Exploration in Cancer Therapy. Cell Prolif 2025:e13814. [PMID: 39865437 DOI: 10.1111/cpr.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 01/11/2025] [Indexed: 01/28/2025] Open
Abstract
Vasculogenic mimicry (VM) represents a novel form of angiogenesis discovered in numerous malignant tumours in recent years. Unlike traditional angiogenesis, VM facilitates tumour blood supply independently of endothelial cells by enabling tumour cells to form functional vascular networks. This phenomenon, where tumour cells replace endothelial cells to form tubular structures, plays a pivotal role in tumour growth and metastasis. Tumour progression is influenced by a variety of factors, including immune components. The immune system serves as a critical defence mechanism by identifying and eliminating abnormal entities, such as tumour cells. This inevitably reminds us of the intricate connection between the immune system and VM. Indeed, in recent years, some studies have shown that immune responses and related immune cells play different regulatory roles in the formation of VM. Therefore, this review provides a comprehensive discussion on the mechanisms underlying VM formation, its interplay with the immune system, and the potential of leveraging immunotherapy to target VM.
Collapse
Affiliation(s)
- Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mei Kang
- Medical School of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, UK
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Li Gao
- Department of Nursing, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Wang H, Ding Q, Zhou H, Huang C, Liu G, Zhao X, Cheng Z, You X. Dihydroartemisinin inhibited vasculogenic mimicry in gastric cancer through the FGF2/FGFR1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155962. [PMID: 39214017 DOI: 10.1016/j.phymed.2024.155962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Vasculogenic mimicry (VM) is a novel model for supplying blood to multiple tumors, including gastric cancer (GC), and is a potential target for its treatment. Dihydroartemisinin (DHA) is a potential natural antitumor substance that inhibits the progression of tumors in many ways. The research aimed to evaluate the impact of DHA on VM formation and its mechanisms. The IC50 of DHA, DHA's effect on proliferation, invasion, and migration in GC cells and VM formation in both cell and animal models were determined through wound healing, MTT, EdU, colony formation, and Transwell assays. Genomics was employed to identify genes related to DHA inhibition of VM formation, and to analyze their relationship to VM formation. qRT‒PCR and western blot (WB) analysis were carried out to analyze the changes in protein and mRNA levels after DHA treatment and the changes in VM-associated protein biomarkers after blocking target gene-related pathways. The mechanism by which DHA inhibits VM in GC was elucidated in vivo. DHA reduced the invasion, proliferation, and migration of GC cells and inhibited VM in cells and in vivo. A total of 220 DEGs were identified in the DHA-treated HGC-27 cells. Among the 146 downregulated genes, fibroblast growth Factor 2 (FGF2) was most closely associated with angiogenesis and VM. The level of FGF2 in GC tissues with VM was markedly greater than in VM lacking tissues. Treatment with DHA or FGFR1 blockade suppressed VM formation and reduced VM-related biomarker proteins. DHA suppressed tumor progression and VM formation by reducing FGF2 in xenograft mouse models. Per our knowledge, this is the first study to demonstrate the inhibitory effect of DHA on VM, providing a novel strategy for the treatment of GC.
Collapse
Affiliation(s)
- Huina Wang
- Department of Gastrointestinal Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Qingzhu Ding
- Department of Gastrointestinal Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Haihua Zhou
- Department of Gastrointestinal Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Chuanjiang Huang
- Department of Gastrointestinal Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Guiyuan Liu
- Department of Gastrointestinal Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Xiaojun Zhao
- Department of Gastrointestinal Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Zhiyi Cheng
- Department of Gastrointestinal Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Xiaolan You
- Department of Gastrointestinal Surgery, the Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China.
| |
Collapse
|
3
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
4
|
Ren Y, Feng L, Tan Z, Zhou F, Liu S. Constructing a novel prognostic model for triple-negative breast cancer based on genes associated with vasculogenic mimicry. Aging (Albany NY) 2024; 16:8086-8109. [PMID: 38728245 PMCID: PMC11132006 DOI: 10.18632/aging.205806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Research has shown a connection between vasculogenic mimicry (VM) and cancer progression. However, the functions of genes related to VM in the emergence and progression of TNBC have not been completely elucidated. METHODS A survival risk model was constructed by screening biomarkers using DESeq2 and WGCNA based on public TNBC transcriptome data. Furthermore, gene set enrichment analysis was performed, and tumor microenvironment and drug sensitivity were analyzed. The selected biomarkers were validated via quantitative PCR detection, immunohistochemical staining, and protein detection in breast cancer cell lines. Biomarkers related to the proliferation and migration of TNBC cells were validated via in vitro experiments. RESULTS The findings revealed that 235 target genes were connected to the complement and coagulation cascade pathways. The risk score was constructed using KCND2, NRP1, and VSTM4. The prognosis model using the risk score and pathological T stage yielded good validation results. The clinical risk of TNBC was associated with the angiogenesis signaling pathway, and the low-risk group exhibited better sensitivity to immunotherapy. Quantitative PCR and immunohistochemistry indicated that the expression levels of KCND2 in TNBC tissues were higher than those in adjacent nontumor tissues. In the TNBC cell line, the protein expression of KCND2 was increased. Knockdown of KCND2 and VSTM4 inhibited the proliferation and migration of TNBC cells in vitro. CONCLUSIONS In this study, three VM-related biomarkers were identified, including KCND2, NRP1, and VSTM4. These findings are likely to aid in deepening our understanding of the regulatory mechanism of VM in TNBC.
Collapse
Affiliation(s)
- Yu Ren
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Luyi Feng
- Information Department of Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zhihua Tan
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fulin Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, China
| | - Shu Liu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Tang S, Chen F, Zhang J, Chang F, Lv Z, Li K, Li S, Hu Y, Yeh S. LncRNA-SERB promotes vasculogenic mimicry (VM) formation and tumor metastasis in renal cell carcinoma. J Biol Chem 2024; 300:107297. [PMID: 38641065 PMCID: PMC11126803 DOI: 10.1016/j.jbc.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/03/2024] [Accepted: 03/31/2024] [Indexed: 04/21/2024] Open
Abstract
A growing body of evidence shows that vasculogenic mimicry (VM) is closely related to the invasion and metastasis of many tumor cells. Although the estrogen receptor (ER) can promote initiation and progression of renal cell carcinoma (RCC), how the downstream biomolecules are involved, and the detailed mechanisms of how ER expression is elevated in RCC remain to be further elucidated. Here, we discovered that long noncoding RNA (LncRNA)-SERB is highly expressed in tumor cells of RCC patients. We used multiple RCC cells and an in vivo mouse model for our study, and results indicated that LncRNA-SERB could boost RCC VM formation and cell invasion in vitro and in vivo. Although a previous report showed that ERβ can affect the VM formation in RCC, it is unclear which factor could upregulate ERβ. This is the first study to show LncRNA-SERB can be the upstream regulator of ERβ to control RCC progression. Mechanistically, LncRNA-SERB may increase ERβ via binding to the promoter area, and ERβ functions through transcriptional regulation of zinc finger E-box binding homeobox 1 (ZEB1) to regulate VM formation. These results suggest that LncRNA-SERB promotes RCC cell VM formation and invasion by upregulating the ERβ/ZEB1 axis and that therapeutic targeting of this newly identified pathway may better inhibit RCC progression.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/genetics
- Animals
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Gene Expression Regulation, Neoplastic
- Estrogen Receptor beta/metabolism
- Estrogen Receptor beta/genetics
- Cell Line, Tumor
- Zinc Finger E-box-Binding Homeobox 1/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Neoplasm Metastasis
- Mice, Nude
- Male
- Female
- Neoplasm Invasiveness
Collapse
Affiliation(s)
- Shuai Tang
- College of Medicine, Nankai University, Tianjin, China; Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China; Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Fangmin Chen
- College of Medicine, Nankai University, Tianjin, China; Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Jianghui Zhang
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Fan Chang
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Zheng Lv
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Kai Li
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Song Li
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yixi Hu
- Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Shuyuan Yeh
- Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA; The Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
6
|
Shi Y, Li W, Jia Q, Wu J, Wu S, Wu S. Inhibition of PD-L1 expression in non-small cell lung cancer may reduce vasculogenic mimicry formation by inhibiting the epithelial mesenchymal transformation process. Exp Cell Res 2024; 437:113996. [PMID: 38508327 DOI: 10.1016/j.yexcr.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a kind of highly malignant tumor. Studies have shown that Vasculogenic mimicry (VM) may be responsible for dismal prognosis in NSCLC. Immunotherapy with programmed death-1 (PD-1) or programmed death ligand-1 (PD-L1) has significantly altered the treatment of assorted cancers, including NSCLC, but its role and mechanism in the formation of Vasculogenic mimicry (VM) in NSCLC remains unclear. This study aimed to investigate the role of the anti-PD-L1 antibody in the formation of VM in NSCLC and its possible mechanisms. The results showed that anti-PD-L1 antibody therapy could inhibit the growth of NSCLC-transplanted tumors and reduce the formation of VMs. In addition, this study found that anti-PD-L1 antibodies could increase the expression of the epithelial-mesenchymal transition (EMT) related factor E-cadherin. zinc finger E-box binding homeobox 1 (ZEB1) is an important transcription factor regulating EMT. Knocking down ZEB1 could significantly inhibit tumor growth, as well as the expression of VE-cadherin and mmp2, while remarkably increase the expression of E-cadherin. During this process, the formation of VM was inhibited by knowing down ZEB1 in both in vitro and in vivo experiments of the constructed ZEB1 knockdown stable transfected cell strains. Therefore, in this study, we found that anti-PD-L1 antibodies may reduce the formation of VMs by inhibiting the EMT process.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Anhui, 233000, China; Department of Pathology, School of Basic Medicine, Bengbu Medical University, Anhui, 233000, China; Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Anhui, 233000, China
| | - Wenjuan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Anhui, 233000, China
| | - Qianhao Jia
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Anhui, 233000, China
| | - Jiatao Wu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, First Affiliated Hospital, Bengbu Medical University, 287 Changhuai Road, Bengbu 233004, Anhui, China
| | - Shoufan Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Anhui, 233000, China
| | - Shiwu Wu
- Department of Pathology, Anhui No. 2 Provincial People's Hospital, Anhui, 230000, China; Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, China.
| |
Collapse
|
7
|
Ma Y, Hua Y, Yin X, Jiao Y, Xu E, Yan T, Yang J, Zhang L. MBIP promotes ESCC metastasis by activating MAPK pathway. Cell Signal 2024; 115:111040. [PMID: 38199596 DOI: 10.1016/j.cellsig.2024.111040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/17/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
MBIP is a component of the Ada2A containing complex (ATAC) and has been identified as a susceptibility gene in several cancers. However, the role and molecular mechanism of MBIP in esophageal squamous cell carcinoma (ESCC) remain unclear. Our finding indicated that the expression level of MBIP in ESCC was higher than that in normal tissue (P < 0.05) based on the data from the Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO). Kaplan-Meier analysis showed that high MBIP expression was closely associated with deeper invasion and worse prognosis. Transwell assay and mouse xenograft assay demonstrated that MBIP overexpression promoted migration and invasion in vitro and in vivo, while MBIP knockdown played the opposite role. Furthermore, the results of RNA-seq, qRT-PCR, western blotting and rescue experiments revealed that MBIP promoted epithelial-mesenchymal transition (EMT) via the phosphorylation JNK/p38 in ESCC. Our study indicates that MBIP plays a significant role in the prognosis and metastasis of ESCC, suggesting that MBIP might serve as an ESCC prognostic biomarker.
Collapse
Affiliation(s)
- Yanchun Ma
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.
| | - Yuyan Hua
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - XiaoJie Yin
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ye Jiao
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Enwei Xu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jian Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ling Zhang
- Department of Pathology, College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
8
|
Resendiz-Hernández M, García-Hernández AP, Silva-Cázares MB, Coronado-Uribe R, Hernández-de la Cruz ON, Arriaga-Pizano LA, Prieto-Chávez JL, Salinas-Vera YM, Ibarra-Sierra E, Ortiz-Martínez C, López-Camarillo C. MicroRNA-204 Regulates Angiogenesis and Vasculogenic Mimicry in CD44+/CD24- Breast Cancer Stem-like Cells. Noncoding RNA 2024; 10:14. [PMID: 38392969 PMCID: PMC10891775 DOI: 10.3390/ncrna10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Tumors have high requirements in terms of nutrients and oxygen. Angiogenesis is the classical mechanism for vessel formation. Tumoral vascularization has the function of nourishing the cancer cells to support tumor growth. Vasculogenic mimicry, a novel intratumoral microcirculation system, alludes to the ability of cancer cells to organize in three-dimensional (3D) channel-like architectures. It also supplies the tumors with nutrients and oxygen. Both mechanisms operate in a coordinated way; however, their functions in breast cancer stem-like cells and their regulation by microRNAs remain elusive. In the present study, we investigated the functional role of microRNA-204 (miR-204) on angiogenesis and vasculogenic mimicry in breast cancer stem-like cells. Using flow cytometry assays, we found that 86.1% of MDA-MB-231 and 92% of Hs-578t breast cancer cells showed the CD44+/CD24- immunophenotype representative of cancer stem-like cells (CSCs). The MDA-MB-231 subpopulation of CSCs exhibited the ability to form mammospheres, as expected. Interestingly, we found that the restoration of miR-204 expression in CSCs significantly inhibited the number and size of the mammospheres. Moreover, we found that MDA-MB-231 and Hs-578t CSCs efficiently undergo angiogenesis and hypoxia-induced vasculogenic mimicry in vitro. The transfection of precursor miR-204 in both CSCs was able to impair the angiogenesis in the HUVEC cell model, which was observed as a diminution in the number of polygons and sprouting cells. Remarkably, miR-204 mimics also resulted in the inhibition of vasculogenic mimicry formation in MDA-MB-231 and Hs-578t CSCs, with a significant reduction in the number of channel-like structures and branch points. Mechanistically, the effects of miR-204 were associated with a diminution of pro-angiogenic VEGFA and β-catenin protein levels. In conclusion, our findings indicated that miR-204 abrogates the angiogenesis and vasculogenic mimicry development in breast cancer stem-like cells, suggesting that it could be a potential tool for breast cancer intervention based on microRNA replacement therapies.
Collapse
Affiliation(s)
- Martha Resendiz-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Alejandra P. García-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Macrina B. Silva-Cázares
- Unidad Academica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí, Matehuala 78760, San Luis Potosí, Mexico;
| | - Rogelio Coronado-Uribe
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Olga N. Hernández-de la Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Lourdes A. Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, CDMX 06720, Mexico;
| | - Jessica L. Prieto-Chávez
- Laboratorio de Citometría de Flujo, Centro de Instrumentos, Coordinación de Investigación en Salud, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, CDMX 06720, Mexico;
| | - Yarely M. Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| | - Eloisa Ibarra-Sierra
- Departamento de Investigación, Instituto Estatal de Cancerologia “Dr. Arturo Beltrán Ortega”, Acapulco 39610, Guerrero, Mexico;
| | - Concepción Ortiz-Martínez
- Servicio de Ginecología Oncológica, Instituto Estatal de Cancerologia “Dr. Arturo Beltrán Ortega”, Acapulco 39610, Guerrero, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico; (M.R.-H.); (A.P.G.-H.); (O.N.H.-d.l.C.); (Y.M.S.-V.)
| |
Collapse
|
9
|
Lin X, Long S, Yan C, Zou X, Zhang G, Zou J, Wu G. Therapeutic potential of vasculogenic mimicry in urological tumors. Front Oncol 2023; 13:1202656. [PMID: 37810976 PMCID: PMC10551447 DOI: 10.3389/fonc.2023.1202656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Angiogenesis is an essential process in the growth and metastasis of cancer cells, which can be hampered by an anti-angiogenesis mechanism, thereby delaying the progression of tumors. However, the benefit of this treatment modality could be restricted, as most patients tend to develop acquired resistance during treatment. Vasculogenic mimicry (VM) is regarded as a critical alternative mechanism of tumor angiogenesis, where studies have demonstrated that patients with tumors supplemented with VM generally have a shorter survival period and a poorer prognosis. Inhibiting VM may be an effective therapeutic strategy to prevent cancer progression, which could prove helpful in impeding the limitations of lone use of anti-angiogenic therapy when performed concurrently with other anti-tumor therapies. This review summarizes the mechanism of VM signaling pathways in urological tumors, i.e., prostate cancer, clear cell renal cell carcinoma, and bladder cancer. Furthermore, it also summarizes the potential of VM as a therapeutic strategy for urological tumors.
Collapse
Affiliation(s)
- Xinyu Lin
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Sheng Long
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Congcong Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gengqing Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Farkas K, Ferretti E. Derivation of Human Extraembryonic Mesoderm-like Cells from Primitive Endoderm. Int J Mol Sci 2023; 24:11366. [PMID: 37511125 PMCID: PMC10380231 DOI: 10.3390/ijms241411366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
In vitro modeling of human peri-gastrulation development is a valuable tool for understanding embryogenetic mechanisms. The extraembryonic mesoderm (ExM) is crucial in supporting embryonic development by forming tissues such as the yolk sac, allantois, and chorionic villi. However, the origin of human ExM remains only partially understood. While evidence suggests a primitive endoderm (PrE) origin based on morphological findings, current in vitro models use epiblast-like cells. To address this gap, we developed a protocol to generate ExM-like cells from PrE-like cell line called naïve extraembryonic endoderm (nEnd). We identified the ExM-like cells by specific markers (LUM and ANXA1). Moreover, these in vitro-produced ExM cells displayed angiogenic potential on a soft matrix, mirroring their physiological role in vasculogenesis. By integrating single-cell RNA sequencing (scRNAseq) data, we found that the ExM-like cells clustered with the LUM/ANXA1-rich cell populations of the gastrulating embryo, indicating similarity between in vitro and ex utero cell populations. This study confirms the derivation of ExM from PrE and establishes a cell culture system that can be utilized to investigate ExM during human peri-gastrulation development, both in monolayer cultures and more complex models.
Collapse
Affiliation(s)
- Karin Farkas
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 1165 Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elisabetta Ferretti
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 1165 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
11
|
Identity matters: cancer stem cells and tumour plasticity in head and neck squamous cell carcinoma. Expert Rev Mol Med 2023; 25:e8. [PMID: 36740973 DOI: 10.1017/erm.2023.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents frequent yet aggressive tumours that encompass complex ecosystems of stromal and neoplastic components including a dynamic population of cancer stem cells (CSCs). Recently, research in the field of CSCs has gained increased momentum owing in part to their role in tumourigenicity, metastasis, therapy resistance and relapse. We provide herein a comprehensive assessment of the latest progress in comprehending CSC plasticity, including newly discovered influencing factors and their possible application in HNSCC. We further discuss the dynamic interplay of CSCs within tumour microenvironment considering our evolving appreciation of the contribution of oral microbiota and the pressing need for relevant models depicting their features. In sum, CSCs and tumour plasticity represent an exciting and expanding battleground with great implications for cancer therapy that are only beginning to be appreciated in head and neck oncology.
Collapse
|
12
|
Salati M, Caputo F, Bocconi A, Cerri S, Baldessari C, Piacentini F, Dominici M, Gelsomino F. Successes and failures of angiogenesis blockade in gastric and gastro-esophageal junction adenocarcinoma. Front Oncol 2022; 12:993573. [PMID: 36212393 PMCID: PMC9540203 DOI: 10.3389/fonc.2022.993573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric and gastro-esophageal junction adenocarcinoma (GEA) remains a considerable major public health problem worldwide, being the fifth most common cancer with a fatality-to-case ratio that stands still at 70%. Angiogenesis, which is a well-established cancer hallmark, exerts a fundamental role in cancer initiation and progression and its targeting has been actively pursued as a promising therapeutic strategy in GEA. A wealth of clinical trials has been conducted, investigating anti-angiogenic agents including VEGF-directed monoclonal antibodies, small molecules tyrosine kinase inhibitors and VEGF-Trap agents both in the resectable and advanced setting, reporting controversial results. While phase III randomized trials testing the anti-VEGFR-2 antibody Ramucirumab and the selective VEGFR-2 tyrosine kinase inhibitor Apatinib demonstrated a significant survival benefit in later lines, the shift of angiogenesis inhibitors in the perioperative and first-line setting failed to improve patients' outcome in GEAs. The molecular landscape of disease, together with novel combinatorial strategies and biomarker-selected approaches are under investigation as key elements to the success of angiogenesis blockade in GEA. In this article, we critically review the existing literature on the biological rationale and clinical development of antiangiogenic agents in GEA, discussing major achievements, limitations and future developments, aiming at fully realizing the potential of this therapeutic approach.
Collapse
Affiliation(s)
- Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
- PhD Program Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Caputo
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Alessandro Bocconi
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Sara Cerri
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Cinzia Baldessari
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Federico Piacentini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Fabio Gelsomino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| |
Collapse
|
13
|
Ciccone V, Terzuoli E, Ristori E, Filippelli A, Ziche M, Morbidelli L, Donnini S. ALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL‑8/Notch signaling cascade. Int J Mol Med 2022; 50:99. [PMID: 35656893 PMCID: PMC9186295 DOI: 10.3892/ijmm.2022.5155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022] Open
Abstract
ALDH1A1 is a cytosolic enzyme upregulated in tumor cells, involved in detoxifying cells from reactive aldehydes and in acquiring resistance to chemotherapeutic drugs. Its expression correlates with poor clinical outcomes in a number of cancers, including melanoma. The present study hypothesized that the increased ALDH1A1 expression and activity upregulated the release of proangiogenic factors from melanoma cells, which regulate angiogenic features in endothelial cells (ECs) through a rearrangement of the Notch pathway. In vivo, when subcutaneously implanted in immunodeficient mice, ALDH1A1 overexpressing melanoma cells displayed a higher microvessel density. In a 3D multicellular system, obtained co‑culturing melanoma cancer cells with stromal cells, including ECs, melanoma ALDH1A1 overexpression induced the recruitment of ECs into the core of the tumorspheres. By using a genes array, overexpression of ALDH1A1 in tumor cells also promoted modulation of Notch cascade gene expression in ECs, suggesting an interaction between tumor cells and ECs mediated by enrichment of angiogenic factors in the tumor microenvironment. To confirm this hypothesis, inactivation of ALDH1A1 by the pharmacological inhibitor CM037 significantly affected the release of angiogenic factors, including IL‑8, from melanoma cells. High levels of ALDH1A1, through the retinoic acid pathway, regulated the activation of NF‑kB‑p65 and IL‑8. Further, in a 2D co‑culture system, the addition of an IL‑8 neutralizing antibody to ECs co‑cultured with melanoma cells forced to express ALDH1A1 dampened endothelial angiogenic features, both at the molecular (in terms of gene and protein expression of mediators of the Notch pathway) and at the functional level (proliferation, scratch assay, tube formation and permeability). In conclusion, these findings demonstrated the existence of a link between melanoma ALDH1A1 expression and EC Notch signaling modification that results in a pro‑angiogenic phenotype. Based on the crucial role of ALDH1A1 in melanoma control of the tumor microenvironment, the enzyme seems a promising target for the development of novel drugs able to interrupt the cross‑talk between cancer (stem) cells and endothelial cells.
Collapse
Affiliation(s)
- Valerio Ciccone
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | - Erika Terzuoli
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | - Emma Ristori
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | | | - Marina Ziche
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena I‑53100, Italy
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena I‑53100, Italy
| |
Collapse
|
14
|
Liang C, Yang L, Guo SW, Li RC. Downregulation of Astrocyte Elevated Gene-1 Expression Combined with All-Trans Retinoic Acid Inhibits Development of Vasculogenic Mimicry and Angiogenesis in Glioma. Curr Med Sci 2022; 42:397-406. [PMID: 35201552 DOI: 10.1007/s11596-022-2517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the effects of downregulating astrocyte elevated gene-1 (AEG-1) expression combined with all-trans retinoic acid (ATRA) on vasculogenic mimicry (VM) formation and angiogenesis in glioma. METHODS U87 glioma cells were transfected with AEG-1 shRNA lentiviral vectors (U87-siAEG-1) and incubated in a medium containing 20 µmol/L ATRA. Matrigel-based tube formation assay was performed to evaluate VM formation, and the cell counting kit-8 (CCK-8) assay was used to analyze the proliferation of glioma cells in vitro. Reverse transcription-quantitative polymerase chain reaction and Western blot analysis were used to investigate the mRNA and protein expression of related genes, respectively. Glioma xenograft models were generated via subcutaneous implantation of glioma cells in nude mice. Tumor-bearing mice received an intraperitoneal injection of ATRA (10 mg/kg per day). Immunohistochemistry was used to evaluate the expression of related genes and the microvessel density (MVD) in glioma xenograft models. CD34/periodic acid-Schiff double staining was performed to detect VM channels in vivo. The volume and weight of tumors were measured, and a tumor growth curve was drawn to evaluate tumor growth. RESULTS A combination of ATRA intervention and downregulation of AEG-1 expression significantly inhibited the proliferation of glioma cells in vitro and glioma VM formation in vitro and in vivo. It also significantly decreased MVD and inhibited tumor growth. Further, the expression levels of matrix metalloproteinase (MMP)-2, MMP-9, vascular endothelial-cadherin (VE-cadherin), and vascular endothelial growth factor (VEGF) in glioma significantly decreased in vivo and in vivo. CONCLUSION Hence, a combinatorial approach might be effective in treating glioma through regulating MMP-2, MMP-9, VEGF, and VE-cadherin expression.
Collapse
Affiliation(s)
- Chen Liang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ling Yang
- Department of Aeromedical Physical Examination, Xi'an Civil Aviation Hospital, Xi'an, 710082, China
| | - Shi-Wen Guo
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui-Chun Li
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
15
|
Sinomenine Inhibits Vasculogenic Mimicry and Migration of Breast Cancer Side Population Cells via Regulating miR-340-5p/SIAH2 Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4914005. [PMID: 35309179 PMCID: PMC8926463 DOI: 10.1155/2022/4914005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/29/2022] [Indexed: 12/24/2022]
Abstract
Hypoxia and its induced vasculogenic mimicry (VM) formation, which both closely related with stem-like side population (SP) cells, are the main culprits leading to tumor invasion and metastasis. Sinomenine exhibits excellent anticancer activity in breast cancer, but whether and how it affects hypoxia-triggered VM formation in breast cancer SP cells remains unclear. In this study, breast cancer SP cells were sorted from MDA-MB-231 cells and cultured with sinomenine under hypoxic conditions. Sinomenine obviously repressed the migration and VM formation of breast cancer SP cells. Through downregulating SIAH2 and HIF-1α, sinomenine can inhibit epithelial-mesenchymal transition process of breast cancer SP cells. SIAH2 was identified as a target of miR-340-5p and was downregulated by it, and sinomenine can upregulate miR-340-5p. Hypoxia-induced downregulation of miR-340-5p and activation of SIAH2/HIF-1α pathway can be both counteracted by the sinomenine. Moreover, miR-340-5p inhibition and SIAH2 overexpression can partly counteract the anticancer effects of sinomenine. Taken together, sinomenine inhibits hypoxia-caused VM formation and metastasis of breast cancer SP cells by regulating the miR-340-5p/SIAH2 axis.
Collapse
|
16
|
Salem A, Salo T. Vasculogenic Mimicry in Head and Neck Squamous Cell Carcinoma-Time to Take Notice. FRONTIERS IN ORAL HEALTH 2022; 2:666895. [PMID: 35048009 PMCID: PMC8757801 DOI: 10.3389/froh.2021.666895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a group of common cancers characterized by a swift growth pattern, early metastasis, and dismal 5-year survival rates. Despite the recent advances in cancer management, the multimodality approach is not effective in eradicating HNSCC. Moreover, the clinical response to the antiangiogenic therapy remains considerably limited in HNSCC patients, suggesting that tumor perfusion can take place through other non-angiogenic pathways. Tumor cell-induced angiogenesis is one of the main hallmarks of cancer. However, at the end of the previous millennium, a new paradigm of tumor cell-associated neovascularization has been reported in human melanoma cells. This new phenomenon, which was named "vasculogenic mimicry" or "vascular mimicry" (VM), describes the ability of aggressively growing tumor cells to form perfusable, matrix-rich, vessel-like networks in 3-dimensional matrices in vitro. Similar matrix-rich VM networks were also identified in tissue samples obtained from cancer patients. To date, myriad studies have reported intriguing features of VM in a wide variety of cancers including HNSCC. We aim in this mini-review to summarize the current evidence regarding the phenomenon of VM in HNSCC-from the available detection protocols and potentially involved mechanisms, to its prognostic value and the present limitations.
Collapse
Affiliation(s)
- Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Mahalanobish S, Kundu M, Ghosh S, Das J, Sil PC. Fabrication of phenyl boronic acid modified pH-responsive zinc oxide nanoparticles as targeted delivery of chrysin on human A549 cells. Toxicol Rep 2022; 9:961-969. [PMID: 35875254 PMCID: PMC9301599 DOI: 10.1016/j.toxrep.2022.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 01/22/2023] Open
Abstract
Recently, different natural bioactive compounds have been used as anticancer agents for their various therapeutic benefits and non-toxic nature to other organs. However, they have various restrictions in preclinical and clinical studies due to their non-targeting nature and insufficient bioavailability. As a result, a zinc oxide nanoparticle (ZnO) based drug delivery medium was constructed which has good bio-compatibility and bio-degradability. It also displays cancer cell-specific drug delivery in a targeted and controlled way. In the present study, phenylboronic acid (PBA) tagged ZnO nanoparticles (ZnO-PBA) was fabricated and in the next step, chrysin (a natural bio-active molecule) was loaded to it to form the nanoconjugate (ZnO-PBA-Chry). Different characterization techniques were used to confirm the successful fabrication of ZnO-PBA-Chry. PBA-tagging to the nanoparticle helps in targeted delivery of chrysin in lung cancer cells (A549) as PBA binds with sialic acid receptors which are over-expressed on the surface of A549 cells. As ZnO dissociates in acidic pH, it shows stimuli-responsive release of chrysin in tumor microenvironment. Application of ZnO-PBA-Chry nanohybrid in lung cancer cell line A549 caused oxidative stress mediated intrinsic cell death and cell cycle arrest. ZnO-PBA-Chry downregulated MMP-2 and VE-Cadherin, thereby inhibiting metastasis and the invasive property of A549 cells. pH-responsive PBA functionalized ZnO nanoparticle was fabricated. Chrysin was loaded as a bioactive anticancer agent into ZnO nanoparticle. ZnO-PBA-Chry induced intrinsic cell death and cell cycle arrest in A549 cells. It inhibited metastasis and invasive properties of A549 cells.
Collapse
|
18
|
Kang X, Xu E, Wang X, Qian L, Yang Z, Yu H, Wang C, Ren C, Wang Y, Lu X, Xia X, Guan W, Qiao T. Tenascin-c knockdown suppresses vasculogenic mimicry of gastric cancer by inhibiting ERK- triggered EMT. Cell Death Dis 2021; 12:890. [PMID: 34588421 PMCID: PMC8481562 DOI: 10.1038/s41419-021-04153-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most common malignancies worldwide and vasculogenic mimicry (VM) is considered to be the leading cause for the failure of anti-angiogenesis therapy in advanced gastric cancer patients. In the present study, we investigate the role of tenascin-c (TNC) in the formation of VM in gastric cancer and found that TNC was upregulated in gastric cancer tissue than in the corresponding adjacent tissues and correlated with VM and poor prognosis of gastric cancer. Furthermore, knockdown of TNC significantly inhibited VM formation and proliferation of gastric cancer cells in vitro and in vivo, with a reduction in cell migration and invasion. Mechanistically, TNC knockdown suppressed the phosphorylation of ERK and subsequently inhibited the process of EMT, both of which play an important role in VM formation. Our results indicated that TNC plays an important role in VM formation in gastric cancer. Combining inhibition of TNC and ERK may be a potential therapeutic approach to inhibit gastric cancer growth and metastasis and decrease antiangiogenic therapeutic resistance.
Collapse
Affiliation(s)
- Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - En Xu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Lulu Qian
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Zhi Yang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Heng Yu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Chao Wang
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Chuanfu Ren
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Yizhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China.
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China.
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No. 321 Zhongshan Road, 210008, Nanjing, China.
| | - Tong Qiao
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, 210008, Nanjing, China.
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, 210008, Nanjing, China.
| |
Collapse
|
19
|
Picon H, Guddati AK. Cancer stem cells in head and neck cancer. AMERICAN JOURNAL OF STEM CELLS 2021; 10:28-35. [PMID: 34552815 PMCID: PMC8449141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Cancer stem cells (CSCs) are a unique population of cells found within tumors that are able to self-renew, restore the original heterogeneity of a tumor following treatment, and show increased tumorigenic potential when compared to other cancer cells. It is thought that they are responsible for the recurrence of tumors as well as the resistance to treatment that is seen clinically. CSCs are known to be involved in head and neck cancer (HNCs) specifically, as evidence for their existence can be found in head and neck squamous cell carcinoma (HNSCC), mucoepidermoid carcinoma (MEC), and adenoid cystic carcinoma (ACC), among others. Here, findings from various approaches to identifying and targeting CSCs and their downstream effectors in HNC are summarized, with an emphasis on recent advancements. Prognostic and therapeutic markers are discussed for each specific type of HNC, and novel treatment strategies and current clinical trials involving CSCs are detailed as well. The information provided here is intended to further the research on this important topic and lead to clinical impact in the battle against HNC.
Collapse
Affiliation(s)
- Hector Picon
- Medical College of Georgia, Augusta UniversityAugusta 30909, GA, USA
| | - Achuta Kumar Guddati
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta UniversityAugusta 30912, GA, USA
| |
Collapse
|
20
|
Xu J, Yang X, Deng Q, Yang C, Wang D, Jiang G, Yao X, He X, Ding J, Qiang J, Tu J, Zhang R, Lei QY, Shao ZM, Bian X, Hu R, Zhang L, Liu S. TEM8 marks neovasculogenic tumor-initiating cells in triple-negative breast cancer. Nat Commun 2021; 12:4413. [PMID: 34285210 PMCID: PMC8292527 DOI: 10.1038/s41467-021-24703-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Enhanced neovasculogenesis, especially vasculogenic mimicry (VM), contributes to the development of triple-negative breast cancer (TNBC). Breast tumor-initiating cells (BTICs) are involved in forming VM; however, the specific VM-forming BTIC population and the regulatory mechanisms remain undefined. We find that tumor endothelial marker 8 (TEM8) is abundantly expressed in TNBC and serves as a marker for VM-forming BTICs. Mechanistically, TEM8 increases active RhoC level and induces ROCK1-mediated phosphorylation of SMAD5, in a cascade essential for promoting stemness and VM capacity of breast cancer cells. ASB10, an estrogen receptor ERα trans-activated E3 ligase, ubiquitylates TEM8 for degradation, and its deficiency in TNBC resulted in a high homeostatic level of TEM8. In this work, we identify TEM8 as a functional marker for VM-forming BTICs in TNBC, providing a target for the development of effective therapies against TNBC targeting both BTIC self-renewal and neovasculogenesis simultaneously. Vasculogenic mimicry (VM) contributes to the development of triple-negative breast cancer. In this study, the authors show that TEM8 is expressed in VM-forming breast cancer stem cells and it promotes stemness and VM differentiation capacity through a RhoC/ROCK1/SMAD5 axis
Collapse
Affiliation(s)
- Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoli Yang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Yang
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Dong Wang
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Guojuan Jiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University); Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Ding
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University); Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China.
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Rosińska S, Gavard J. Tumor Vessels Fuel the Fire in Glioblastoma. Int J Mol Sci 2021; 22:6514. [PMID: 34204510 PMCID: PMC8235363 DOI: 10.3390/ijms22126514] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, a subset of aggressive brain tumors, deploy several means to increase blood vessel supply dedicated to the tumor mass. This includes typical program borrowed from embryonic development, such as vasculogenesis and sprouting angiogenesis, as well as unconventional processes, including co-option, vascular mimicry, and transdifferentiation, in which tumor cells are pro-actively engaged. However, these neo-generated vascular networks are morphologically and functionally abnormal, suggesting that the vascularization processes are rather inefficient in the tumor ecosystem. In this review, we reiterate the specificities of each neovascularization modality in glioblastoma, and, how they can be hampered mechanistically in the perspective of anti-cancer therapies.
Collapse
Affiliation(s)
- Sara Rosińska
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
| | - Julie Gavard
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
- Integrated Center for Oncology, ICO, 44800 St. Herblain, France
| |
Collapse
|
22
|
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol 2021; 9:642352. [PMID: 33681228 PMCID: PMC7928398 DOI: 10.3389/fcell.2021.642352] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Abdellah Akil
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ana K. Gutiérrez-García
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Bart Rose
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam W. Beck
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Cancer Stem Cells in Metastatic Head and Neck Cutaneous Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System. Cells 2021; 10:cells10020243. [PMID: 33513805 PMCID: PMC7910940 DOI: 10.3390/cells10020243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
We investigated the expression of components of the renin-angiotensin system (RAS) by cancer stem cell (CSC) subpopulations in metastatic head and neck cutaneous squamous cell carcinoma (mHNcSCC). Immunohistochemical staining demonstrated expression of prorenin receptor (PRR), angiotensin-converting enzyme (ACE), and angiotensin II receptor 2 (AT2R) in all cases and angiotensinogen in 14 cases; however, renin and ACE2 were not detected in any of the 20 mHNcSCC tissue samples. Western blotting showed protein expression of angiotensinogen in all six mHNcSCC tissue samples, but in none of the four mHNcSCC-derived primary cell lines, while PRR was detected in the four cell lines only. RT-qPCR confirmed transcripts of angiotensinogen, PRR, ACE, and angiotensin II receptor 1 (AT1R), but not renin or AT2R in all four mHNcSCC tissue samples and all four mHNcSCC-derived primary cell lines, while ACE2 was expressed in the tissue samples only. Double immunohistochemical staining on two of the mHNcSCC tissue samples showed expression of angiotensinogen by the SOX2+ CSCs within the tumor nests (TNs), and immunofluorescence showed expression of PRR and AT2R by the SOX2+ CSCs within the TNs and the peritumoral stroma (PTS). ACE was expressed on the endothelium of the tumor microvessels within the PTS. We demonstrated expression of angiotensinogen by CSCs within the TNs, PRR, and AT2R by the CSCs within the TNs and the PTS, in addition to ACE on the endothelium of tumor microvessels in mHNcSCC.
Collapse
|
24
|
Cancer Stem Cells-Key Players in Tumor Relapse. Cancers (Basel) 2021; 13:cancers13030376. [PMID: 33498502 PMCID: PMC7864187 DOI: 10.3390/cancers13030376] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor relapse and treatment failure are unfortunately common events for cancer patients, thus often rendering cancer an uncurable disease. Cancer stem cells (CSCs) are a subset of cancer cells endowed with tumor-initiating and self-renewal capacity, as well as with high adaptive abilities. Altogether, these features contribute to CSC survival after one or multiple therapeutic approaches, thus leading to treatment failure and tumor progression/relapse. Thus, elucidating the molecular mechanisms associated with stemness-driven resistance is crucial for the development of more effective drugs and durable responses. This review will highlight the mechanisms exploited by CSCs to overcome different therapeutic strategies, from chemo- and radiotherapies to targeted therapies and immunotherapies, shedding light on their plasticity as an insidious trait responsible for their adaptation/escape. Finally, novel CSC-specific approaches will be described, providing evidence of their preclinical and clinical applications.
Collapse
|
25
|
FOLFOX Therapy Induces Feedback Upregulation of CD44v6 through YB-1 to Maintain Stemness in Colon Initiating Cells. Int J Mol Sci 2021; 22:ijms22020753. [PMID: 33451103 PMCID: PMC7828641 DOI: 10.3390/ijms22020753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they develop drug-resistance characteristics is not well understood. In this study, we demonstrate that chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer (CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan, increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting several antiapoptotic and stemness genes, including cyclin-D1,BCL2,FZD1,GINS-1, and MMP9. Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed the presence of various consensus binding sites for core stemness-associated transcription factors “CTOS” (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of differentiated tumor cells into CICs.
Collapse
|
26
|
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Xiong W, Zeng Z. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer 2021; 20:7. [PMID: 33397409 PMCID: PMC7784348 DOI: 10.1186/s12943-020-01288-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Vasculogenic mimicry (VM) is a recently discovered angiogenetic process found in many malignant tumors, and is different from the traditional angiogenetic process involving vascular endothelium. It involves the formation of microvascular channels composed of tumor cells; therefore, VM is considered a new model for the formation of new blood vessels in aggressive tumors, and can provide blood supply for tumor growth. Many studies have pointed out that in recent years, some clinical treatments against angiogenesis have not been satisfactory possibly due to the activation of VM. Although the mechanisms underlying VM have not been fully elucidated, increasing research on the soil “microenvironment” for tumor growth suggests that the initial hypoxic environment in solid tumors is inseparable from VM. Main body In this review, we describe that the stemness and differentiation potential of cancer stem cells are enhanced under hypoxic microenvironments, through hypoxia-induced epithelial-endothelial transition (EET) and extracellular matrix (ECM) remodeling to form the specific mechanism of vasculogenic mimicry; we also summarized some of the current drugs targeting VM through these processes, suggesting a new reference for the clinical treatment of tumor angiogenesis. Conclusion Overall, the use of VM inhibitors in combination with conventional anti-angiogenesis treatments is a promising strategy for improving the effectiveness of targeted angiogenesis treatments; further, considering the importance of hypoxia in tumor invasion and metastasis, drugs targeting the hypoxia signaling pathway seem to achieve good results.
Collapse
Affiliation(s)
- Xiaoxu Wei
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunhua Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Miao Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yiduo Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Daixi Ren
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuze Hua
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Boyao Yu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Murugesan A, Sekar B, Saranyan R, Manivannan E, Rajmohan M. A Review on Cancer Stem Cells in Vasculogenic Mimicry Formation: A New Dimension for Targeted Therapy. JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820960862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim: Cancer stem cells (CSCs) or tumor-initiating cells have self-renewal and uncontrolled tumor growth capacity that promotes metastasis and recurrence. Challenges in anticancer have found a lateral dimension of treatment against a new pattern of tumor microcirculation, known as vasculogenic mimicry (VM), involved in cancer progression. Increasing evidence suggest that CSCs are involved in the formation of VM. In this review the correlation between CSCs and VM formation is been enlightened. Materials and Methods: The literature search was done in Medline, PubMed, Wiley, Science Direct, and Scopus. The keywords used for database search were cancer stem cells, vasculogenic mimicry, and anticancer therapy. Results: A total of 112 articles appeared from various sources, of which 102 were subjected for screening and 20 were related to the research objective. Conclusion: Based on the literature a positive correlation exists between CSC and VM, which plays a key role in tumor progression, and hence, can serve as a potential target in anticancer therapy.
Collapse
Affiliation(s)
- Ambika Murugesan
- Department of Oral Pathology and Oral Microbiology, Vinayaka Mission’s Sankarachariyar Dental College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
| | - B. Sekar
- Department of Oral Pathology and Oral Microbiology, Vinayaka Mission’s Sankarachariyar Dental College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
| | - R. Saranyan
- Department of Periodontology, Vinayaka Mission’s Sankarachariyar Dental College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
| | - E. Manivannan
- Department of Pharmacology, VMKV Medical College, Salem, Tamil Nadu, India
| | - M. Rajmohan
- Department of Oral and Maxillofacial Pathology, KSR Institute of Dental Science and Research, Tiruchengode, Thokkavadi, Tamil Nadu, India
| |
Collapse
|
28
|
Wechman SL, Emdad L, Sarkar D, Das SK, Fisher PB. Vascular mimicry: Triggers, molecular interactions and in vivo models. Adv Cancer Res 2020; 148:27-67. [PMID: 32723566 DOI: 10.1016/bs.acr.2020.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular mimicry is induced by a wide array of genes with functions related to cancer stemness, hypoxia, angiogenesis and autophagy. Vascular mimicry competent (VM-competent) cells that form de novo blood vessels are common in solid tumors facilitating tumor cell survival and metastasis. VM-competent cells display increased levels of vascular mimicry selecting for stem-like cells in an O2-gradient-dependent manner in deeply hypoxic tumor regions, while also aiding in maintaining tumor cell metabolism and stemness. Three of the principal drivers of vascular mimicry are EphA2, Nodal and HIF-1α, however, directly or indirectly many of these molecules affect VE-Cadherin (VE-Cad), which forms gap-junctions to bind angiogenic blood vessels together. During vascular mimicry, the endothelial-like functions of VM-competent cancer stem cells co-opt VE-Cad to bind cancer cells together to create cancer cell-derived blood conducting vessels. This process potentially compensates for the lack of access to blood and nutrient in avascular tumors, simultaneously providing nutrients and enhancing cancer invasion and metastasis. Current evidence also supports that vascular mimicry promotes cancer malignancy and metastasis due to the cooperation of oncogenic signaling molecules driving cancer stemness and autophagy. While a number of currently used cancer therapeutics are effective inhibitors of vascular mimicry, developing a new class of vascular mimicry specific inhibitors could allow for the treatment of angiogenesis-resistant tumors, inhibit cancer metastasis and improve patient survival. In this review, we describe the principal vascular mimicry pathways in addition to emphasizing the roles of hypoxia, autophagy and select proangiogenic oncogenes in this process.
Collapse
Affiliation(s)
- Stephen L Wechman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
29
|
Lim D, Do Y, Kwon BS, Chang W, Lee MS, Kim J, Cho JG. Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer. BMB Rep 2020. [PMID: 32438972 PMCID: PMC7330806 DOI: 10.5483/bmbrep.2020.53.6.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor angiogenesis is an essential process for growth and metastasis of cancer cells as it supplies tumors with oxygen and nutrients. During tumor angiogenesis, many pro-angiogenic factors are secreted by tumor cells to induce their own vascularization via activation of pre-existing host endothelium. However, accumulating evidence suggests that vasculogenic mimicry (VM) is a key alternative mechanism for tumor vascularization when tumors are faced with insufficient supply of oxygen and nutrients. VM is a tumor vascularization mechanism in which tumors create a blood supply system, in contrast to tumor angiogenesis mechanisms that depend on pre-existing host endothelium. VM is closely associated with tumor progression and poor prognosis in many cancers. Therefore, inhibition of VM may be a promising therapeutic strategy and may overcome the limitations of anti-angiogenesis therapy for cancer patients. In this review, we provide an overview of the current anti-angiogenic therapies for ovarian cancer and the current state of knowledge regarding the links between microRNAs and the VM process, with a focus on the mechanism that regulates associated signaling pathways in ovarian cancer. Moreover, we discuss the potential for VM as a therapeutic strategy against ovarian cancer.
Collapse
Affiliation(s)
- Dansaem Lim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yeojin Do
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Korea
| | - Myeong-Sok Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jin Gu Cho
- Division of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
30
|
Maroufi NF, Amiri M, Dizaji BF, Vahedian V, Akbarzadeh M, Roshanravan N, Haiaty S, Nouri M, Rashidi MR. Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition (EMT) in breast cancer stem cells. Eur J Pharmacol 2020; 881:173282. [PMID: 32580038 DOI: 10.1016/j.ejphar.2020.173282] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Vasculogenic mimicry (VM) play an important role in breast cancer metastasis and anti- angiogenic drugs resistance. Hypoxia, the epithelial-mesenchymal transition (EMT), and cancer stem cells (CSCs) are known as essential factors for VM formation. Also, melatonin is an amino acid-derived hormone with many anti-tumor effects. Despite the antitumor effects of melatonin, its effect on VM formation in breast cancer has not been considered yet, so we investigated the effect of melatonin on VM formation through EMT process under hypoxia conditions in breast CSCs. The CSCs percentage and VM formation were determined in MCF-7 and MDA-MB-231, respectively. Also, analysis of HIF-1α expression under hypoxia in MDA-MB-231 and MCF-7 cell lines was performed using Western blot. The effect of melatonin on the VM formation, invasion, and migration was also investigated. Moreover, the effect of melatonin on the expression EMT markers was evaluated. CD44+ CD24-phenotype as CSCs marker in MDA-MB-231 cell line, was 80.8%, while it was 11.1% in MCF-7 cell line. HIF-1α expression was up-regulated in the VM-positive breast cancer cell line MDA-MB-231, and consequently, affected the expression of the EMT markers E-cadherin, vimentin, snail, and MMP9. Melatonin had significant effect on EMT and formations of VM in breast CSCs. Melatonin could prevent the formation of VM by affecting the important molecules involved in the formation of VM structures and the EMT. Moreover, our data clearly showed that, melatonin represents molecule with significant anti-cancer activities that may potentially optimize the management of breast cancer through the overcoming drug resistance in anti-angiogenic drugs.
Collapse
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Amiri
- Department of Medical Laboratory Science, Faculty of Paramedical Science, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Babak Faraji Dizaji
- Faculty of Pharmacy, Eastern Mediterranean University, 99628, Famagusta, North Cyprus Via Mersin10, Turkey
| | - Vahid Vahedian
- Research Club of Tums Preclinical Core Facility (TPCF), Tehran University of Medical Science (TUMS), Tehran, Iran; Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University (IAU), Sari, Iran
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol 2020; 13:19. [PMID: 32169087 PMCID: PMC7071697 DOI: 10.1186/s13045-020-00858-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Distinct from classical tumor angiogenesis, vasculogenic mimicry (VM) provides a blood supply for tumor cells independent of endothelial cells. VM has two distinct types, namely tubular type and patterned matrix type. VM is associated with high tumor grade, tumor progression, invasion, metastasis, and poor prognosis in patients with malignant tumors. Herein, we discuss the recent studies on the role of VM in tumor progression and the diverse mechanisms and signaling pathways that regulate VM in tumors. Furthermore, we also summarize the latest findings of non-coding RNAs, such as lncRNAs and miRNAs in VM formation. In addition, we review application of molecular imaging technologies in detection of VM in malignant tumors. Increasing evidence suggests that VM is significantly associated with poor overall survival in patients with malignant tumors and could be a potential therapeutic target.
Collapse
|
32
|
Bora-Singhal N, Mohankumar D, Saha B, Colin CM, Lee JY, Martin MW, Zheng X, Coppola D, Chellappan S. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci Rep 2020; 10:4722. [PMID: 32170113 PMCID: PMC7069992 DOI: 10.1038/s41598-020-61295-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is known to have poor patient outcomes due to development of resistance to chemotherapy agents and the EGFR inhibitors, which results in recurrence of highly aggressive lung tumors. Even with recent success in immunotherapy using the checkpoint inhibitors, additional investigations are essential to identify novel therapeutic strategies for efficacious treatment for NSCLC. Our finding that high levels of histone deacetylase 11 (HDAC11) in human lung tumor tissues correlate with poor patient outcome and that depletion or inhibition of HDAC11 not only significantly reduces self-renewal of cancer stem cells (CSCs) from NSCLC but also decreases Sox2 expression that is essential for maintenance of CSCs, indicates that HDAC11 is a potential target to combat NSCLC. We find that HDAC11 suppresses Sox2 expression through the mediation of Gli1, the Hedgehog pathway transcription factor. In addition, we have used highly selective HDAC11 inhibitors that not only target stemness and adherence independent growth of lung cancer cells but these inhibitors could also efficiently ablate the growth of drug-insensitive stem-like cells as well as therapy resistant lung cancer cells. These inhibitors were found to be efficacious even in presence of cancer associated fibroblasts which have been shown to contribute in therapy resistance. Our study presents a novel role of HDAC11 in lung adenocarcinoma progression and the potential use of highly selective inhibitors of HDAC11 in combating lung cancers.
Collapse
Affiliation(s)
- Namrata Bora-Singhal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Durairaj Mohankumar
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Biswarup Saha
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Christelle M Colin
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jennifer Y Lee
- FORMA Therapeutics, 500 Arsenal St, Suite 100, Watertown, MA, 02472, USA
| | - Matthew W Martin
- FORMA Therapeutics, 500 Arsenal St, Suite 100, Watertown, MA, 02472, USA
| | - Xiaozhang Zheng
- FORMA Therapeutics, 500 Arsenal St, Suite 100, Watertown, MA, 02472, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Srikumar Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
33
|
Resistance of melanoma cells to anticancer treatment: a role of vascular endothelial growth factor. Postepy Dermatol Alergol 2020; 37:11-18. [PMID: 32467677 PMCID: PMC7247075 DOI: 10.5114/ada.2020.93378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Melanoma is one of the most aggressive and resistant to treatment neoplasms. There are still many challenges despite many promising advances in anticancer treatment. Currently, the main problem for all types of treatment is associated with heterogeneity. Due to heterogeneity of cancer cells, "precise" targeting of a medicine against a single phenotype limits the efficacy of treatment and affects resistance to applied therapy. Therefore it is important to understand aetiology and reasons for heterogeneity in order to develop effective and long-lasting treatment. This review summarises roles of vascular endothelial growth factor (VEGF) that may stimulate growth of a melanoma tumour irrespective of its proangiogenic effects, contributing to cancer heterogeneity. VEGF triggers processes associated with extracellular matrix remodelling, cell migration, invasion, angiogenesis, inhibition of immune responses and favours phenotypic plasticity and epithelial-mesenchymal transition. Consequently, it participates in mechanisms of interactions between melanoma cancer cells and microenvironment and it can modify sensitivity to therapeutic factors.
Collapse
|
34
|
Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis 2020; 11:173. [PMID: 32144236 PMCID: PMC7060320 DOI: 10.1038/s41419-020-2361-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/30/2022]
Abstract
Growing evidence indicates that a small number of cancer cells express stem cell markers and possess stem cell-like properties that promote malignant progression. Sex-determining region Y-box2 (SOX2) is a stem cell transcription factor essential for maintaining the properties of cancer stem cell (CSC). As CSC properties have been associated with angiogenesis and vasculogenic mimicry (VM), we aimed to comprehensively investigate whether SOX2 regulates CSC properties, angiogenesis, and VM in colorectal carcinoma (CRC) and its potential mechanism in this study. For this study, sphere formation assay, flow cytometry, cell survival analysis, tube formation, 3D culture, immunoblot, mouse model, and luciferase reporter assay were performed in vivo and in vitro. Expressions of SOX2 and miR-450a-5p in CRC tissue samples were examined through immunohistochemistry. First, the expression of SOX2 was not only associated with poor differentiation and prognosis but also promoted angiogenesis and VM. Knockdown of SOX2 ceased stemness properties, angiogenesis, and VM, along with decreased expression of CD133, CD31, and VE-cadherin as observed in functional experiments. Downregulation of SOX2 was found to inhibit tumorigenesis in vivo. Second, miR-450a-5p suppressed the expression of SOX2 by targeting its 3’UTR region directly and hence restrained SOX2-induced CSC properties, angiogenesis, and VM. Moreover, SOX2 overexpression preserved the miR-450a-5p-induced inhibition of CRC properties, angiogenesis, and VM. Finally, clinical samples exhibited a negative correlation between miR-450a-5p and SOX2. Patients with higher SOX2 and lower miR-450a-5p expressions had a poorer prognosis than patients with inverse expressions. Conclusively, we elucidated a unique mechanism of miR-450a-5p-SOX2 axis in the regulation of stemness, angiogenesis, and VM, which may act as a potential therapeutic practice in CRC.
Collapse
|
35
|
Wu Y, Zhang J, Zhang X, Zhou H, Liu G, Li Q. Cancer Stem Cells: A Potential Breakthrough in HCC-Targeted Therapy. Front Pharmacol 2020; 11:198. [PMID: 32210805 PMCID: PMC7068598 DOI: 10.3389/fphar.2020.00198] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulations of cells with stem cell characteristics that produce both cancerous and non-tumorigenic cells in tumor tissues. The literature reports that CSCs are closely related to the development of hepatocellular carcinoma (HCC) and promote the malignant features of HCC such as high invasion, drug resistance, easy recurrence, easy metastasis, and poor prognosis. This review discusses the origin, molecular, and biological features, functions, and applications of CSCs in HCC in recent years; the goal is to clarify the importance of CSCs in treatment and explore their potential value in HCC-targeted therapy.
Collapse
|
36
|
Andonegui-Elguera MA, Alfaro-Mora Y, Cáceres-Gutiérrez R, Caro-Sánchez CHS, Herrera LA, Díaz-Chávez J. An Overview of Vasculogenic Mimicry in Breast Cancer. Front Oncol 2020; 10:220. [PMID: 32175277 PMCID: PMC7056883 DOI: 10.3389/fonc.2020.00220] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Vasculogenic mimicry (VM) is the formation of vascular channels lacking endothelial cells. These channels are lined by tumor cells with cancer stem cell features, positive for periodic acid-Schiff, and negative for CD31 staining. The term VM was introduced by Maniotis et al. (1), who reported this phenomenon in highly aggressive uveal melanomas; since then, VM has been associated with poor prognosis, tumor aggressiveness, metastasis, and drug resistance in several tumors, including breast cancer. It is proposed that VM and angiogenesis (the de novo formation of blood vessels from the established vasculature by endothelial cells, which is observed in several tumors) rely on some common mechanisms. Furthermore, it is also suggested that VM could constitute a means to circumvent anti-angiogenic treatment in cancer. Therefore, it is important to determinant the factors that dictate the onset of VM. In this review, we describe the current understanding of VM formation in breast cancer, including specific signaling pathways, and cancer stem cells. In addition, we discuss the clinical significance of VM in prognosis and new opportunities of VM as a target for breast cancer therapy.
Collapse
Affiliation(s)
- Marco A Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Yair Alfaro-Mora
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Rodrigo Cáceres-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico.,Dirección General, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| |
Collapse
|
37
|
Xue Y, Sun R, Zheng W, Yang L, An R. Forskolin promotes vasculogenic mimicry and invasion via Notch‑1‑activated epithelial‑to‑mesenchymal transition in syncytiolization of trophoblast cells in choriocarcinoma. Int J Oncol 2020; 56:1129-1139. [PMID: 32319581 PMCID: PMC7115352 DOI: 10.3892/ijo.2020.4997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Choriocarcinoma (CC) is characterized by earlier blood metastasis compared with other female genital tumors and a high incidence of massive hemorrhage. Vasculogenic mimicry (VM) is highly associated with metastasis, and syncytiotrophoblast is involved in the formation of VM in CC. Forskolin is a typical activator of the cAMP pathway, which is involved in the syncytiolization of trophoblastic cells. In the present study, to determine the effects and mechanism of forskolin on cell invasion and VM during syncytiolization in vitro and in vivo, JEG-3 and JAR cell lines were treated with 100 µM forskolin for 48 h, and wound healing and invasion assays were used to verify cell migratory and invasive capacities. A 3D culture and tube formation assays were established to detect VM. Variation of morphology and markers of the epithelial-to-mesenchymal transition (EMT) were assessed, and the role of the Notch signaling pathway was investigated in CC cells treated with forskolin. The results of the present study demonstrated that 100 µM forskolin induced syncytiolization of trophoblastic cells and enhanced the migratory and invasive abilities of JEG-3 and JAR cell lines. In addition, the capacity of VM was significantly increased, whereas tube formation ability was decreased by forskolin in vitro and in vivo compared with the respective control groups. The cellular morphology exhibited EMT during the syncytiolization process, which was further supported by the changes in EMT marker expression, including downregulation of E-cadherin and cytokeratin and upregulation of N-cadherin, vimentin and zinc finger E-box-binding homeobox 1. The Notch-1 signaling pathway was activated to induce EMT in forskolin-induced VM process in CC cells, and VM and EMT could be reversed by using the γ-secretase inhibitor DAPT to block the Notch-1 pathway. Overall, the results of the present study demonstrated that forskolin enhanced the capacity of VM formation and metastasis through Notch-1-activated EMT in the syncytiolization of trophoblastic cells.
Collapse
Affiliation(s)
- Yan Xue
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rong Sun
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lei Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ruifang An
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
38
|
Epigallocatechin-3-Gallate Suppresses Vasculogenic Mimicry through Inhibiting the Twist/VE-Cadherin/AKT Pathway in Human Prostate Cancer PC-3 Cells. Int J Mol Sci 2020; 21:ijms21020439. [PMID: 31936664 PMCID: PMC7013924 DOI: 10.3390/ijms21020439] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/17/2023] Open
Abstract
Vasculogenic mimicry (VM) is the alternative process of forming vessel-like networks by aggressive tumor cells, and it has an important role in tumor survival, growth, and metastasis. Epigallocatechin-3-gallate (EGCG) is well known to have diverse bioactivities including anti-cancer effects. However, the efficacy of EGCG on VM is elusive. In this study, we explored whether and how EGCG affects VM in human prostate cancer (PCa) PC-3 cells. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Invasive and VM formation abilities were assessed by an invasion assay and a three-dimensional (3D) culture VM tube formation assay, respectively. Western blots were carried out. An immunofluorescence assay was performed to detect nuclear twist expression. EGCG effectively inhibited the invasive ability, as well as tubular channel formation, without affecting cell viability. EGCG significantly downregulated the expression of vascular endothelial cadherin (VE-cadherin) and its transcription factor, twist, N-cadherin, vimentin, phosphor-AKT, and AKT, but not phospho-erythropoietin-producing hepatocellular receptor A2 (EphA2) and EphA2. In addition, EGCG diminished the nuclear localization of twist. Treatment with SC79, an AKT activator, effectively rescued EGCG-inhibited VM formation. These results demonstrated for the first time that EGCG causes marked suppression of VM through inhibiting the twist/VE-cadherin/AKT pathway in human PCa PC-3 cells.
Collapse
|
39
|
Triaca V, Carito V, Fico E, Rosso P, Fiore M, Ralli M, Lambiase A, Greco A, Tirassa P. Cancer stem cells-driven tumor growth and immune escape: the Janus face of neurotrophins. Aging (Albany NY) 2019; 11:11770-11792. [PMID: 31812953 PMCID: PMC6932930 DOI: 10.18632/aging.102499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/17/2019] [Indexed: 05/12/2023]
Abstract
Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting in typically aggressive tumors with poor prognosis.In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral effects of NGF/TrkA-inhibitory therapy.A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune system will possibly open the way to precision medicine in neurotrophic therapy and improve patient's prognosis in both TrkA- dependent and independent cancers.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
40
|
Ayala-Domínguez L, Olmedo-Nieva L, Muñoz-Bello JO, Contreras-Paredes A, Manzo-Merino J, Martínez-Ramírez I, Lizano M. Mechanisms of Vasculogenic Mimicry in Ovarian Cancer. Front Oncol 2019; 9:998. [PMID: 31612116 PMCID: PMC6776917 DOI: 10.3389/fonc.2019.00998] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Solid tumors carry out the formation of new vessels providing blood supply for growth, tumor maintenance, and metastasis. Several processes take place during tumor vascularization. In angiogenesis, new vessels are derived from endothelial cells of pre-existing vessels; while in vasculogenesis, new vessels are formed de novo from endothelial progenitor cells, creating an abnormal, immature, and disorganized vascular network. Moreover, highly aggressive tumor cells form structures similar to vessels, providing a pathway for perfusion; this process is named vasculogenic mimicry (VM), where vessel-like channels mimic the function of vessels and transport plasma and blood cells. VM is developed by numerous types of aggressive tumors, including ovarian carcinoma which is the second most common cause of death among gynecological cancers. VM has been associated with poor patient outcome and survival in ovarian cancer, although the involved mechanisms are still under investigation. Several signaling molecules have an important role in VM in ovarian cancer, by regulating the expression of genes related to vascular, embryogenic, and hypoxic signaling pathways. In this review, we provide an overview of the current knowledge of the signaling molecules involved in the promotion and regulation of VM in ovarian cancer. The clinical implications and the potential benefit of identification and targeting of VM related molecules for ovarian cancer treatment are also discussed.
Collapse
Affiliation(s)
- Lízbeth Ayala-Domínguez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Imelda Martínez-Ramírez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
41
|
Qin Y, Zhao W, Cheng L, Wu S, Wu Q, Gao J, Bian Z, Ma L. Clinical significance of vasculogenic mimicry, vascular endothelial cadherin and SOX4 in patients with esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2462-2473. [PMID: 31934073 PMCID: PMC6949576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Vasculogenic mimicry (VM) plays an important role in invasion and metastasis of malignant tumor. High expression of vascular endothelial cadherin (VE-cahderin) in malignant tumor cells can promote the formation of VM. High expression of SOX4 (sex-determining region Y-related high-mobility group box 4) was found in esophageal squamous cell carcinoma (ESCC). It can promote the development of epithelial stromal transformation. Then, SOX4 can promote the formation of VM in ESCC. METHODS Paraffin-embedded specimens of ESCC (with complete clinicopathological data) and normal esophageal mucosa adjacent to carcinoma (> 5 cm) were collected from January to December 2013. CD34/PAS was used to detect VM. The expression of VE-cadherin and SOX4 was used by immunohistochemistry. The patients were followed up in detail (survival time and survival status). RESULTS SOX4, VM, and VE-cadherin were highly expressed in ESCC. Moreover, they were positively correlated. Survival analysis shows that the expressions of SOX4, VM, and VE-cadherin are associated with the patient's prognosis and can be independent prognostic factors for ESCC. CONCLUSIONS Studies suggests that SOX4, which is highly expressed in ESCC, is involved in the formation of VM. The combined detection of SOX4, VE-cadherin and VM expression can be used as biomarkers for invasion and metastasis of ESCC. These three markers can be used as powerful prognostic factors in patients with ESCC.
Collapse
Affiliation(s)
- Yanzi Qin
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui Province, China
- Department of Pathology, Bengbu Medical CollegeAnhui Province, China
| | - Wenjun Zhao
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui Province, China
| | - Lili Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui Province, China
- Department of Pathology, Bengbu Medical CollegeAnhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui Province, China
- Department of Pathology, Bengbu Medical CollegeAnhui Province, China
| | - Qiong Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui Province, China
- Department of Pathology, Bengbu Medical CollegeAnhui Province, China
| | - Jin Gao
- Department of Clinical Medicine, Bengbu Medical CollegeAnhui Province, China
| | - Zhaonan Bian
- Department of Clinical Medicine, Bengbu Medical CollegeAnhui Province, China
| | - Li Ma
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical CollegeBengbu, Anhui Province, China
- Department of Pathology, Bengbu Medical CollegeAnhui Province, China
| |
Collapse
|
42
|
Castet F, Garcia-Mulero S, Sanz-Pamplona R, Cuellar A, Casanovas O, Caminal JM, Piulats JM. Uveal Melanoma, Angiogenesis and Immunotherapy, Is There Any Hope? Cancers (Basel) 2019; 11:E834. [PMID: 31212986 PMCID: PMC6627065 DOI: 10.3390/cancers11060834] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Uveal melanoma is considered a rare disease but it is the most common intraocular malignancy in adults. Local treatments are effective, but the systemic recurrence rate is unacceptably high. Moreover, once metastasis have developed the prognosis is poor, with a 5-year survival rate of less than 5%, and systemic therapies, including immunotherapy, have rendered poor results. The tumour biology is complex, but angiogenesis is a highly important pathway in these tumours. Vasculogenic mimicry, the ability of melanomas to generate vascular channels independently of endothelial cells, could play an important role, but no effective therapy targeting this process has been developed so far. Angiogenesis modulates the tumour microenvironment of melanomas, and a close interplay is established between them. Therefore, combining immune strategies with drugs targeting angiogenesis offers a new therapeutic paradigm. In preclinical studies, these approaches effectively target these tumours, and a phase I clinical study has shown encouraging results in cutaneous melanomas. In this review, we will discuss the importance of angiogenesis in uveal melanoma, with a special focus on vasculogenic mimicry, and describe the interplay between angiogenesis and the tumour microenvironment. In addition, we will suggest future therapeutic approaches based on these observations and mention ways in which to potentially enhance current treatments.
Collapse
Affiliation(s)
- Florian Castet
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Sandra Garcia-Mulero
- Clinical Research in Solid Tumors Group (CREST), Bellvitge Biomedical Research Institute IDIBELL-OncoBell, Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL-OncoBell, Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), IDIBELL-OncoBell, Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Andres Cuellar
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology, IDIBELL-OncoBell, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Josep Maria Caminal
- Ophthalmology Department; University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Josep Maria Piulats
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Clinical Research in Solid Tumors Group (CREST), Bellvitge Biomedical Research Institute IDIBELL-OncoBell, Hospitalet de Llobregat, 08908 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| |
Collapse
|
43
|
Wu Q, Wang J, Liu Y, Gong X. Epithelial cell adhesion molecule and epithelial-mesenchymal transition are associated with vasculogenic mimicry, poor prognosis, and metastasis of triple negative breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1678-1689. [PMID: 31933986 PMCID: PMC6947126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/26/2019] [Indexed: 06/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is associated with epithelial-mesenchymal transition (EMT) and the phenotype of breast cancer stem cells (CSCs). Vasculogenic mimicry (VM) is a novel pattern of tumor blood supply and associated with aggression and metastasis of TNBC. Previous studies have shown that both CSCs and EMT are associated with VM, although the underlying mechanism is yet unclear. The present study aimed to analyze the immunohistochemical (IHC) expression of CSC marker, epithelial cell adhesion molecule (EpCAM), EMT-related markers, including transcription factors (TFs) (Slug, Twist1, and ZEB1), and EMT markers (E-cadherin and vimentin) in 137 TNBC. The expression of these markers was correlated to the clinicopathological features and VM channels of the tumors, including patient overall survival (OS) and disease-free survival (DFS). Furthermore, the expression of EpCAM and EMT-related markers showed a positive correlation with distant metastasis and lymph node metastasis (P < 0.05). A significant association was noted between VM and histological grade (P = 0.007). Moreover, VM showed a significant positive correlation with EpCAM, EMT-associated TFs, and VE-cadherin expression in TNBC. Furthermore, binary logistic analysis showed that VM expression was significantly correlated with lymph node metastasis and distant metastasis (P < 0.05). In survival analysis, the overexpression of EpCAM and ZEB1 predicted a poor prognosis with respect to OS and DFS. In addition, the presence of VM was significantly associated with poor OS and DFS. Multivariate Cox regression analysis revealed that VM expression is an independent prognostic factor for TNBC patients. In summary, VM was confirmed as a potential biomarker for TNBC associated with poor clinical outcomes and tumor metastasis. This study also suggested that EpCAM protein might be involved in VM formation by EMT in TNBC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu, Anhui Province, China
| | - Jingping Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu, Anhui Province, China
| | - Yuanyuan Liu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu, Anhui Province, China
| | - Xiaomeng Gong
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical CollegeAnhui Province, China
- Department of Pathology, Bengbu Medical CollegeBengbu, Anhui Province, China
| |
Collapse
|
44
|
Wang HF, Wang SS, Zheng M, Dai LL, Wang K, Gao XL, Cao MX, Yu XH, Pang X, Zhang M, Wu JB, Wu JS, Yang X, Tang YJ, Chen Y, Tang YL, Liang XH. Hypoxia promotes vasculogenic mimicry formation by vascular endothelial growth factor A mediating epithelial-mesenchymal transition in salivary adenoid cystic carcinoma. Cell Prolif 2019; 52:e12600. [PMID: 30945361 PMCID: PMC6536414 DOI: 10.1111/cpr.12600] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/27/2019] [Accepted: 02/12/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives To investigate the role of hypoxia in vasculogenic mimicry (VM) of salivary adenoid cystic carcinoma (SACC) and the underlying mechanism involved. Materials and methods Firstly, wound healing, transwell invasion, immunofluorescence and tube formation assays were performed to measure the effect of hypoxia on migration, invasion, EMT and VM of SACC cells, respectively. Then, immunofluorescence and RT‐PCR were used to detect the effect of hypoxia on VE‐cadherin and VEGFA expression. And pro‐vasculogenic mimicry effect of VEGFA was investigated by confocal laser scanning microscopy and Western blot. Moreover, the levels of E‐cadherin, N‐cadherin, Vimentin, CD44 and ALDH1 were determined by Western blot and immunofluorescence in SACC cells treated by exogenous VEGFA or bevacizumab. Finally, CD31/ PAS staining was performed to observe VM and immunohistochemistry was used to determine the levels of VEGFA and HIF‐1α in 95 SACC patients. The relationships between VM and clinicopathological variables, VEGFA or HIF‐1α level were analysed. Results Hypoxia promoted cell migration, invasion, EMT and VM formation, and enhanced VE‐cadherin and VEGFA expression in SACC cells. Further, exogenous VEGFA markedly increased the levels of N‐cadherin, Vimentin, CD44 and ALDH1, and inhibited the expression of E‐cadherin, while the VEGFA inhibitor reversed these changes. In addition, VM channels existed in 25 of 95 SACC samples, and there was a strong positive correlation between VM and clinic stage, distant metastases, VEGFA and HIF‐1α expression. Conclusions VEGFA played an important role in hypoxia‐induced VM through regulating EMT and stemness, which may eventually fuel the migration and invasion of SACC.
Collapse
Affiliation(s)
- Hao-Fan Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Min Zheng
- Department of Stomatolog, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, China
| | - Lu-Ling Dai
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiao-Lei Gao
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ming-Xin Cao
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiao Yang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| |
Collapse
|
45
|
Husain K, Zhang A, Shivers S, Davis-Yadley A, Coppola D, Yang CS, Malafa MP. Chemoprevention of Azoxymethane-induced Colon Carcinogenesis by Delta-Tocotrienol. Cancer Prev Res (Phila) 2019; 12:357-366. [DOI: 10.1158/1940-6207.capr-18-0290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
|
46
|
Zendehdel E, Abdollahi E, Momtazi‐Borojeni AA, Korani M, Alavizadeh SH, Sahebkar A. The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J Cell Biochem 2019; 120:4739-4747. [DOI: 10.1002/jcb.27757] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/06/2018] [Indexed: 08/30/2023]
Abstract
AbstractCurcumin is a dietary polyphenol and a bioactive phytochemical that possesses anti‐inflammatory, antioxidant, anticancer, and chemopreventive properties, which make it capable of affecting multiple sites along the stem cell pathways to induce apoptosis in these cells. Curcumin’s function is through suppression of cytokine release, especially the secretion of interleukins. Some of the predominant activities of stem cells include regeneration of identical cells and the ability to maintain the proliferation and multipotentiality. However, these cells could be stimulated to differentiate into specific cell types, leading to the development of tumors. Cancer stem cells (CSC) are capable of sustaining tumor formation and differentiation, and are normally characterized by self‐renewal mechanisms. Furthermore, these cells might be responsible for tumor relapse and resistance to therapy. Several studies have focused on the mechanisms of curcumin action in manipulating transcription factors, signaling pathways, CSC markers, microRNAs related to CSCs functions and apoptosis induction in various human cancer cells. In the present review, we aimed to summarize the reported molecular mechanisms of curcumin’s effects on CSCs.
Collapse
Affiliation(s)
- Elham Zendehdel
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Elham Abdollahi
- Department of Medical Immunology, Student Research Committee, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Amir Abbas Momtazi‐Borojeni
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Mitra Korani
- Nanotechnology Research Center, Bu‐Ali Research Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
47
|
Morphological characteristics of vasculogenic mimicry and its correlation with EphA2 expression in gastric adenocarcinoma. Sci Rep 2019; 9:3414. [PMID: 30833656 PMCID: PMC6399224 DOI: 10.1038/s41598-019-40265-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
Genetically deregulated tumor cells generate vascular channels by vasculogenic mimicry (VM) that is independent of endothelial blood vessels. The morphological characteristics of VM and the role of EphA2 in the formation of VM were evaluated in 144 clinical samples of gastric adenocarcinoma and AGS gastric cancer cell line. It has long been believed that VM consists of PAS-positive basement membrane and CD31/CD34-negative cells. Interestingly, we found that the luminal surface of gastric tumor cells that form VM channels showed PAS-positive reaction, and that the involvement of CD31/CD34-positive tumor cells in the formation of VM channels. Highly aggressive tumor cells that formed VM were found to express CD31 or CD34, implicating the angiogenic and vasculogenic potential of the genetically deregulated tumor cells. VM occurrence was positively correlated with high expression of EphA2 in our patient cohort, and the indispensable role of EphA2 in VM formation was identified by gene silencing in AGS cells. We also report that Epstein–Barr virus (EBV)-positive tumor cells were involved in the formation of VM channels in EBV-associated gastric cancer samples. Overall, our results suggest that EphA2 signaling promotes tumor metastasis by inducing VM formation during gastric tumorigenesis.
Collapse
|
48
|
Zhang JG, Zhang DD, Liu Y, Hu JN, Zhang X, Li L, Mu W, Zhu GH, Li Q, Liu GL. RhoC/ROCK2 promotes vasculogenic mimicry formation primarily through ERK/MMPs in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1113-1125. [PMID: 30779947 DOI: 10.1016/j.bbadis.2018.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/06/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Vasculogenic mimicry (VM) results in the formation of an alternative circulatory system that can improve the blood supply to multiple malignant tumors, including hepatocellular carcinoma (HCC). However, the potential mechanisms of RhoC/ROCK in VM have not yet been investigated in HCC. Here, RhoC expression was upregulated in HCC tissues, especially the VM-positive (VM+) group, compared to noncancerous tissues (P < 0.01), and patients with high expression of RhoC had shorter survival times (P < 0.001). The knockdown of RhoC via short hairpin RNA (shRNA) in SK-Hep-1 cells significantly decreased VM formation and cell motility. In contrast, cell motility and VM formation were remarkably enhanced when RhoC was overexpressed in HepG2 cells. To further assess the potential role of ROCK1 and ROCK2 on VM, we stably knocked down ROCK1 or ROCK2 in MHCC97H cells. Compared to ROCK1 shRNA, ROCK2 shRNA could largely affect VM formation, cell motility and the key VM factors, as well as the epithelial-mesenchymal transition (EMT) markers in vitro and in vivo. Moreover, p-ERK, p-MEK, p-FAK, p-paxillin, MT1-MMP and MMP2 levels were clearly altered following the overexpression of RhoC, but ROCK2 shRNA had little effect on the expression of p-FAK, which indicated that RhoC regulates FAK/paxillin signaling, but not through ROCK2. In conclusion, our results show that RhoC/ROCK2 may have a major effect on VM in HCC via ERK/MMPs signaling and might be a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Dan-Dan Zhang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, PR China
| | - Ying Liu
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, 200032 Shanghai, PR China
| | - Juan-Ni Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-Sen University, No 3025, Nanhai Road, 518033 Shenzhen, PR China
| | - Wan Mu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Guan-Hua Zhu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China.
| | - Gao-Lin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China.
| |
Collapse
|
49
|
Izawa Y, Kashii-Magaribuchi K, Yoshida K, Nosaka M, Tsuji N, Yamamoto A, Kuroyanagi K, Tono K, Tanihata M, Imanishi M, Onishi M, Sakiyama M, Inoue S, Takahashi R. Stem-like Human Breast Cancer Cells Initiate Vasculogenic Mimicry on Matrigel. Acta Histochem Cytochem 2018; 51:173-183. [PMID: 30647492 PMCID: PMC6328367 DOI: 10.1267/ahc.18041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Vasculogenic mimicry (VM), referring to vasculogenic structures lined by tumor cells, can be distinguished from angiogenesis, and is responsible for the aggressiveness and metastatic potential of tumors. HCC1937/p53 cells were derived from triple-negative breast cancer (TNBC), and used to investigate the roles of breast cancer stem cells (CSCs) in the formation of VM. HCC1937/p53 cells formed mesh-like structures on matrigel culture in which expression of VM-related genes, vascular endothelial (VE)-cadherin, matrix metalloproteinase (MMP)-2 and MMP-9 was confirmed by droplet digital polymerase chain reaction (PCR). In immunofluorescence microscopy, aldehyde dehydrogenase (ALDH)1A3+ cells with properties of CSCs or progenitors and GATA binding protein 3 (GATA3)+ cells with more differentiated characteristics were localized in the bridging region and aggregated region of VM structures, respectively. In fluorescence-activated cell sorting analysis, ALDH+ cells, considered to be a subpopulation of CSCs sorted by the aldefluor assay, exhibited marked VM formation on matrigel in 24 hr, whereas ALDH− cells did not form VM, indicating possible roles of CSCs in VM formation. The stem-like cancer cells resistant to p53-induced apoptosis, which expressed a high rate of ALDH1A3 and Sex-determining region Y (SRY)-box binding protein-2 (Sox-2), completed VM formation much faster than the control. These findings may provide clues to elucidate the significance of VM formed by treatment-resistant CSCs in the metastatic potential and poor prognosis associated with TNBC.
Collapse
Affiliation(s)
- Yuki Izawa
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | | | - Kana Yoshida
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Mayu Nosaka
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Nanami Tsuji
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Ai Yamamoto
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Kana Kuroyanagi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Kanoko Tono
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Misato Tanihata
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Moe Imanishi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Momoka Onishi
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Mayu Sakiyama
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Sana Inoue
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Rei Takahashi
- Graduate School of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
- Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| |
Collapse
|
50
|
Nallaiah S, Lee VMY, Brasch HD, de Jongh J, Schaijik BV, Marsh R, Tan ST, Itinteang T. Cancer stem cells within moderately differentiated head and neck cutaneous squamous cell carcinoma express components of the renin-angiotensin system. J Plast Reconstr Aesthet Surg 2018; 72:1484-1493. [PMID: 30528285 DOI: 10.1016/j.bjps.2018.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the expression of components of the renin-angiotensin system (RAS): pro-renin receptor (PRR), angiotensin converting enzyme (ACE), angiotensin II receptor 1 (ATIIR1) and angiotensin II receptor 2 (ATIIR2) by the cancer stem cell (CSC) subpopulations in moderately differentiated head and neck cutaneous squamous cell carcinoma (MDHNCSCC). METHODOLOGY 3,3-Diaminobenzidine (DAB) immunohistochemical (IHC) staining for PRR, ACE, ATIIR1 and ATIIR2 was performed on formalin-fixed paraffin-embedded sections of ten MDHNCSCC tissue samples. Immunofluorescence (IF) IHC staining was used to localise components of the RAS. Western blotting (WB) and RT-qPCR were performed on snap-frozen MDHNCSCC tissue samples and MDHNCSCC-derived primary cell lines to investigate protein transcription expression of these proteins, respectively. RESULTS DAB IHC staining demonstrated the presence of PRR, ACE, ATIIR1 and ATIIR2 in all ten MDHNCSCC tissue samples. IF IHC staining showed expression of PRR and ATIIR2 by the OCT4+ cells, and ACE and ATIIR1 by the SOX2+ cells, within the tumour nests (TNs) and the peritumoural stroma (PTS). PRR, ACE, ATIIR1 and ATIIR2 were expressed by the endothelium of the microvessels within the PTS. WB confirmed protein expression for PRR, ACE and ATIIR1 in MDHNCSCC tissue samples and MDHNCSCC-derived primary cell lines. RT-qPCR showed transcriptional activation of PRR, ACE, ATIIR1 and ATIIR2 in MDHNCSCC tissue samples; and PRR, ACE, ATIIR1 but not ATIIR2, in MDHNCSCC-derived primary cell lines. CONCLUSION PRR, ACE, ATIIR1 and ATIIR2 are expressed by the CSC subpopulations within the TNs, the PTS, and the endothelium of the microvessels within the PTS, in MDHNCSCC.
Collapse
Affiliation(s)
- Shanella Nallaiah
- Gillies McIndoe Research Institute, PO Box 7184, Newtown, Wellington 6242, New Zealand
| | - Valerie Ming Yi Lee
- Gillies McIndoe Research Institute, PO Box 7184, Newtown, Wellington 6242, New Zealand
| | - Helen D Brasch
- Gillies McIndoe Research Institute, PO Box 7184, Newtown, Wellington 6242, New Zealand
| | - Jennifer de Jongh
- Gillies McIndoe Research Institute, PO Box 7184, Newtown, Wellington 6242, New Zealand
| | - Bede van Schaijik
- Gillies McIndoe Research Institute, PO Box 7184, Newtown, Wellington 6242, New Zealand
| | - Reginald Marsh
- Gillies McIndoe Research Institute, PO Box 7184, Newtown, Wellington 6242, New Zealand; Auckland University, Private Bag 92019, Victoria St, West Auckland 1142, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, PO Box 7184, Newtown, Wellington 6242, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Private Bag 31709, Lower Hutt, New Zealand.
| | - Tinte Itinteang
- Gillies McIndoe Research Institute, PO Box 7184, Newtown, Wellington 6242, New Zealand
| |
Collapse
|