1
|
Ortiz-Placín C, Castillejo-Rufo A, Estarás M, González A. Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology. Molecules 2023; 28:molecules28114316. [PMID: 37298790 DOI: 10.3390/molecules28114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
One of the most important constituents of the cell membrane is arachidonic acid. Lipids forming part of the cellular membrane can be metabolized in a variety of cellular types of the body by a family of enzymes termed phospholipases: phospholipase A2, phospholipase C and phospholipase D. Phospholipase A2 is considered the most important enzyme type for the release of arachidonic acid. The latter is subsequently subjected to metabolization via different enzymes. Three enzymatic pathways, involving the enzymes cyclooxygenase, lipoxygenase and cytochrome P450, transform the lipid derivative into several bioactive compounds. Arachidonic acid itself plays a role as an intracellular signaling molecule. Additionally, its derivatives play critical roles in cell physiology and, moreover, are involved in the development of disease. Its metabolites comprise, predominantly, prostaglandins, thromboxanes, leukotrienes and hydroxyeicosatetraenoic acids. Their involvement in cellular responses leading to inflammation and/or cancer development is subject to intense study. This manuscript reviews the findings on the involvement of the membrane lipid derivative arachidonic acid and its metabolites in the development of pancreatitis, diabetes and/or pancreatic cancer.
Collapse
Affiliation(s)
- Cándido Ortiz-Placín
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Alba Castillejo-Rufo
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Matías Estarás
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Antonio González
- Instituto de Biomarcadores de Patologías Moleculares, Departamento de Fisiología, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
2
|
Ma E, Shimazu T, Song M, Charvat H, Sawada N, Yamaji T, Inoue M, Camargo MC, Kemp TJ, Pfeiffer RM, Pinto LA, Rabkin CS, Tsugane S. Circulating Inflammation Markers and Pancreatic Cancer Risk: A Prospective Case-Cohort Study in Japan. Cancer Epidemiol Biomarkers Prev 2022; 31:236-241. [PMID: 34697062 PMCID: PMC8755613 DOI: 10.1158/1055-9965.epi-21-0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Previous prospective studies of associations between circulating inflammation-related molecules and pancreatic cancer risk have included limited numbers of markers. METHODS We conducted a case-cohort study nested within the Japan Public Health Center-based Prospective Study Cohort II. We selected a random subcohort (n = 774) from a total of 23,335 participants aged 40 to 69 years who returned a questionnaire and provided blood samples at baseline. During the follow-up period from 1993 to 2010, we identified 111 newly diagnosed pancreatic cancer cases, including one case within the subcohort. Plasma concentrations of 62 inflammatory markers of chemokines, cytokines, and growth factors were measured by a Luminex fluorescent bead-based assay. Cox regression models were applied to estimate HR and 95% confidence intervals (CI) for pancreatic cancer risk for quartiles of marker levels adjusted for potential confounders. RESULTS The HR (95% CI) for the highest versus the lowest category of C-C motif ligand chemokine 8/monocyte chemoattractant protein 2 (CCL8/MCP2) was 2.03 (1.05-3.93; P trend = 0.048). After we corrected for multiple comparisons, none of the examined biomarkers were associated with pancreatic cancer risk at P-value <0.05. CONCLUSIONS We found no significant associations between 62 inflammatory markers and pancreatic cancer risk. IMPACT The suggestive association with circulating levels of leukocyte recruiting cytokine CCL8/MCP2 may warrant further investigation.
Collapse
Affiliation(s)
- Enbo Ma
- Health Promotion Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
- Department of Epidemiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Taichi Shimazu
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hadrien Charvat
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Manami Inoue
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Troy J Kemp
- HPV Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ligia A Pinto
- HPV Immunology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
3
|
Impact of G-Quadruplexes and Chronic Inflammation on Genome Instability: Additive Effects during Carcinogenesis. Genes (Basel) 2021; 12:genes12111779. [PMID: 34828385 PMCID: PMC8619830 DOI: 10.3390/genes12111779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Genome instability is an enabling characteristic of cancer, essential for cancer cell evolution. Hotspots of genome instability, from small-scale point mutations to large-scale structural variants, are associated with sequences that potentially form non-B DNA structures. G-quadruplex (G4) forming motifs are enriched at structural variant endpoints in cancer genomes. Chronic inflammation is a physiological state underlying cancer development, and oxidative DNA damage is commonly invoked to explain how inflammation promotes genome instability. We summarize where G4s and oxidative stress overlap, with a focus on DNA replication. Guanine has low ionization potential, making G4s vulnerable to oxidative damage. Impacts to G4 structure are dependent upon lesion type, location, and G4 conformation. Occasionally, G4s pose a challenge to replicative DNA polymerases, requiring specialized DNA polymerases to maintain genome stability. Therefore, chronic inflammation creates a dual challenge for DNA polymerases to maintain genome stability: faithful G4 synthesis and bypassing unrepaired oxidative lesions. Inflammation is also accompanied by global transcriptome changes that may impact mutagenesis. Several studies suggest a regulatory role for G4s within cancer- and inflammatory-related gene promoters. We discuss the extent to which inflammation could influence gene regulation by G4s, thereby impacting genome instability, and highlight key areas for new investigation.
Collapse
|
4
|
Megha KB, Joseph X, Akhil V, Mohanan PV. Cascade of immune mechanism and consequences of inflammatory disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153712. [PMID: 34511264 PMCID: PMC8373857 DOI: 10.1016/j.phymed.2021.153712] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 05/12/2023]
Abstract
Inflammatory responses arise as an outcome of tissues or organs exposure towards harmful stimuli like injury, toxic chemicals or pathogenic microorganism. It is a complex cascade of immune mechanism to overcome from tissue injury and to initiate the healing process by recruiting various immune cells, chemical mediators such as the vasoactive peptides and amines, pro-inflammatory cytokines, eicosanoids and acute-phase proteins to prevent tissue damage and ultimately complete restoration of the tissue function. The cytokines exhibits a central function in communication between the cells, inflammatory response initiation, amplification and their regulation. This review covers the importance of inflammatory responses; the significance of cytokines in inflammation and numerous inflammatory disorders/ailments due to the abrupt expression of cytokines and the hyper-inflammatory response or cytokine storm associated with poor prognosis in COVID-19 pandemic. Also highlighting the importance of naturally derived anti-inflammatory metabolites to overcome the side-effects of currently prevailing anti-inflammatory drugs.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - X Joseph
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - V Akhil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| |
Collapse
|
5
|
Tao X, Xiang H, Pan Y, Shang D, Guo J, Gao G, Xiao GG. Pancreatitis initiated pancreatic ductal adenocarcinoma: Pathophysiology explaining clinical evidence. Pharmacol Res 2021; 168:105595. [PMID: 33823219 DOI: 10.1016/j.phrs.2021.105595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant lethal disease due to its asymptomatic at its early lesion of the disease and drug resistance. Target therapy associated with molecular pathways so far seems not to produce reasonable outcomes. Understanding of the molecular mechanisms underlying inflammation-initiated tumorigenesis may be helpful for development of an effective therapy of the disease. A line of studies showed that pancreatic tumorigenesis was resulted from pancreatitis, which was caused synergistically by various pancreatic cells. This review focuses on those players and their possible clinic implications, such as exocrine acinar cells, ductal cells, and various stromal cells, including pancreatic stellate cells (PSCs), macrophages, lymphocytes, neutrophils, mast cells, adipocytes and endothelial cells, working together with each other in an inflammation-mediated microenvironment governed by a myriad of cellular signaling networks towards PDAC.
Collapse
Affiliation(s)
- Xufeng Tao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Hong Xiang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Pan
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junchao Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ge Gao
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Gary Guishan Xiao
- Department of Pharmacology at School of Chemical Engineering, Dalian University of Technology, Dalian, China; The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, United States.
| |
Collapse
|
6
|
Ferencz S, Reglodi D, Kaszas B, Bardosi A, Toth D, Vekony Z, Vicena V, Karadi O, Kelemen D. PACAP and PAC1 receptor expression in pancreatic ductal carcinoma. Oncol Lett 2019; 18:5725-5730. [PMID: 31788045 PMCID: PMC6865831 DOI: 10.3892/ol.2019.10971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic carcinoma is one of the most malignant diseases and is associated with a poor survival rate. Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide that acts on three different G protein-coupled receptors: the specific PAC1 and the VPAC1/2 that also bind vasoactive intestinal peptide. PACAP is widely distributed in the body and has diverse physiological effects. Among other things, it acts as a trophic factor and influences proliferation and differentiation of several different cells both under normal circumstances and tumourous transformation. Changes of PACAP and its receptors have been shown in various tumour types. However, it is not known whether PACAP and its specific receptor are altered in pancreatic cancer. Perioperative data of patients with pancreas carcinoma was investigated over a five-year period. Histological results showed Grade 2 or Grade 3 adenocarcinoma in most cases. PACAP and PAC1 receptor expression were investigated by immunohistochemistry. Staining intensity of PAC1 receptor was strong in normal tissues both in the exocrine and endocrine parts of the pancreas, the receptor staining was markedly weaker in the adenocarcinoma. PACAP immunostaining was weak in the exocrine part and very strong in the islets and nerve elements in non-tumourous tissues. The PACAP immunostaining almost disappeared in the adenocarcinoma samples. Based on these findings a decrease or lack of the PAC1 receptor/PACAP signalling might have an influence on tumour growth and/or differentiation.
Collapse
Affiliation(s)
- Sandor Ferencz
- Department of Surgery, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Balint Kaszas
- Department of Pathology, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Attila Bardosi
- Center for Histology, Cytology and Molecular Diagnostics, and Proteopath GmbH, Trier 54296, Germany
| | - Denes Toth
- Department of Forensic Medicine, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Zsofia Vekony
- Department of Surgery, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Oszkar Karadi
- Department of Oncology, University of Pécs, Medical School, Pécs 7622, Hungary
| | - Dezso Kelemen
- Department of Surgery, University of Pécs, Medical School, Pécs 7622, Hungary
| |
Collapse
|
7
|
Schnittert J, Bansal R, Prakash J. Targeting Pancreatic Stellate Cells in Cancer. Trends Cancer 2019; 5:128-142. [PMID: 30755305 DOI: 10.1016/j.trecan.2019.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic stellate cells (PSCs) are the major contributor to the aggressive, metastatic, and resilient nature of pancreatic ductal adenocarcinoma (PDAC), which has a poor prognosis with a 5-year survival rate of 8%. PSCs constitute more than 50% of the tumor stroma in PDAC, where they induce extensive desmoplasia by secreting abundant extracellular matrix (ECM) proteins. In addition, they establish dynamic crosstalk with cancer cells and other stromal cells, which collectively supports tumor progression via various inter- and intracellular pathways. These cellular interactions and associated pathways may reveal novel therapeutic opportunities against this unmet clinical problem. In this review article, we discuss the role of PSCs in inducing tumor progression, their crosstalk with other cells, and therapeutic strategies to target PSCs.
Collapse
Affiliation(s)
- Jonas Schnittert
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; ScarTec Therapeutics BV, Enschede, The Netherlands.
| |
Collapse
|
8
|
Abstract
OBJECTIVES The aim of this study was to investigate the effects of the activated P2X7 receptors on the proliferation and growth of human pancreatic cancer cells. METHODS Proliferation was measured by incorporating bromodeoxyuridine into pancreatic cancer cells, MIA PaCa-2 and HPAC. Expression of P2 receptors and signal molecules was examined using quantitative reverse transcription/polymerase chain reaction and/or Western blot. Proliferative effects of the P2X7 receptors in vivo were examined using a xenotransplant model of pancreatic cancer cell lines. RESULTS Incubating pancreatic cancer cells with adenosine triphosphate (ATP) and 2'(3')-O-(4-Benzoylbenzoyl)ATP resulted in a dose-dependent increase of cell proliferation. The P2 receptor antagonist, KN-62, and small interfering RNA against P2X7 receptors, significantly decreased the proliferative effects of ATP. The ATP-induced proliferation was mediated by protein kinase C, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK); specifically, ATP increased the phosphorylation of ERK1/2 and JNK. The expression of inducible nitric oxide synthase was decreased by P2X7 receptor activation. In a xenotransplant model, applying ATP significantly increased the growth of induced tumors. CONCLUSIONS The P2X7 receptor activation by extracellular nucleotides increased proliferation and growth of human pancreatic cancer cells via ERK1/2 and JNK. This supports the pathophysiological role of P2X7 receptors in pancreatic disease and recovery.
Collapse
|
9
|
Hellmann AR, Paiella S, Kostro J, Marek I, Adrych K, Śledziński Z, Hać S, Bassi C. Surgical decompression of Wirsung duct reduces serum concentration of SPINK1 in patients with chronic pancreatitis. Pancreatology 2018. [PMID: 29525377 DOI: 10.1016/j.pan.2018.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The primary aim of this study was to determine the blood levels of SPINK1 in patients with chronic pancreatitis (CP) submitted to surgical or endoscopic decompression of pancreatic duct (PD). Additionally, we measured trypsin activity levels. METHODS Two groups were identified, surgical (group A) and endoscopic (group B). Levels of SPINK1 and trypsin activity were measured at baseline and 6 months after pancreatic duct decompression and then compared within the groups. SPINK1 levels were determined with Human ELISA Kit. RESULTS Group A and B were made up of 30 and 28 patients, respectively. Baseline features of the groups were similar. A decrease in SPINK1 levels was significant only in group A 46.88 to 16.10 ng/mL (p = 0.001). On the contrary, trypsin activity changed significantly in group B 40.01 to 34.92 mU/mL (p = 0.01). Patients of group A showed a significant increase in BMI, before and after treatment. The pain score pre- and post-treatment reduced significantly in both groups (p < 0.001). CONCLUSIONS We demonstrate for the first time a significant decrease of SPINK1 levels after surgical decompression of PD and a reduction of trypsin activity analysis after endoscopic decompression. The meaning of this phenomena is yet to be explained and it should be further explored.
Collapse
Affiliation(s)
- Andrzej Rafal Hellmann
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Poland.
| | - Salvatore Paiella
- Department of General and Pancreatic Surgery, Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Justyna Kostro
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Poland
| | - Iwona Marek
- Department of Gastroenterology & Hepatology, Medical University of Gdańsk, Poland
| | - Krystian Adrych
- Department of Gastroenterology & Hepatology, Medical University of Gdańsk, Poland
| | - Zbigniew Śledziński
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Poland
| | - Stanisław Hać
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdańsk, Poland
| | - Claudio Bassi
- Department of General and Pancreatic Surgery, Pancreas Institute, University and Hospital Trust of Verona, 37134 Verona, Italy
| |
Collapse
|
10
|
Kim SJ, Song YS, Pham TH, Bak Y, Lee HP, Hong JT, Yoon DY. (E)-2-Methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol attenuates PMA-induced inflammatory responses in human monocytic cells through PKCδ/JNK/AP-1 pathways. Eur J Pharmacol 2018; 825:19-27. [PMID: 29371085 DOI: 10.1016/j.ejphar.2018.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/20/2022]
Abstract
(E)-2-Methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a new (E)-2,4-bis(p-hydroxyphenyl)-2 - butenal derivative, reportedly has therapeutic effects such as anti-arthritic properties. Although previous studies showed that MMPP has anti-arthritic effects on rheumatoid arthritis (RA), the anti-inflammation mechanism of MMPP remains unclear. In this study, phorbol-12-myristate 13-acetate (PMA) was used as an inflammatory stimulus to evaluate the detailed mechanism of the MMPP-mediated anti-inflammatory effect in human monocytic THP-1 cells. We investigated the effects of MMPP on inflammation-related pathways including protein kinase Cδ (PKCδ), mitogen-activated protein kinase, and activator protein-1 (AP-1). PMA induced the translocation of PKCs from the cytosol to the membrane and phosphorylated JNK. MMPP inhibited PMA-induced membrane translocation of PKCδ, phosphorylation of JNK, and nuclear translocation of AP-1, resulting in downregulation of cyclooxygenase-2 and chemokine ligand 5 production. These findings indicate that MMPP inhibits inflammatory responses in THP-1 cells by mitigating PMA-induced activation of PKCδ and JNK and nuclear translocation of AP-1. Therefore, MMPP may be useful as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Seok Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin-Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
11
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018. [PMID: 29467962 DOI: 10.1832/oncotarget.23208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
12
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9:7204-7218. [PMID: 29467962 PMCID: PMC5805548 DOI: 10.18632/oncotarget.23208] [Citation(s) in RCA: 2367] [Impact Index Per Article: 394.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
13
|
Swidnicka-Siergiejko AK, Gomez-Chou SB, Cruz-Monserrate Z, Deng D, Liu Y, Huang H, Ji B, Azizian N, Daniluk J, Lu W, Wang H, Maitra A, Logsdon CD. Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53. Oncogene 2016; 36:3149-3158. [PMID: 27991926 PMCID: PMC5467016 DOI: 10.1038/onc.2016.461] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 02/08/2023]
Abstract
Chronic inflammation (CI) is a risk factor for pancreatic cancer (PC) including the most common type, ductal adenocarcinoma (PDAC), but its role and the mechanisms involved are unclear. To investigate the role of CI in PC, we generated genetic mouse models with pancreatic specific CI in the presence or absence of TP53. Mice were engineered to express either cyclooxygenase-2 (COX-2) or IκB kinase-2 (IKK2), and TP53+/+ or TP53f/f specifically in adult pancreatic acinar cells by using a full-length pancreatic elastase promoter-driven Cre. Animals were followed for >80 weeks and pancreatic lesions were evaluated histologically and immunohistochemically. The presence of K-ras mutations was assessed by direct sequencing, locked nuclei acid (LNA)-based PCR, and immunohistochemistry. We observed that sustained COX-2/IKK2 expression caused histological abnormalities of pancreas, including increased immune cell infiltration, proliferation rate and DNA damage. A minority of animals with CI developed pre-neoplastic lesions, but cancer was not observed in any TP53+/+ animals within 84 weeks. In contrast, all animals with CI-lacking TP53 developed various subtypes of PC, including acinar cell carcinoma, ductal adenocarcinoma, sarcomatoid carcinoma and neuroendocrine tumors, and all died within 65 weeks. No evidence of K-ras mutations was observed. Variations in the activity of the Hippo, pERK and c-Myc pathways were found in the diverse cancer subtypes. In summary, chronic inflammation is extremely inefficient at inducing PC in the presence of TP53. However, in the absence of TP53, CI leads to the development of several rare K-ras-independent forms of PC, with infrequent PDAC. This may help explain the rarity of PDAC in persons with chronic inflammatory conditions.
Collapse
Affiliation(s)
- A K Swidnicka-Siergiejko
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Gastroenterology and Internal Medicine, University of Bialystok, Bialystok, Poland
| | - S B Gomez-Chou
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Z Cruz-Monserrate
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - D Deng
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Y Liu
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - H Huang
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Gastroenterology, Shanghai Hospital, Second Military Medical University, Shanghai, China
| | - B Ji
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - N Azizian
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - J Daniluk
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Gastroenterology and Internal Medicine, University of Bialystok, Bialystok, Poland
| | - W Lu
- Department of GI Medical Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - H Wang
- Department of Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - A Maitra
- Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - C D Logsdon
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.,Department of GI Medical Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Smith RW, Coleman JD, Thompson JT, Vanden Heuvel JP. Therapeutic potential of GW501516 and the role of Peroxisome proliferator-activated receptor β/δ and B-cell lymphoma 6 in inflammatory signaling in human pancreatic cancer cells. Biochem Biophys Rep 2016; 8:395-402. [PMID: 28955982 PMCID: PMC5614479 DOI: 10.1016/j.bbrep.2016.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a member of the nuclear receptor superfamily and a ligand-activated transcription factor that is involved in the regulation of the inflammatory response via activation of anti-inflammatory target genes and ligand-induced disassociation with the transcriptional repressor B-cell lymphoma 6 (BCL6). Chronic pancreatitis is considered to be a significant etiological factor for pancreatic cancer development, and a better understanding of the underlying mechanisms of the transition between inflammation and carcinogenesis would help further elucidate chemopreventative options. The aim of this study was to determine the role of PPARβ/δ and BCL6 in human pancreatic cancer of ductal origin, as well as the therapeutic potential of PPARβ/δ agonist, GW501516. Over-expression of PPARβ/δ inhibited basal and TNFα-induced Nfkb luciferase activity. GW501516-activated PPARβ/δ suppressed TNFα-induced Nfkb reporter activity. RNAi knockdown of Pparb attenuated the GW501516 effect on Nfkb luciferase, while knockdown of Bcl6 enhanced TNFα-induced Nfkb activity. PPARβ/δ activation induced expression of several anti-inflammatory genes in a dose-dependent manner, and GW501516 inhibited Mcp1 promoter-driven luciferase in a BCL6-dependent manner. Several pro-inflammatory genes were suppressed in a BCL6-dependent manner. Conditioned media from GW501516-treated pancreatic cancer cells suppressed pro-inflammatory expression in THP-1 macrophages as well as reduced invasiveness across a basement membrane. These results demonstrate that PPARβ/δ and BCL6 regulate anti-inflammatory signaling in human pancreatic cancer cells by inhibiting NFκB and pro-inflammatory gene expression, and via induction of anti-inflammatory target genes. Activation of PPARβ/δ may be a useful target in pancreatic cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - John P. Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA, United States
| |
Collapse
|
15
|
Klieser E, Swierczynski S, Mayr C, Jäger T, Schmidt J, Neureiter D, Kiesslich T, Illig R. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review. World J Gastrointest Pathophysiol 2016; 7:199-210. [PMID: 27190692 PMCID: PMC4867399 DOI: 10.4291/wjgp.v7.i2.199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/21/2015] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a protective role, whereas in chronic pancreatitis, Hh interacts with pancreatic stellate cells, leading to destructive parenchym fibrosis and atrophy, as well as to irregular tissue remodeling with potency of initiating cancerogenesis. In vitro and in situ analysis of Hh in pancreatic cancer revealed that the Hh pathway participates in the development of pancreatic precursor lesions and ductal adenocarcinoma including critical interactions with the tumor microenvironment. The application of specific inhibitors of components of the Hh pathway is currently subject of ongoing clinical trials (phases 1 and 2). Furthermore, a combination of Hh pathway inhibitors and established chemotherapeutic drugs could also represent a promising therapeutic approach. In this review, we give a structured survey of the role of the Hh pathway in pancreatic development, pancreatitis, pancreatic carcinogenesis and pancreatic cancer as well as an overview of current clinical trials concerning Hh pathway inhibitors and pancreas cancer.
Collapse
|
16
|
You L, Ma L, Zhao W, Zhao Y, Dai M. Emerging role of tumor markers and biochemistry in the preoperative invasive assessment of intraductal papillary mucinous neoplasm of the pancreas. Clin Chim Acta 2016; 454:89-93. [DOI: 10.1016/j.cca.2015.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/09/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023]
|
17
|
Wang X, Hu X, Yan H, Ma Z, Deng X. Pro-inflammatory effects of a litchi protein extract in murine RAW264.7 macrophages. HORTICULTURE RESEARCH 2016; 3:16017. [PMID: 27195125 PMCID: PMC4855250 DOI: 10.1038/hortres.2016.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/09/2016] [Accepted: 03/20/2016] [Indexed: 05/04/2023]
Abstract
It has been observed that the consumption of litchi often causes symptoms characterized by itching or sore throat, gum swelling, oral cavity ulcers and even fever and inflammation, which significantly impair the quality of life of a large population. Using the RAW264.7 cell line, a step-by-step strategy was used to screen for the components in litchi fruits that elicited adverse reactions. The adverse reaction fractions were identified by mass spectrometry and analyzed using the SMART program, and a sequence alignment of the homologous proteins was performed. MTT tests were used to determine the cytotoxicity of a litchi protein extract in RAW264.7 macrophages, and real-time PCR was applied to analyze the expression of inflammatory genes in the RAW264.7 cells treated with lipopolysaccharide or the litchi protein extract. The results showed that the litchi water-soluble protein extract could increase the production of the pro-inflammatory mediators IL-1β, iNOS and COX-2, and the anti-inflammatory mediator HO-1 in the RAW264.7 cell line. The 14-3-3-like proteins GF14 lambda, GF14 omega and GF14 upsilon were likely the candidate proteins that caused the adverse effects.
Collapse
Affiliation(s)
- Xiaoli Wang
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaorong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430070, China
| | - Huiqing Yan
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaocheng Ma
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
O'Byrne K. Stimulating immune responses to fight cancer: Basic biology and mechanisms. Asia Pac J Clin Oncol 2015; 11 Suppl 1:9-15. [DOI: 10.1111/ajco.12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Kenneth O'Byrne
- Princess Alexandra Hospital; Brisbane Queensland Australia
- Queensland University of Technology; Brisbane Queensland Australia
- Trinity College; Dublin Ireland
| |
Collapse
|
19
|
Delta-tocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34+ cells from radiation injury. PLoS One 2015; 10:e0122258. [PMID: 25815474 PMCID: PMC4376529 DOI: 10.1371/journal.pone.0122258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/10/2015] [Indexed: 01/22/2023] Open
Abstract
We reported that microRNA-30c (miR-30c) plays a key role in radiation-induced human cell damage through an apoptotic pathway. Herein we further evaluated radiation-induced miR-30 expression and mechanisms of delta-tocotrienol (DT3), a radiation countermeasure candidate, for regulating miR-30 in a mouse model and human hematopoietic CD34+ cells. CD2F1 mice were exposed to 0 (control) or 7–12.5 Gy total-body gamma-radiation, and CD34+ cells were irradiated with 0, 2 or 4 Gy of radiation. Single doses of DT3 (75 mg/kg, subcutaneous injection for mice or 2 μM for CD34+ cell culture) were administrated 24 h before irradiation and animal survival was monitored for 30 days. Mouse bone marrow (BM), jejunum, kidney, liver and serum as well as CD34+ cells were collected at 1, 4, 8, 24, 48 or 72 h after irradiation to determine apoptotic markers, pro-inflammatory cytokines interleukin (IL)-1β and IL-6, miR-30, and stress response protein expression. Our results showed that radiation-induced IL-1β release and cell damage are pathological states that lead to an early expression and secretion of miR-30b and miR-30c in mouse tissues and serum and in human CD34+ cells. DT3 suppressed IL-1β and miR-30 expression, protected against radiation-induced apoptosis in mouse and human cells, and increased survival of irradiated mice. Furthermore, an anti-IL-1β antibody downregulated radiation-induced NFκBp65 phosphorylation, inhibited miR-30 expression and protected CD34+ cells from radiation exposure. Knockdown of NFκBp65 by small interfering RNA (siRNA) significantly suppressed radiation-induced miR-30 expression in CD34+ cells. Our data suggest that DT3 protects human and mouse cells from radiation damage may through suppression of IL-1β-induced NFκB/miR-30 signaling.
Collapse
|
20
|
Expression of c-fos was associated with clinicopathologic characteristics and prognosis in pancreatic cancer. PLoS One 2015; 10:e0120332. [PMID: 25789763 PMCID: PMC4366380 DOI: 10.1371/journal.pone.0120332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/30/2015] [Indexed: 01/28/2023] Open
Abstract
It has long been regarded that pancreatic cancer (PC) is a life-threatening malignant tumor. Thus, much attention has been paid for factors, especially relative molecules, predictive for prognosis of PC. However, c-fos expression in PC was less investigated. In addition, its association with clinicopathologic variables and prognosis remains unknown. In the present study, expression of c-fos was detected by tissue microarray-based immunohistochemical staining in cancer and adjacent tissues from 333 patients with PC. The staining results were correlated with clinicopathologic parameters and overall survival. Furthermore, prognostic significance of c-fos in subsets of PC was also evaluated. It was shown that low expression of c-fos was more often in cancer than in adjacent tissues of PC (P<0.001). Besides, high cancerous c-fos expression was significantly associated with tumor site and T stage, whereas peri-neural invasion was of a borderline significant relevance. Log-rank test revealed that high expression of c-fos in cancer tissues was a significant marker of poor overall survival, accompanied by some conventional clinicopathologic variables, such as sex, grade, peri-neural invasion, T and N stages. More importantly, cancerous c-fos expression was identified as an independent prognosticator in multivariate analysis. Finally, the prognostic implication of c-fos expression was proven in four subsets of patients with PC. These data suggested that c-fos expression was of relationships with progression and dismal prognosis of PC.
Collapse
|
21
|
Bhandari PR. Crocus sativus L. (saffron) for cancer chemoprevention: A mini review. J Tradit Complement Med 2015; 5:81-7. [PMID: 26151016 PMCID: PMC4488115 DOI: 10.1016/j.jtcme.2014.10.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/05/2014] [Accepted: 10/12/2014] [Indexed: 12/01/2022] Open
Abstract
Cancer is one of the most feared diseases globally and there has been a sustained rise in its incidence in both developing and developed countries. Despite the growing therapeutic options for patients with cancer, their efficacy is time-limited and non-curative. Hence to overcome these drawbacks, an incessant screening for superior and safer drugs has been ongoing for numerous decades, resulting in the detection of anti-cancer properties of several phytochemicals. Chemoprevention using readily available natural substances from vegetables, fruits, herbs and spices is one of the significantly important approaches for cancer prevention in the present era. Among the spices, Crocus sativus L. (saffron; fān hóng huā) has generated interest because pharmacological experiments have established numerous beneficial properties including radical scavenging, anti-mutagenic and immuno-modulating effects. The more powerful components of saffron are crocin, crocetin and safranal. Studies in animal models and with cultured human malignant cell lines have demonstrated antitumor and cancer preventive activities of saffron and its main ingredients. This review provides a brief insight into the anticancer properties of saffron and its components.
Collapse
Affiliation(s)
- Prasan R Bhandari
- Department of Pharmacology, S.D.M College of Medical Sciences & Hospital, Sattur, Dharwad 580009, Karnataka, India
| |
Collapse
|
22
|
Liu H, Xu XF, Zhao Y, Tang MC, Zhou YQ, Lu J, Gao FH. MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol 2014; 35:12157-63. [PMID: 25168367 DOI: 10.1007/s13277-014-2521-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that microRNAs, a class of small and noncoding RNA molecules, play crucial roles in the initiation and progression of pancreatic cancer. In the present study, the expression and roles of miR-191 were investigated. Through both gain-of function and loss-of function experiments, a pro-oncogenic function of miR-191 was demonstrated. At the molecular level, bioinformatic prediction, luciferase, and protein expression analysis suggested that miR-191 could inhibit protein levels of UPS10, which suppressed the proliferation and growth of cancer cells through stabilizing P53 protein. Collectively, these data suggest that miR-191 could promote pancreatic cancer progression through targeting USP10, implicating a novel mechanism for the tumorigenesis.
Collapse
Affiliation(s)
- Hua Liu
- Department of Gastroenterology, The Tenth Hospital Affiliated to Tongji University, No. 301, Yanchang Road, 200072, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Le MQ, Kim MS, Song YS, Noh WN, Chun SC, Yoon DY. The Water-Extracted Ampelopsis brevipedunculata Downregulates IL-1β, CCL5, and COX-2 Expression via Inhibition of PKC-Mediated JNK/NF-κB Signaling Pathways in Human Monocytic Cells. J Pharmacol Sci 2014; 126:359-69. [DOI: 10.1254/jphs.14168fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|