1
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Azizan S, Cheng KJ, Mejia Mohamed EH, Ibrahim K, Faruqu FN, Vellasamy KM, Khong TL, Syafruddin SE, Ibrahim ZA. Insights into the molecular mechanisms and signalling pathways of epithelial to mesenchymal transition (EMT) in colorectal cancer: A systematic review and bioinformatic analysis of gene expression. Gene 2024; 896:148057. [PMID: 38043836 DOI: 10.1016/j.gene.2023.148057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of mortality worldwide, mainly due to metastasis. Epithelial to mesenchymal transition (EMT) is a complex cellular process that drives CRC metastasis, regulated by changes in EMT-associated gene expression. However, while numerous genes have been identified as EMT regulators through various in vivo and in vitro studies, little is known about the genes that are differentially expressed in CRC tumour tissue and their signalling pathway in regulating EMT. Using an integration of systematic search and bioinformatic analysis, gene expression profiles of CRC tumour tissues were compared to non-tumour adjacent tissues to identify differentially expressed genes (DEGs), followed by performing systematic review on common identified DEGs. Fifty-eight common DEGs were identified from the analysis of 82 tumour tissue samples obtained from four gene expression datasets (NCBI GEO). These DEGS were then systematically searched for their roles in modulating EMT in CRC based on previously published studies. Following this, 10 common DEGs (CXCL1, CXCL8, MMP1, MMP3, MMP7, TACSTD2, VIP, HPGD, ABCG2, CLCA4) were included in this study and subsequently subjected to further bioinformatic analysis. Their roles and functions in modulating EMT in CRC were discussed in this review. This study enhances our understanding of the molecular mechanisms underlying EMT and uncovers potential candidate genes and pathways that could be targeted in CRC.
Collapse
Affiliation(s)
- Suha Azizan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tak Loon Khong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Wang W, Yang C, Deng H. Overexpression of 15-Hydroxyprostaglandin Dehydrogenase Inhibits A549 Lung Adenocarcinoma Cell Growth via Inducing Cell Cycle Arrest and Inhibiting Epithelial-Mesenchymal Transition. Cancer Manag Res 2021; 13:8887-8900. [PMID: 34876851 PMCID: PMC8643138 DOI: 10.2147/cmar.s331222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Lung cancer is one of the most commonly diagnosed cancer as well as the leading cause of cancer-related mortality worldwide, among which lung adenocarcinoma (LUAD) is the most frequent form of lung cancer. Previous studies have shown that 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of prostaglandins to reduce their biological activities and behaves as a tumor suppressor in various cancers. Thus, we aimed to systematically examine the effects of 15-PGDH overexpression on cellular processes in lung adenocarcinoma cells. Methods The stable 15-PGDH-overexpressing A549 cell line was constructed using lentivirus particles. CCK-8 assay was used to determine the cell proliferation rate and sensitivity to cisplatin. Tandem mass tag (TMT)-based quantitative proteomic analysis was used to identify differentially expressed proteins between control and 15-PGDH-overexpression cells. The cell cycle was determined by a flow cytometer. The expression levels of mesenchymal and epithelial markers were measured using Western blotting. Wound healing and transwell assays were used to detect the cell migration and cell invasion ability, respectively. Results Analysis of datasets in The Cancer Genome Atlas revealed that the PGDH gene expression level in the lung adenocarcinoma tissues was significantly lower than that in the pericarcinous tissues. 15-PGDH overexpression in A549 cells reduced cell proliferation rate. Quantitative proteomics revealed that 15-PGDH overexpression inhibited PI3K/AKT/mTOR signaling pathway, which is a signaling pathway driving tumor cell growth and epithelial-mesenchymal transition (EMT) process. In addition, both cell cycle and DNA repair-related proteins were down-regulated in 15-PGDH overexpressed cells. 15-PGDH overexpression induced G1/S cell cycle arrest and increased susceptibility to DNA damaging reagent cisplatin. Importantly, overexpression of 15-PGDH inhibited EMT process with the downregulation of β-catenin and Snail-1 as well as upregulation of E-cadherin and ZO-1. Conclusion 15-PGDH is a tumor suppressor in lung cancer and may serve as a potential therapeutic target to prevent lung adenocarcinoma.
Collapse
Affiliation(s)
- Weixuan Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Sun CC, Zhou ZQ, Yang D, Chen ZL, Zhou YY, Wen W, Feng C, Zheng L, Peng XY, Tang CF. Recent advances in studies of 15-PGDH as a key enzyme for the degradation of prostaglandins. Int Immunopharmacol 2021; 101:108176. [PMID: 34655851 DOI: 10.1016/j.intimp.2021.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
15-hydroxyprostaglandin dehydrogenase (15-PGDH; encoded by HPGD) is ubiquitously expressed in mammalian tissues and catalyzes the degradation of prostaglandins (PGs; mainly PGE2, PGD2, and PGF2α) in a process mediated by solute carrier organic anion transport protein family member 2A1 (SLCO2A1; also known as PGT, OATP2A1, PHOAR2, or SLC21A2). As a key enzyme, 15-PGDH catalyzes the rapid oxidation of 15-hydroxy-PGs into 15-keto-PGs with lower biological activity. Increasing evidence suggests that 15-PGDH plays a key role in many physiological and pathological processes in mammals and is considered a potential pharmacological target for preventing organ damage, promoting bone marrow graft recovery, and enhancing tissue regeneration. Additionally, results of whole-exome analyses suggest that recessive inheritance of an HPGD mutation is associated with idiopathic hypertrophic osteoarthropathy. Interestingly, as a tumor suppressor, 15-PGDH inhibits proliferation and induces the differentiation of cancer cells (including those associated with colorectal, lung, and breast cancers). Furthermore, a recent study identified 15-PGDH as a marker of aging tissue and a potential novel therapeutic target for resisting the complex pathology of aging-associated diseases. Here, we review and summarise recent information on the molecular functions of 15-PGDH and discuss its pathophysiological implications.
Collapse
Affiliation(s)
- Chen-Chen Sun
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zuo-Qiong Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Dong Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Zhang-Lin Chen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Yun-Yi Zhou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Wei Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Chen Feng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China
| | - Xi-Yang Peng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of the Hunan Province, College of Physical Education, Hunan Normal University, Changsha, Hunan 410012, China.
| |
Collapse
|
5
|
Nasry WHS, Martin CK. Intersecting Mechanisms of Hypoxia and Prostaglandin E2-Mediated Inflammation in the Comparative Biology of Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:539361. [PMID: 34094895 PMCID: PMC8175905 DOI: 10.3389/fonc.2021.539361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The importance of inflammation in the pathogenesis of cancer was first proposed by Rudolph Virchow over 150 years ago, and our understanding of its significance has grown over decades of biomedical research. The arachidonic acid pathway of inflammation, including cyclooxygenase (COX) enzymes, PGE2 synthase enzymes, prostaglandin E2 (PGE2) and PGE2 receptors has been extensively studied and has been associated with different diseases and different types of cancers, including oral squamous cell carcinoma (OSCC). In addition to inflammation in the tumour microenvironment, low oxygen levels (hypoxia) within tumours have also been shown to contribute to tumour progression. Understandably, most of our OSCC knowledge comes from study of this aggressive cancer in human patients and in experimental rodent models. However, domestic animals develop OSCC spontaneously and this is an important, and difficult to treat, form of cancer in veterinary medicine. The primary goal of this review article is to explore the available evidence regarding interaction between hypoxia and the arachidonic acid pathway of inflammation during malignant behaviour of OSCC. Overlapping mechanisms in hypoxia and inflammation can contribute to tumour growth, angiogenesis, and, importantly, resistance to therapy. The benefits and controversies of anti-inflammatory and anti-angiogenic therapies for human and animal OSCC patients will be discussed, including conventional pharmaceutical agents as well as natural products.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| |
Collapse
|
6
|
Xu YQ, Long X, Han M, Huang MQ, Lu JF, Sun XD, Han W. Clinical benefit of COX-2 inhibitors in the adjuvant chemotherapy of advanced non-small cell lung cancer: A systematic review and meta-analysis. World J Clin Cases 2021; 9:581-601. [PMID: 33553396 PMCID: PMC7829738 DOI: 10.12998/wjcc.v9.i3.581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lung cancer is a major cause of death among patients, and non-small cell lung cancer (NSCLC) accounts for more than 80% of all lung cancers in many countries.
AIM To evaluate the clinical benefit (CB) of COX-2 inhibitors in patients with advanced NSCLC using systematic review.
METHODS We searched the six electronic databases up until December 9, 2019 for studies that examined the efficacy and safety of the addition of COX-2 inhibitors to chemotherapy for NSCLC. Overall survival (OS), progression free survival (PFS), 1-year survival rate (SR), overall response rate (ORR), CB, complete response (CR), partial response (PR), stable disease (SD), and toxicities were measured with more than one outcome as their endpoints. Fixed and random effects models were used to calculate risk estimates in a meta-analysis. Potential publication bias was calculated using Egger’s linear regression test. Data analysis was performed using R software.
RESULTS The COX-2 inhibitors combined with chemotherapy were not found to be more effective than chemotherapy alone in OS, progression free survival, 1-year SR, CB, CR, and SD. However, there was a difference in overall response rate for patients with advanced NSCLC. In a subgroup analysis, significantly increased ORR results were found for celecoxib, rofecoxib, first-line treatment, and PR. For adverse events, the increase in COX-2 inhibitor was positively correlated with the increase in grade 3 and 4 toxicity of leukopenia, thrombocytopenia, and cardiovascular events.
CONCLUSION COX-2 inhibitor combined with chemotherapy increased the total effective rate of advanced NSCLC with the possible increased risk of blood toxicity and cardiovascular events and had no effect on survival index.
Collapse
Affiliation(s)
- Yu-Qiong Xu
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518000, Guangdong Province, China
| | - Xiang Long
- Department of Respiratory and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, China
| | - Ming Han
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518000, Guangdong Province, China
| | - Ming-Qiang Huang
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518000, Guangdong Province, China
| | - Jia-Fa Lu
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518000, Guangdong Province, China
| | - Xue-Dong Sun
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518000, Guangdong Province, China
| | - Wei Han
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
7
|
Pang Q, Xu Y, Qi X, Jiang Y, Wang O, Li M, Xing X, Qin L, Xia W. The first case of primary hypertrophic osteoarthropathy with soft tissue giant tumors caused by HPGD loss-of-function mutation. Endocr Connect 2019; 8:736-744. [PMID: 31063976 PMCID: PMC6547301 DOI: 10.1530/ec-19-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Primary hypertrophic osteoarthropathy (PHO) is a rare genetic multi-organic disease characterized by digital clubbing, periostosis and pachydermia. Two genes, HPGD and SLCO2A1, which encodes 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and prostaglandin transporter (PGT), respectively, have been reported to be related to PHO. Deficiency of aforementioned two genes leads to failure of prostaglandin E2 (PGE2) degradation and thereby elevated levels of PGE2. PGE2 plays an important role in tumorigenesis. Studies revealed a tumor suppressor activity of 15-PGDH in tumors, such as lung, bladder and breast cancers. However, to date, no HPGD-mutated PHO patients presenting concomitant tumor has been documented. In the present study, we reported the first case of HPGD-mutated PHO patient with soft tissue giant tumors at lower legs and evaluated the efficacy of selective COX-2 inhibitor (etoricoxib) treatment in the patient. METHODS In this study, we summarized the clinical data, collected the serum and urine samples for biochemical test and analyzed the HPGD gene in our patient. RESULTS A common HPGD mutation c.310_311delCT was identified in the patient. In addition to typical clinical features (digital clubbing, periostosis and pachydermia), the patient demonstrated a new clinical manifestation, a giant soft tissue tumor on the left lower leg which has not been reported in HPGD-mutated PHO patient before. After 6-month treatment with etoricoxib, the patient showed decreased PGE2 levels and improved PHO-related symptoms. Though the soft tissue tumor persisted, it seemed to be controlled under the etoricoxib treatment. CONCLUSION This finding expanded the clinical spectrum of PHO and provided unique insights into the HPGD-mutated PHO.
Collapse
Affiliation(s)
- Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Musculoskeletal Research Laboratory and Bone Quality and Health Assessment Centre, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Yuping Xu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Endocrinology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuan Qi
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Qin
- Musculoskeletal Research Laboratory and Bone Quality and Health Assessment Centre, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Zhai Y, Bai J, Wang S, Li M, Wang F, Li C, Zhang Y. Aberrant Expression of Extracellular Signal-Regulated Kinase and 15-Hydroxyprostaglandin Dehydrogenase Indicates Radiation Resistance and Poor Prognosis for Patients with Clival Chordomas. World Neurosurg 2018; 115:e146-e151. [DOI: 10.1016/j.wneu.2018.03.216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
|
9
|
Siena L, Cipollina C, Di Vincenzo S, Ferraro M, Bruno A, Gjomarkaj M, Pace E. Electrophilic derivatives of omega-3 fatty acids counteract lung cancer cell growth. Cancer Chemother Pharmacol 2018; 81:705-716. [PMID: 29435611 DOI: 10.1007/s00280-018-3538-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/03/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE 17-oxo-DHA is an electrophilic keto-derivative of the omega-3 fatty acid docosahexaenoic acid (DHA) endogenously generated by cyclooxygenase-2 and a cellular dehydrogenase. 17-oxo-DHA displays anti-inflammatory and cytoprotective actions. DHA, alone or in combination with standard chemotherapy, displays antitumor activity. However, the effects of electrophilic keto-derivatives of DHA on cancer growth have never been evaluated. We investigated whether 17-oxo-DHA, alone or in combination with gemcitabine, displayed antitumor effects. Furthermore, we evaluated whether the enzyme 15-prostaglandin dehydrogenase (15-PGDH) was required for transducing the antitumor effects of DHA. METHODS A panel of five histologically different human non-small cell lung cancer (NSCLC) cell lines was used. Cells were treated with 17-oxo-DHA and gemcitabine, alone or in combination, and apoptosis, proliferation, Fas and FasL expression (mRNA and protein) and active caspase-3/7 and -8 were assessed. Furthermore, an inhibitor of 15-PGDH was used to test the involvement of this enzyme in mediating the antitumor effects of DHA. RESULTS 17-oxo-DHA (50 µM, 72 h) significantly reduced proliferation, increased cell apoptosis, Fas and FasL expression as well as active caspase-8 and -3/7. When 17-oxo-DHA was given in combination with gemcitabine, stronger effects were observed compared to gemcitabine alone. The enzyme 15-PGDH was required for DHA to promote its full anti-apoptotic effect suggesting that enzymatically generated keto-derivatives of DHA mediate its antitumor actions. CONCLUSIONS Data herein provided, demonstrate that 17-oxo-DHA displays antitumor effects in NSCLC cell lines. Of note, the combination of 17-oxo-DHA plus gemcitabine, resulted in stronger anticancer effects compared to gemcitabine alone.
Collapse
Affiliation(s)
- Liboria Siena
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Chiara Cipollina
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy.,Fondazione Ri.MED, Palermo, Italy
| | - Serena Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Maria Ferraro
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Andreina Bruno
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Mark Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Elisabetta Pace
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy.
| |
Collapse
|
10
|
Yang HJ, Jiang JH, Yang YT, Yang XD, Guo Z, Qi YP, Zeng FH, Zhang KL, Chen NZ, Xiang BD, Li LQ. Cyclooxygenase-2 expression is associated with initiation of hepatocellular carcinoma, while prostaglandin receptor-1 expression predicts survival. World J Gastroenterol 2016; 22:8798-8805. [PMID: 27818595 PMCID: PMC5075554 DOI: 10.3748/wjg.v22.i39.8798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether cyclooxygenase-2 (COX-2) and prostaglandin E1 receptor (EP1) contribute to disease and whether they help predict prognosis.
METHODS We retrospectively reviewed the records of 116 patients with hepatocellular carcinoma (HCC) who underwent surgery between 2008 and 2011 at our hospital. Expression of COX-2 and EP1 receptor was examined by immunohistochemistry of formalin-fixed, paraffin-embedded tissues using polyclonal antibodies. Possible associations between immunohistochemical scores and survival were determined.
RESULTS Factors associated with poor overall survival (OS) were alpha-fetoprotein > 400 ng/mL, tumor size ≥ 5 cm, and high EP1 receptor expression, but not high COX-2 expression. Disease-free survival was not significantly different between patients with low or high levels of COX-2 or EP1. COX-2 immunoreactivity was significantly higher in well-differentiated HCC tissues (Edmondson grade I-II) than in poorly differentiated tissues (Edmondson grade III-IV) (P = 0.003). EP1 receptor immunoreactivity was significantly higher in poorly differentiated tissue than in well-differentiated tissue (P = 0.001).
CONCLUSION COX-2 expression appears to be linked to early HCC events (initiation), while EP1 receptor expression may participate in tumor progression and predict survival.
Collapse
|
11
|
Jia Y, Wang Z, Zang A, Jiao S, Chen S, Fu Y. Tetramethylpyrazine inhibits tumor growth of lung cancer through disrupting angiogenesis via BMP/Smad/Id-1 signaling. Int J Oncol 2016; 48:2079-86. [PMID: 26984046 DOI: 10.3892/ijo.2016.3443] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/24/2016] [Indexed: 11/05/2022] Open
Abstract
The underlying mechanisms of inhibitory effects induced by tetramethylpyrazine (TMP) on angiogenesis and tumor growth of lung cancer were investigated. In vitro cell proliferation, migration, and tube formation of human microvascular endothelial cells (HMEC-1) were evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide (MTT), wound healing, Transwell, and Matrigel assays. The expression of BMP/Smad/Id-1 signals was detected by RT-PCR and western blotting. In an A549 xenograft tumor model, TMP (40 and 80 mg/kg/day) was intraperitoneally injected into mice. The expressions of CD31, phosphorylated Smad1/5/8, and Id-1 were measured by immunohistochemistry. We demonstrated that TMP inhibited proliferation, migration, and capillary tube formation of HMEC-1 in a dose- and time-dependent manner. Furthermore, treatment of HMEC-1 cells with TMP (0.4 mg/ml) significantly upregulated BMP2 expression and downregulated BMPRIA, BMPRII, phosphorylated Smad1/5/8, and Id-1 expression. In addition, administrations of TMP remarkably inhibited tumor growth of A549 xenograft in nude mice. The CD31, phosphorylated Smad1/5/8, and Id-1 expression were significantly inhibited in TMP-treated xenograft tumors compared with the vehicle. In conclusion, our results indicated that TMP suppressed angiogenesis and tumor growth of lung cancer via blocking the BMP/Smad/Id-1 signaling.
Collapse
Affiliation(s)
- Youchao Jia
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Zhigang Wang
- Department of Medical Oncology, Baoding Hengxing Hospital of Traditional Chinese and Western Medicine, Baoding 071000, P.R. China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, P.R. China
| | - Shunchang Jiao
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Sumei Chen
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Yan Fu
- Department of Medical Oncology, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| |
Collapse
|
12
|
Cui Y, Sun Z, Li X, Leng C, Zhang L, Fu X, Li L, Zhang X, Chang YU, Nan F, Li Z, Yan J, Zhang M, Li W, Wang G, Zhang D, Ma Y. Expression and clinical significance of cyclooxygenase-2 and interleukin-32 in primary gastric B-cell lymphoma. Oncol Lett 2015; 11:693-698. [PMID: 26870269 DOI: 10.3892/ol.2015.3950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) and interleukin-32 (IL-32) expression has been examined in various carcinomas and inflammations, and has been suggested to be significant in tumor progression and prognosis. The present study was conducted to investigate the expression of COX-2 and IL-32 in primary gastric B-cell lymphoma in order to define their clinical significance and their association with Helicobacter pylori (Hp) infection. COX-2 and IL-32 protein expression was detected in 31 primary gastric B-cell lymphoma patients and 19 chronic gastritis patients with immunohistochemistry. COX-2 and IL-32 expression was significantly higher in primary gastric lymphoma (PGL) tissues compared with gastritis tissues (51.6 vs. 21.1% for COX-2, P=0.032; and 58.1 vs. 26.3% for IL-32, P=0.029) and was significantly higher in Hp+ lymphoma tissues compared with Hp- lymphoma tissues (66.7 vs. 20% for COX-2, P=0.015; and 71.4 vs. 30% for IL-32, P=0.029). In the PGL tissues, the expression level of COX-2 was positively correlated with the expression level of IL-32, and the two were each positively correlated with Hp infection (P=0.004 for COX-2 and IL-32; P=0.01 for COX-2 and Hp infection; and P=0.003 for IL-32 and Hp infection). COX-2 expression was found to be significantly associated (P<0.05) with an aggressive tumor type, higher expression of Ki-67, frequent lymph node metastasis and advanced stage. IL-32 expression was found to be significantly correlated (P<0.05) with frequent lymph node metastasis and an advanced stage. The survival time was longer in the COX-2- and IL-32- lymphoma patients compared with the COX-2+ and IL-32+ lymphoma patients, but these differences were not statistically significant. These results suggested that Hp infection and the expression of COX-2 and IL-32 were closely linked with each other, and that the overexpression of COX-2 and IL-32 was correlated with tumor progression in primary gastric B-cell lymphoma, thus indicating potential novel therapeutic target.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Changsen Leng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Y U Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feifei Nan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yaozhen Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
13
|
Microvessels Density in Uterine Leiomyosarcoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:475305. [PMID: 26161403 PMCID: PMC4486743 DOI: 10.1155/2015/475305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/15/2015] [Indexed: 11/24/2022]
Abstract
Uterine leiomyosarcomas (LMS) are rare tumors typically presenting rapid growth and unfavorable outcome. Nowadays the results of uterine LMS treatment do not meet expectations. Angiogenesis is one of processes investigated to be target for future treatment. The aim of the research was to assess microvessels density (MVD) in tumor samples collected from 50 patients with histological confirmed uterine leiomyosarcoma and to investigate statistical relations between MVD, patients survival, and FIGO stage of tumor. The assessment was carried out using immunohistochemistry methods with anti-CD34 antibody. No significant difference in MVD between FIGO stages was observed. Furthermore, contrary to many other malignancies, we found no significant relation between MVD and patients overall and 2-year survival. Results obtained in the study suggest that processes on vascular mimicry and mesenchymal to epithelial transition (MET) may play important role in development of LMS. No statistical relation between MVD and survival leads to conclusion that not only angiogenesis but other mechanisms as well should be taken into consideration in planning future research.
Collapse
|