1
|
Ayeldeen G, Zaki AK, Amer E, Abdellatif Z, Shaker OG, Said M, Abdelhamid AM. NBAT1/miR-21 axis in progression of colorectal cancer and impact of PVT-1 polymorphism on miR-145 expression level and its clinical significance. Contemp Oncol (Pozn) 2025; 28:304-317. [PMID: 39935754 PMCID: PMC11809565 DOI: 10.5114/wo.2024.146961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/24/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Patients with colorectal cancer (CRC) have a higher chance of survival when the disease is detected and treated effectively at an early stage. Plasmacytoma variant translocation 1 (PVT-1), an oncogenic lncRNA, and neuroblastoma associated trans-cript 1 (NBAT1), a tumor suppressor lncRNA, have been linked to CRC progression, acting as competing endo-genous RNAs to the tumor suppressor miRNA-145 and oncomiRNA-21. The aim of the current study was to construct a competing endogenous RNA (ceRNA) associated with CRC. In addition, we aimed to investigate the impact of single nucleotide polymorphisms in the rs13255292 lncRNA PVT-1 on miR-145 expression levels and the lncRNA-NBAT1/miR-21 axis in the progression of CRC. Material and methods Bioinforma-tic analysis was performed to determine differentially expressed genes (DEGs), differentially expressed micro-RNAs (DEMs), and differentially expressed lncRNAs (DELs) in CRC. PVT-1 rs13255292 C/T was genotyped and serum PVT-1, NBAT-1, miRNA-145 and miRNA-21 were assessed by qPCR in 85 CRC patients, 80 AP, and 85 controls. Results The frequencies of the PVT-1 rs13255292 CT/TT genotype and T al-le-- le were significantly elevated in the CRC group compared to the controls. PVT-1 serum levels significantly increased due to the presence of the T allele in the studied groups, which was associated with downregulation of the miR-145 tumor suppressor. Also, the expression of NBAT-1 was significantly down-expressed, while that of oncomiR-21 was significantly elevated. Conclusions Bioinformatics analyses provides effective identification of potential lncRNAs linked with CRC. PVT-1/miR-145 and NBAT1/miR-21 are being investigated as potential non-invasive diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed K. Zaki
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman Amer
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Zeinab Abdellatif
- Department of Endemic Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Said
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Egypt
| | - Amr M. Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Egypt
| |
Collapse
|
2
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
3
|
Zhao Y, Zhao L, Li M, Meng Z, Wang S, Li J, Li L, Gong L. Long non-coding RNA PVT1 regulates TGF-β and promotes the proliferation, migration and invasion of hypopharyngeal carcinoma FaDu cells. World J Surg Oncol 2024; 22:254. [PMID: 39300515 PMCID: PMC11414033 DOI: 10.1186/s12957-024-03536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Hypopharyngeal carcinoma is one of the malignant tumors of the head and neck with a particularly poor prognosis. Recurrence and metastasis are important reasons for poor prognosis of hypopharyngeal cancer patients, and malignant proliferation, migration, and invasion of tumor cells are important factors for recurrence and metastasis of hypopharyngeal cancer. Therefore, elucidating hypopharyngeal cancer cells' proliferation, migration, and invasion mechanism is essential for improving diagnosis, treatment, and prognosis. Plasmacytoma Variant Translocation 1 (PVT1) is considered a potential diagnostic marker and therapeutic target for tumors. However, it remains unclear whether PVT1 is related to the occurrence and development of hypopharyngeal cancer and its specific mechanism. In this study, the promoting effect of PVT1 on the proliferation, migration, and invasion of hypopharyngeal carcinoma FaDu cells was verified by cell biology experiments and animal studies, and it was found that PVT1 inhibited the expression of TGF-β, suggesting that PVT1 may regulate the occurrence and development of hypopharyngeal carcinoma FaDu cells through TGF-β.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Hypopharyngeal Neoplasms/pathology
- Hypopharyngeal Neoplasms/genetics
- Hypopharyngeal Neoplasms/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Prognosis
- RNA, Long Noncoding/genetics
- Transforming Growth Factor beta/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Female
Collapse
Affiliation(s)
- Yan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| | - Lei Zhao
- Department of Otorhinolaryngology, Heze Municipal Hospital, Heze, Shandong, China
| | - Maocai Li
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China
| | - Zhen Meng
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong, China
| | - Song Wang
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jun Li
- Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lianqing Li
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China.
| | - Lili Gong
- Department of Otorhinolaryngology Head and Neck Surgery, Liaocheng People's Hospital, No.67, Dongchang West Road, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
4
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
5
|
Davodabadi F, Mirinejad S, Malik S, Dhasmana A, Ulucan-Karnak F, Sargazi S, Sargazi S, Fathi-Karkan S, Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: an updated review with emphasis on cancer. NANOSCALE 2024; 16:3881-3914. [PMID: 38353296 DOI: 10.1039/d3nr05656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The long noncoding RNAs (lncRNAs) comprise a wide range of RNA species whose length exceeds 200 nucleotides, which regulate the expression of genes and cellular functions in a wide range of organisms. Several diseases, including malignancy, have been associated with lncRNA dysregulation. Due to their functions in cancer development and progression, lncRNAs have emerged as promising biomarkers and therapeutic targets in cancer diagnosis and treatment. Several studies have investigated the anti-cancer properties of lncRNAs; however, only a few lncRNAs have been found to exhibit tumor suppressor properties. Furthermore, their length and poor stability make them difficult to synthesize. Thus, to overcome the instability of lncRNAs, poor specificity, and their off-target effects, researchers have constructed nanocarriers that encapsulate lncRNAs. Recently, translational medicine research has focused on delivering lncRNAs into tumor cells, including cancer cells, through nano-drug delivery systems in vivo. The developed nanocarriers can protect, target, and release lncRNAs under controlled conditions without appreciable adverse effects. To deliver lncRNAs to cancer cells, various nanocarriers, such as exosomes, microbubbles, polymer nanoparticles, 1,2-dioleyl-3-trimethylammoniumpropane chloride nanocarriers, and virus-like particles, have been successfully developed. Despite this, every nanocarrier has its own advantages and disadvantages when it comes to delivering nucleic acids effectively and safely. This article examines the current status of nanocarriers for lncRNA delivery in cancer therapy, focusing on their potential to enhance cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi-834002, India.
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, 248140, India.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| |
Collapse
|
6
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
7
|
Huang L, Wang Z, Liao C, Zhao Z, Gao H, Huang R, Chen J, Wu F, Zeng F, Zhang Y, Jiang T, Hu H. PVT1 promotes proliferation and macrophage immunosuppressive polarization through STAT1 and CX3CL1 regulation in glioblastoma multiforme. CNS Neurosci Ther 2024; 30:e14566. [PMID: 38287522 PMCID: PMC10805395 DOI: 10.1111/cns.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024] Open
Abstract
AIMS This study aimed to investigate the role of plasmacytoma variant translocation 1 (PVT1), a long non-coding RNA, in glioblastoma multiforme (GBM) and its impact on the tumor microenvironment (TME). METHODS We assessed aberrant PVT1 expression in glioma tissues and its impact on GBM cell growth in vitro and in vivo. Additionally, we investigated PVT1's role in influencing glioma-associated macrophages. To understand PVT1's role in cell growth and the immunosuppressive TME, we performed a series of comprehensive experiments. RESULTS PVT1 was overexpressed in GBM due to copy number amplification, correlating with poor prognosis. Elevated PVT1 promoted GBM cell proliferation, while its downregulation inhibited growth in vitro and in vivo. PVT1 inhibited type I interferon-stimulated genes (ISGs), with STAT1 as the central hub. PVT1 correlated with macrophage enrichment and regulated CX3CL1 expression, promoting recruitment and M2 phenotype polarization of macrophages. PVT1 localized to the cell nucleus and bound to DHX9, enriching at the promoter regions of STAT1 and CX3CL1, modulating ISGs and CX3CL1 expression. CONCLUSION PVT1 plays a significant role in GBM, correlating with poor prognosis, promoting cell growth, and shaping an immunosuppressive TME via STAT1 and CX3CL1 regulation. Targeting PVT1 may hold therapeutic promise for GBM patients.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Pathophysiology, Beijing Neurosurgical InstituteCapital Medical UniversityChina
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chihyi Liao
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Hua Gao
- Department of Cell Biology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jing Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Center of Brain TumorBeijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas NetworkBeijingChina
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Bao H, Jiang Y, Wang N, Su H, Han X. Long Noncoding RNAs MALAT1 and HOTTIP Act as Serum Biomarkers for Hepatocellular Carcinoma. Cancer Control 2024; 31:10732748241284821. [PMID: 39259658 PMCID: PMC11406664 DOI: 10.1177/10732748241284821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Circulating tumor markers with satisfactory sensitivity and specificity play crucial roles in cancer diagnosis and therapy. This prospective study aimed to evaluate the potential of circulating lncRNAs as biomarkers for hepatocellular carcinoma (HCC). METHODS A total of 74 patients with HCC and 94 healthy controls were enrolled. The expression levels of candidate genes in serum were detected by qRT-PCR. Receiver operating characteristic (ROC) curve analysis and logistic regression were employed to investigate the diagnostic capacity of lncRNAs. The analysis of 3-year overall survival (OS) was conducted using the Kaplan-Meier method and log-rank test. RESULTS Of the 9 candidate genes, 6 lncRNAs could be stably detected in serum. The expression levels of circulating MALAT1 and HOTTIP in HCC patients were significantly higher than those in controls (P < 0.001). ROC analysis showed that MALAT1 and HOTTIP were more effective than alpha-fetoprotein (AFP) (P < 0.010) in the diagnosis of HCC, with AUCs of 0.896 and 0.899, respectively. Additionally, a panel consisting of MALAT1, HOTTIP, and AFP was constructed to obtain an AUC of 0.968 with a sensitivity of 87.8% and specificity of 94.7% in HCC diagnosis. Moreover, the upregulation of MALAT1 was not only related to multiple tumor lesions, HCV infection, AST level, and AFP level, but also suggested shorter OS. A high expression level of HOTTIP was associated with metastasis. CONCLUSION Serum MALAT1 and HOTTIP play indicative roles as non-invasive biomarkers for HCC.
Collapse
Affiliation(s)
- Han Bao
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yutian Jiang
- Department of Interventional Therapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ning Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongying Su
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xiangjun Han
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
10
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
12
|
Yang Q, Sun Q, Jin P. Long non‑coding RNA PVT1 regulates LPS‑induced acute kidney injury in an in vitro model of HK‑2 cells by modulating the miR‑27a‑3p/OXSR1 axis. Exp Ther Med 2022; 24:552. [PMID: 35978931 PMCID: PMC9366283 DOI: 10.3892/etm.2022.11490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/18/2020] [Indexed: 11/05/2022] Open
Affiliation(s)
- Qian Yang
- Department of Critical Care Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qi Sun
- Department of Critical Care Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Ping Jin
- Department of Critical Care Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
13
|
Jiang X, Li H, Fang Y, Xu C. LncRNA PVT1 contributes to invasion and doxorubicin resistance of bladder cancer cells through promoting MDM2 expression and AURKB-mediated p53 ubiquitination. ENVIRONMENTAL TOXICOLOGY 2022; 37:1495-1508. [PMID: 35213076 DOI: 10.1002/tox.23501] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/20/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In most bladder cancer (BC) patients, cancer cells will eventually develop chemical resistance causing increased mortality. This study aimed to explore the mechanism of lncRNA plasmacytoma variant translocation 1 (PVT1) in regulating doxorubicin (ADM) resistance of BC cells. We observed that PVT1 expression was upregulated in ADM-resistant BC cells compared with ADM-sensitive BC cells. Downregulation of PVT1 suppressed ADM-resistant BC cell proliferation and invasion, promoted apoptosis, and increased sensitivity to ADM, while PVT1 overexpression promoted ADM-sensitive BC cell growth and their resistance to ADM. Further study uncovered that PVT1 could interact with and promote mouse double minute 2 (MDM2) expression, and upregulated MDM2-mediated Aurora kinase B (AURKB). Furthermore, Nutlin-3, an inhibitor of MDM2, could counteract the promotive effects of PVT1 overexpression on ADM resistance of ADM-sensitive BC cell, the expression of multidrug-resistance-related proteins, and the inhibition of p53-mediated tumor suppressor genes. And, overexpression of MDM2 or AURKB reversed the promotive effects of PVT1 silence on the ADM sensitivity of ADM-resistant BC cell, and the inhibitory effect on expression multidrug resistance proteins. Mechanically, AURKB increased MDM2-mediated p53 ubiquitination. Taken together, PVT1 promoted BC cell proliferation and drug resistance via elevating MDM2 expression and AURKB-mediated p53 ubiquitination.
Collapse
Affiliation(s)
- Xiaoqin Jiang
- Department of Urology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Huizhen Li
- Department of Urology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Yu Fang
- Department of Urology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Damaskos C, Garmpis N, Dimitroulis D, Garmpi A, Diamantis E, Sarantis P, Georgakopoulou VE, Patsouras A, Despotidis M, Prevezanos D, Syllaios A, Marinos G, Koustas E, Vallilas C, Antoniou EA, Kontzoglou K, Savvanis S, Kouraklis G. The Role of SNHG15 in the Pathogenesis of Hepatocellular Carcinoma. J Pers Med 2022; 12:753. [PMID: 35629174 PMCID: PMC9145272 DOI: 10.3390/jpm12050753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts of more than 200 nucleotides which cannot be translated into proteins. Small nucleolar RNA host gene 15 (SNHG15) is a lncRNA whose dysregulation has been found to have an important impact on carcinogenesis and affect the prognosis of cancer patients in various cancer types. Hepatocellular carcinoma (HCC) is one of the most common cancers with a poor long-term prognosis, while the best prognostic factor of the disease is its early diagnosis and surgery. Consequently, the investigation of the mechanisms of hepatocarcinogenesis, as well as the discovery of efficient molecular markers and therapeutic targets are of great significance. An extensive literature search was performed in MEDLINE in order to identify clinical studies that tried to reveal the role of SNHG15 in HCC. We used keywords such as 'HCC', 'hepatocellular carcinoma', 'SNHG15' and 'clinical study'. Finally, we included four studies written in English, published during the period 2016-2021. It was revealed that SNHG15 is related to the appearance of HCC via different routes and its over-expression affects the overall survival of the patients. More assays are required in order to clarify the potential role of SNHG15 as a prognostic tool and therapeutic target in HCC.
Collapse
Affiliation(s)
- Christos Damaskos
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece;
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (E.A.A.); (K.K.)
| | - Nikolaos Garmpis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (E.A.A.); (K.K.)
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelos Diamantis
- Endocrinology Unit, Academic Department of Internal Medicine, Agioi Anargyroi General Oncology Hospital, National and Kapodistrian University of Athens, 14564 Kifisia, Greece;
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (E.K.); (C.V.)
| | | | | | - Markos Despotidis
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.D.); (A.S.)
| | | | - Athanasios Syllaios
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.D.); (A.S.)
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (E.K.); (C.V.)
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (E.K.); (C.V.)
| | - Efstathios A. Antoniou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (E.A.A.); (K.K.)
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Kontzoglou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.G.); (E.A.A.); (K.K.)
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Spyridon Savvanis
- Internal Medicine Department, Elpis General Hospital, 11522 Athens, Greece;
| | - Gregory Kouraklis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
15
|
Liu X, Li L, Bai J, Li L, Fan J, Fu Z, Liu J. Long noncoding RNA plasmacytoma variant translocation 1 promotes progression of colorectal cancer by sponging microRNA-152-3p and regulating E2F3/MAPK8 signaling. Cancer Sci 2022; 113:109-119. [PMID: 34418232 PMCID: PMC8748219 DOI: 10.1111/cas.15113] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to investigate the pathogenesis of colorectal cancer (CRC) and the effects of the long noncoding RNA plasmacytoma variant translocation 1 (PVT1) on CRC progression. Bioinformatics analysis verified PVT1 expression in tumor and normal tissues. Quantitative PCR and western blotting were used to measure mRNA and protein levels, respectively. The MTT, Transwell, colony formation, and in vivo assays were used to assess the effects of PVT1 on proliferation, migration, and invasion by CRC cells. Both PVT1 and microRNA (miR)-152-3p were shown to be colocalized in CRC cells using FISH assay. The target genes of miR-152-3p were predicted and verified by bioinformatics analysis, luciferase assay, and RNA pull-down assay. The ChIP assay revealed that E2F3 binds with the promoter of MAPK8. We found that PVT1 was overexpressed in CRC specimens, and its expression was higher in CRC cells than normal intestinal cells. Overexpression of PVT1 enhanced the proliferation, migration, and invasion of CRC cells, whereas PVT1 knockdown inhibited these processes. MicroRNA-152-3p was a target of PVT1, and E2F3 was a target of miR-152-3p. Rescue experiments confirmed the interaction between miR-152-3p and PVT1 and between miR-152-3p and E2F3. Luciferase and ChIP assay results confirmed that E2F3 modulates the transcriptional activation of MAPK8. Long noncoding RNA PVT1 activated E2F3 signaling by sponging miR-152-3p. The PVT1/miR-152-3p/E2F3/MAPK8 axis promoted CRC progression.
Collapse
Affiliation(s)
- Xin Liu
- Department of Medical Service, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Lei Li
- Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Jing Bai
- Department of Geriatrics, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Liang Li
- Department of Gastroenterology, Cixian People's Hospital, Handan, China
| | - Jianghe Fan
- Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Zexian Fu
- Department of Scientific Research and Education, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Jianxia Liu
- Department of Nursing, Affiliated Hospital of Hebei University of Engineering, Handan, China
| |
Collapse
|
16
|
He S, Li JF, Tian H, Sang Y, Yang XJ, Guo GX, Yang JE. A long non-coding RNA-based signature predicts early recurrence in hepatocellular carcinoma. Cancer Biomark 2021; 34:309-318. [PMID: 34957996 DOI: 10.3233/cbm-210193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Early recurrence is the main obstacle for long-term survival of hepatocellular carcinoma (HCC) patients after curative resection. OBJECTIVE We aimed to develop a long non-coding RNA (lncRNA) based signature to predict early recurrence. METHODS Using bioinformatics analysis and quantitative reverse transcription PCR (RT-qPCR), we screened for lncRNA candidates that were abnormally expressed in HCC. The expression levels of candidate lncRNAs were analyzed in HCC tissues from 160 patients who underwent curative resection, and a risk model for the prediction of recurrence within 1 year (early recurrence) of HCCs was constructed with linear support vector machine (SVM). RESULTS A lncRNA-based classifier (Clnc), which contained nine differentially expressed lncRNAs including AF339810, AK026286, BC020899, HEIH, HULC, MALAT1, PVT1, uc003fpg, and ZFAS1 was constructed. In the test set, this classifier reliably predicted early recurrence (AUC, 0.675; sensitivity, 72.0%; specificity, 63.1%) with an odds ratio of 4.390 (95% CI, 2.120-9.090). Clnc showed higher accuracy than traditional clinical features, including tumor size, portal vein tumor thrombus (PVTT) in predicting early recurrence (AUC, 0.675 vs 0.523 vs 0.541), and had much higher sensitivity than Barcelona Clinical Liver Cancer (BCLC; 72.0% vs 50.0%), albeit their AUCs were comparable (0.675 vs 0.678). Moreover, combining Clnc with BCLC significantly increased the AUC, compared with Clnc or BCLC alone in predicting early recurrence (all P< 0.05). Finally, logistic and Cox regression analysis suggested that Clnc was an independent prognostic factor and associated with the early recurrence and recurrence-free survival of HCC patients after resection, respectively (all P= 0.001). CONCLUSIONS Our lncRNA-based classifier Clnc can predict early recurrence of patients undergoing surgical resection of HCC.
Collapse
Affiliation(s)
- Shuai He
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin-Feng Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Tian
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ye Sang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Jing Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gui-Xin Guo
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Wang L, Sheng J, Zhang H, Xie B, Xiang L, Liu D, Zhang X, Zhang P, Liu J. The Association between Long Noncoding RNA over Expression and Poor Prognosis of Liver Cancer: A Meta-Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1395131. [PMID: 35419184 DOI: 10.1016/j.envexpbot.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) is considered to be a mediator of carcinogenesis, which may be associated with liver cancer survival. However, the relationship remains inconclusive. Meta-analysis was conducted to analytically review the association between the lncRNA expression level and clinicopathological characteristics and prognostic value of hepatic carcinoma. MATERIALS AND METHODS Four databases including Embase, PubMed, Web of Science, and the Cochrane Library were searched to collect studies about the relation between lncRNA overexpression and prognosis of liver cancer, dating from the earliest records of these databases to March 2021. Two researchers independently screened the data and literature to perform a stringent evaluation of the quality of material involved in the study. Meta-analysis was performed by Stata 16.0 software on 42 case-control studies with 6293 samples. RESULTS The outcomes of meta-analysis are presented as follows: lncRNA overexpression patients had later TNM stage (OR = 0.36, 95% CI (0.31, 0.41), P < 0.001), lower histological grade (OR = 0.56, 95%CI (0.49, 0.65), P < 0.001), more vascular invasion (OR = 2.02, 95% CI (1.74, 2.35), P < 0.001), bigger tumor size (OR = 2.28, 95% CI (2.00, 2.60), P < 0.001), more severe liver cirrhosis (OR = 1.39, 95% CI(0.1.16, 1.66), P < 0.001), more likely to metastasize (OR = 1.80, 95%CI(1.49, 2.18), P < 0.001), and more tumor numbers (OR = 0.72, 95% CI (0.62, 0.84), P < 0.05). lncRNA over expression patients had shorter OS (HR = 2.32, 95 CI% (2.08, 2.59), P < 0.01, RFS (HR = 2.19, 95 CI% (1.72, 2.78), P < 0.01), and DFS (HR = 2.01, 95 CI% (1.57, 2.57), P < 0.01). CONCLUSIONS Overexposure of lncRNA is a poor prognostic feature for patients with hepatic carcinoma. The scope of our study was limited because of a lack of relevant research and the poor representativeness and varying quality of the studies involved in the current meta-analysis. Our conclusion still requires higher studies for further validation. This trial is clinically registered with CRD4201920620.
Collapse
Affiliation(s)
- Leiqing Wang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junzhi Sheng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Haojie Zhang
- Department of Clinical Medicine, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Baoyuan Xie
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Linbiao Xiang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Dong Liu
- The School of Clinical Medicine of Shi Hezi University, Shi Hezi 832000, Xinjiang, China
| | - Xinyuan Zhang
- The School of Clinical Medicine of Weifang Medical University, Weifang 261000, Shandong, China
| | - Peihao Zhang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinjin Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
18
|
Wang L, Sheng J, Zhang H, Xie B, Xiang L, Liu D, Zhang X, Zhang P, Liu J. The Association between Long Noncoding RNA over Expression and Poor Prognosis of Liver Cancer: A Meta-Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1395131. [PMID: 35419184 PMCID: PMC8995546 DOI: 10.1155/2021/1395131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 01/27/2023]
Abstract
Background Long noncoding RNA (lncRNA) is considered to be a mediator of carcinogenesis, which may be associated with liver cancer survival. However, the relationship remains inconclusive. Meta-analysis was conducted to analytically review the association between the lncRNA expression level and clinicopathological characteristics and prognostic value of hepatic carcinoma. Materials and Methods Four databases including Embase, PubMed, Web of Science, and the Cochrane Library were searched to collect studies about the relation between lncRNA overexpression and prognosis of liver cancer, dating from the earliest records of these databases to March 2021. Two researchers independently screened the data and literature to perform a stringent evaluation of the quality of material involved in the study. Meta-analysis was performed by Stata 16.0 software on 42 case-control studies with 6293 samples. Results The outcomes of meta-analysis are presented as follows: lncRNA overexpression patients had later TNM stage (OR = 0.36, 95% CI (0.31, 0.41), P < 0.001), lower histological grade (OR = 0.56, 95%CI (0.49, 0.65), P < 0.001), more vascular invasion (OR = 2.02, 95% CI (1.74, 2.35), P < 0.001), bigger tumor size (OR = 2.28, 95% CI (2.00, 2.60), P < 0.001), more severe liver cirrhosis (OR = 1.39, 95% CI(0.1.16, 1.66), P < 0.001), more likely to metastasize (OR = 1.80, 95%CI(1.49, 2.18), P < 0.001), and more tumor numbers (OR = 0.72, 95% CI (0.62, 0.84), P < 0.05). lncRNA over expression patients had shorter OS (HR = 2.32, 95 CI% (2.08, 2.59), P < 0.01, RFS (HR = 2.19, 95 CI% (1.72, 2.78), P < 0.01), and DFS (HR = 2.01, 95 CI% (1.57, 2.57), P < 0.01). Conclusions Overexposure of lncRNA is a poor prognostic feature for patients with hepatic carcinoma. The scope of our study was limited because of a lack of relevant research and the poor representativeness and varying quality of the studies involved in the current meta-analysis. Our conclusion still requires higher studies for further validation. This trial is clinically registered with CRD4201920620.
Collapse
Affiliation(s)
- Leiqing Wang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Junzhi Sheng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Haojie Zhang
- Department of Clinical Medicine, Medical College, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Baoyuan Xie
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Linbiao Xiang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Dong Liu
- The School of Clinical Medicine of Shi Hezi University, Shi Hezi 832000, Xinjiang, China
| | - Xinyuan Zhang
- The School of Clinical Medicine of Weifang Medical University, Weifang 261000, Shandong, China
| | - Peihao Zhang
- The Second School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinjin Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou 730000, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
19
|
Zhao X, Zhao X, Yin M. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction. Brief Bioinform 2021; 23:6377515. [PMID: 34585231 DOI: 10.1093/bib/bbab407] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Discovering long noncoding RNA (lncRNA)-disease associations is a fundamental and critical part in understanding disease etiology and pathogenesis. However, only a few lncRNA-disease associations have been identified because of the time-consuming and expensive biological experiments. As a result, an efficient computational method is of great importance and urgently needed for identifying potential lncRNA-disease associations. With the ability of exploiting node features and relationships in network, graph-based learning models have been commonly utilized by these biomolecular association predictions. However, the capability of these methods in comprehensively fusing node features, heterogeneous topological structures and semantic information is distant from optimal or even satisfactory. Moreover, there are still limitations in modeling complex associations between lncRNAs and diseases. RESULTS In this paper, we develop a novel heterogeneous graph attention network framework based on meta-paths for predicting lncRNA-disease associations, denoted as HGATLDA. At first, we conduct a heterogeneous network by incorporating lncRNA and disease feature structural graphs, and lncRNA-disease topological structural graph. Then, for the heterogeneous graph, we conduct multiple metapath-based subgraphs and then utilize graph attention network to learn node embeddings from neighbors of these homogeneous and heterogeneous subgraphs. Next, we implement attention mechanism to adaptively assign weights to multiple metapath-based subgraphs and get more semantic information. In addition, we combine neural inductive matrix completion to reconstruct lncRNA-disease associations, which is applied for capturing complicated associations between lncRNAs and diseases. Moreover, we incorporate cost-sensitive neural network into the loss function to tackle the commonly imbalance problem in lncRNA-disease association prediction. Finally, extensive experimental results demonstrate the effectiveness of our proposed framework.
Collapse
Affiliation(s)
- Xiaosa Zhao
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Xiaowei Zhao
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Minghao Yin
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
20
|
Yao Y, Ji B, Lv Y, Li L, Xiang J, Liao B, Gao W. Predicting LncRNA-Disease Association by a Random Walk With Restart on Multiplex and Heterogeneous Networks. Front Genet 2021; 12:712170. [PMID: 34490041 PMCID: PMC8417042 DOI: 10.3389/fgene.2021.712170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 02/05/2023] Open
Abstract
Studies have found that long non-coding RNAs (lncRNAs) play important roles in many human biological processes, and it is critical to explore potential lncRNA–disease associations, especially cancer-associated lncRNAs. However, traditional biological experiments are costly and time-consuming, so it is of great significance to develop effective computational models. We developed a random walk algorithm with restart on multiplex and heterogeneous networks of lncRNAs and diseases to predict lncRNA–disease associations (MHRWRLDA). First, multiple disease similarity networks are constructed by using different approaches to calculate similarity scores between diseases, and multiple lncRNA similarity networks are also constructed by using different approaches to calculate similarity scores between lncRNAs. Then, a multiplex and heterogeneous network was constructed by integrating multiple disease similarity networks and multiple lncRNA similarity networks with the lncRNA–disease associations, and a random walk with restart on the multiplex and heterogeneous network was performed to predict lncRNA–disease associations. The results of Leave-One-Out cross-validation (LOOCV) showed that the value of Area under the curve (AUC) was 0.68736, which was improved compared with the classical algorithm in recent years. Finally, we confirmed a few novel predicted lncRNAs associated with specific diseases like colon cancer by literature mining. In summary, MHRWRLDA contributes to predict lncRNA–disease associations.
Collapse
Affiliation(s)
- Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou, China
| | - Binbin Ji
- Geneis Beijing Co., Ltd., Beijing, China
| | - Yaping Lv
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Ling Li
- Basic Courses Department, Zhejiang Shuren University, Hangzhou, China
| | - Ju Xiang
- School of Computer Science and Engineering, Central South University, Changsha, China.,Department of Basic Medical Sciences, Changsha Medical University, Changsha, China.,Department of Computer Science, Changsha Medical University, Changsha, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Wei Gao
- Departments of Internal Medicine-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
21
|
Yao Y, Ji B, Lv Y, Li L, Xiang J, Liao B, Gao W. Predicting LncRNA–Disease Association by a Random Walk With Restart on Multiplex and Heterogeneous Networks. Front Genet 2021. [DOI: https:/doi.org/10.3389/fgene.2021.712170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Studies have found that long non-coding RNAs (lncRNAs) play important roles in many human biological processes, and it is critical to explore potential lncRNA–disease associations, especially cancer-associated lncRNAs. However, traditional biological experiments are costly and time-consuming, so it is of great significance to develop effective computational models. We developed a random walk algorithm with restart on multiplex and heterogeneous networks of lncRNAs and diseases to predict lncRNA–disease associations (MHRWRLDA). First, multiple disease similarity networks are constructed by using different approaches to calculate similarity scores between diseases, and multiple lncRNA similarity networks are also constructed by using different approaches to calculate similarity scores between lncRNAs. Then, a multiplex and heterogeneous network was constructed by integrating multiple disease similarity networks and multiple lncRNA similarity networks with the lncRNA–disease associations, and a random walk with restart on the multiplex and heterogeneous network was performed to predict lncRNA–disease associations. The results of Leave-One-Out cross-validation (LOOCV) showed that the value of Area under the curve (AUC) was 0.68736, which was improved compared with the classical algorithm in recent years. Finally, we confirmed a few novel predicted lncRNAs associated with specific diseases like colon cancer by literature mining. In summary, MHRWRLDA contributes to predict lncRNA–disease associations.
Collapse
|
22
|
Bhatti GK, Khullar N, Sidhu IS, Navik US, Reddy AP, Reddy PH, Bhatti JS. Emerging role of non-coding RNA in health and disease. Metab Brain Dis 2021; 36:1119-1134. [PMID: 33881724 PMCID: PMC8058498 DOI: 10.1007/s11011-021-00739-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
Human diseases have always been a significant turf of concern since the origin of mankind. It is cardinal to know the cause, treatment, and cure for every disease condition. With the advent and advancement in technology, the molecular arena at the microscopic level to study the mechanism, progression, and therapy is more rational and authentic pave than a macroscopic approach. Non-coding RNAs (ncRNAs) have now emerged as indispensable players in the diagnosis, development, and therapeutics of every abnormality concerning physiology, pathology, genetics, epigenetics, oncology, and developmental diseases. This is a comprehensive attempt to collate all the existing and proven strategies, techniques, mechanisms of genetic disorders including Silver Russell Syndrome, Fascio- scapula humeral muscular dystrophy, cardiovascular diseases (atherosclerosis, cardiac fibrosis, hypertension, etc.), neurodegenerative diseases (Spino-cerebral ataxia type 7, Spino-cerebral ataxia type 8, Spinal muscular atrophy, Opitz-Kaveggia syndrome, etc.) cancers (cervix, breast, lung cancer, etc.), and infectious diseases (viral) studied so far. This article encompasses discovery, biogenesis, classification, and evolutionary prospects of the existence of this junk RNA along with the integrated networks involving chromatin remodelling, dosage compensation, genome imprinting, splicing regulation, post-translational regulation and proteomics. In conclusion, all the major human diseases are discussed with a facilitated technology transfer, advancements, loopholes, and tentative future research prospects have also been proposed.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab India
| | | | - Uma Shanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | | | - P. Hemachandra Reddy
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Cell Biology & Biochemistry, Neuroscience & Pharmacology, Neurology, Public Health, School of Health Professions, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430 USA
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
23
|
Qian D, Zheng Q, Wu D, Ye B, Qian Y, Zhou T, Qiu J, Meng X. Integrated Analysis of ceRNA Network Reveals Prognostic and Metastasis Associated Biomarkers in Breast Cancer. Front Oncol 2021; 11:670138. [PMID: 34055638 PMCID: PMC8158160 DOI: 10.3389/fonc.2021.670138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
Background Breast cancer is a malignancy and lethal tumor in women. Metastasis of breast cancer is one of the causes of poor prognosis. Increasing evidences have suggested that the competing endogenous RNAs (ceRNAs) were associated with the metastasis of breast cancer. Nonetheless, potential roles of ceRNAs in regulating the metastasis of breast cancer remain unclear. Methods The RNA expression (3 levels) and follow-up data of breast cancer and noncancerous tissue samples were downloaded from the Cancer Genome Atlas (TCGA). Differentially expressed and metastasis associated RNAs were identified for functional analysis and constructing the metastasis associated ceRNA network by comprehensively bioinformatic analysis. The Kaplan-Meier (K-M) survival curve was utilized to screen the prognostic RNAs in metastasis associated ceRNA network. Moreover, we further identified the metastasis associated biomarkers with operating characteristic (ROC) curve. Ultimately, the data of Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.org/ccle) website were selected to obtained the reliable metastasis associated biomarkers. Results 1005 mRNAs, 22 miRNAs and 164 lncRNAs were screened as differentially expressed and metastasis associated RNAs. The results of GO function and KEGG pathway enrichment analysis showed that these RNAs are mainly associated with the metabolic processes and stress responses. Next, a metastasis associated ceRNA (including 104 mRNAs, 19 miRNAs, and 16 lncRNAs) network was established, and 12 RNAs were found to be related to the overall survival (OS) of patients. In addition, 3 RNAs (hsa-miR-105-5p, BCAR1, and PANX2) were identified to serve as reliable metastasis associated biomarkers. Eventually, the results of mechanism analysis suggested that BCAR1 might promote the metastasis of breast cancer by facilitating Rap 1 signaling pathway. Conclusion In the present research, we identified 3 RNAs (hsa-miR-105-5p, BCAR1 and PANX2) might associated with prognosis and metastasis of breast cancer, which might be provide a new perspective for metastasis of breast cancer and contributed to the treatment of breast cancer.
Collapse
Affiliation(s)
- Da Qian
- College of Medicine, Soochow University, Soochow, China.,Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Burn and Plastic Surgery-Hand Surgery, First People's Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Soochow, China
| | - Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Danping Wu
- Department of Breast Surgery, First People's Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Soochow, China
| | - Buyun Ye
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyang Qian
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Tao Zhou
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jie Qiu
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
24
|
Kim SH, Lim KH, Yang S, Joo JY. Long non-coding RNAs in brain tumors: roles and potential as therapeutic targets. J Hematol Oncol 2021; 14:77. [PMID: 33980320 PMCID: PMC8114507 DOI: 10.1186/s13045-021-01088-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Brain tumors are associated with adverse outcomes despite improvements in radiation therapy, chemotherapy, and photodynamic therapy. However, treatment approaches are evolving, and new biological phenomena are being explored to identify the appropriate treatment of brain tumors. Long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, regulate gene expression at the transcriptional, post-transcriptional, and epigenetic levels and are involved in a variety of biological functions. Recent studies on lncRNAs have revealed their aberrant expression in various cancers, with distinct expression patterns associated with their instrumental roles in cancer. Abnormal expression of lncRNAs has also been identified in brain tumors. Here, we review the potential roles of lncRNAs and their biological functions in the context of brain tumors. We also summarize the current understanding of the molecular mechanisms and signaling pathways related to lncRNAs that may guide clinical trials for brain tumor therapy.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Key-Hwan Lim
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sumin Yang
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jae-Yeol Joo
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| |
Collapse
|
25
|
Wang M, Xu T, Feng W, Liu J, Wang Z. Advances in Understanding the LncRNA-Mediated Regulation of the Hippo Pathway in Cancer. Onco Targets Ther 2021; 14:2397-2415. [PMID: 33854336 PMCID: PMC8039192 DOI: 10.2147/ott.s283157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA molecules that are longer than 200 nucleotides and cannot encode proteins. Over the past decade, lncRNAs have been defined as regulatory elements of multiple biological processes, and their aberrant expression contributes to the development and progression of various malignancies. Recent studies have shown that lncRNAs are involved in key cancer-related signaling pathways, including the Hippo signaling pathway, which plays a prominent role in controlling organ size and tissue homeostasis by regulating cell proliferation, apoptosis, and differentiation. However, dysregulation of this pathway is associated with pathological conditions, especially cancer. Accumulating evidence has revealed that lncRNAs can modulate the Hippo signaling pathway in cancer. In this review, we elaborate on the role of the Hippo signaling pathway and the advances in the understanding of its lncRNA-mediated regulation in cancer. This review provides additional insight into carcinogenesis and will be of great clinical value for developing novel early detection and treatment strategies for this deadly disease.
Collapse
Affiliation(s)
- Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenyan Feng
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junxia Liu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
26
|
Liu J, Li Y, Zhang Q, Lv C, Wang M, Jiao Y, Wang C. PVT1 Expression Is a Predictor for Poor Survival of Prostate Cancer Patients. Technol Cancer Res Treat 2021; 20:1533033820971610. [PMID: 33752525 PMCID: PMC8093616 DOI: 10.1177/1533033820971610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: Dysregulation of long noncoding RNA is associated with a variety of cancers
and LncRNA has anticancer or carcinogenic activities. PVT1, as a long
noncoding RNA, plays an important role in the development of cancer. Methods: We use R to download and analyze the data in TCGA database. ROC curve is
generated to evaluate the significance of PVT1 expression for the diagnosis
of prostate cancer. Chi-square test is used to test correlation between PVT1
expression and clinical pathological features. Survival curve and univariate
and multivariate cox regression analysis is performed to compare differences
in the effect on the survival rate between PVT1 high expression and low
expression. Results: The expression of PTV1 in tumor tissues was significantly higher than that in
normal tissues(P<2.2e-16). The difference of PTV1 expression was observed
according to vital status (P = 0.0051) and Gleason score (P = 0.0012). The
expression of PTV1 is significantly associated with T classification (P <
0.0001), N classification (P = 0.0499), PSA (P = 0.0001), Gleason Score (P
< 0.0001), targeted molecular therapy (P = 0.0264) and vital status(P =
0.0036). The area under the ROC curve (AUC) was 0.860, which revealed PTV1
expression has excellent diagnostic value in prostate cancer. Patients with
high PVT1 expression had a worse prognosis. Conclusions: PVT1 expression may be a biomarker for the diagnosis and prognosis of
prostate cancer.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Urology, 117971The First Hospital of Jilin University, Changchun, China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, 12510Jilin University, Changchun, China
| | - Qiqi Zhang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, 47821Northeast Normal University, Changchun, Jilin, China
| | - Chaoxiang Lv
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, 47821Northeast Normal University, Changchun, Jilin, China
| | - Mingwei Wang
- Ministry of Health Key Laboratory of Radiobiology, 220738School of Public Health of Jilin University, Changchun, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, 117971The First Hospital of Jilin University, Changchun, China
| | - Chunxi Wang
- Department of Urology, 117971The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
CircRNA GFRA1 promotes hepatocellular carcinoma progression by modulating the miR-498/NAP1L3 axis. Sci Rep 2021; 11:386. [PMID: 33431945 PMCID: PMC7801409 DOI: 10.1038/s41598-020-79321-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Circular RNAs (circRNAs) play essential roles in tumorigenesis and tumor progression. CircRNA GFRA1 (circGFRA1) was dysregulated in many cancer samples and acted as an independent marker for prediction of survivals in various cancer patients. However, the functions and molecular mechanisms of circGFRA1 in hepatocellular carcinoma (HCC) remain unclear. We collected 62 HCC tissues and normal adjacent tissues to evaluate the expression of circGFRA1 and the relationship between circGFRA1 expression and HCC patients' survival. We carried out a list of characterization experiments to investigate the roles and underling mechanisms of circGFRA1 and miR-498 in HCC progressions. CircGFRA1 was greatly increased in HCC tissues and cells, and the over-expression of circGFRA1 was intimately related with the advanced clinical stage and poor survival of HCC patients. The expression of circGFRA1 was negatively correlated with the expression of miR-498, but a positive correlation was found between circGFRA1 and NAP1L3 expression in HCC tissues. Silencing circGFRA1 inhibited the growth and invasion of hepatocellular carcinoma. Moreover, miR-498 over-expression or NAP1L3 inhibition could abrogate the oncogene role of circGFRA1 in HCC in vivo. Our findings indicated that circGFRA1 contributed to HCC progression by modulating the miR-498/NAP1L3 axis in HCC.
Collapse
|
28
|
Yuan D, Chen Y, Li X, Li J, Zhao Y, Shen J, Du F, Kaboli PJ, Li M, Wu X, Ji H, Cho CH, Wen Q, Li W, Xiao Z, Chen B. Long Non-Coding RNAs: Potential Biomarkers and Targets for Hepatocellular Carcinoma Therapy and Diagnosis. Int J Biol Sci 2021; 17:220-235. [PMID: 33390845 PMCID: PMC7757045 DOI: 10.7150/ijbs.50730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Increasing studies showed that long non-coding RNAs (lncRNAs), a novel class of RNAs that are greater than 200 nucleotides in length but lack the ability to encode proteins, exert crucial roles in the occurrence and progression of HCC. LncRNAs promote the proliferation, migration, invasion, autophagy, and apoptosis of tumor cells by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can be used as biomarkers to predict the efficacy of HCC treatment strategies, such as surgery, radiotherapy, chemotherapy, and immunotherapy, and as a potential individualized tool for HCC diagnosis and treatment. In this review, we overview up-to-date findings on lncRNAs as potential biomarkers for HCC surgery, radiotherapy, chemotherapy resistance, target therapy, and immunotherapy, and discuss the potential clinical application of lncRNA as tools for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Donghong Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qinglian Wen
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Bo Chen
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
29
|
Biomarkers in Hepatocellular Carcinoma: Current Status and Future Perspectives. Biomedicines 2020; 8:biomedicines8120576. [PMID: 33297335 PMCID: PMC7762241 DOI: 10.3390/biomedicines8120576] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and one of the leading causes of cancer-related death worldwide. HCC is highly heterogeneous, both within the tumor and among individuals, which is closely related to the HCC surveillance, diagnosis, prognosis, and treatment response. With the advances of next-generation sequencing, the genomic landscape of HCC has been identified which vastly improves our understanding of genetic and epigenetic changes and their interaction during HCC development. In particular, gene mutations, epigenetic modifications, aberrant expression of coding and non-coding RNAs have been extensively explored and many of them are considered as biomarkers for HCC. Most recently, the gut microbiome has been proposed as potential non-invasive biomarkers for HCC diagnosis. In this review, we summarize the current development of HCC biomarkers studies and provide insights on further steps towards precision medicine of HCC.
Collapse
|
30
|
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The central dogma of molecular biology states that the functions of RNA revolve around protein translation. Until the last decade, most researches were geared towards characterization of RNAs as intermediaries in protein translation, namely, messenger RNAs (mRNAs) as temporary copies of genetic information, ribosomal RNAs (rRNAs) as a main component of ribosome, or translators of codon sequence (tRNAs). The statistical reality, however, is that these processes account for less than 2% of the genome, and insufficiently explain the functionality of 98% of transcribed RNAs. Recent discoveries have unveiled thousands of unique non-coding RNAs (ncRNAs) and shifted the perception of them from being "junk" transcriptional products to "yet to be elucidated"-and potentially monumentally important-RNAs. Most ncRNAs are now known as key regulators in various networks in which they could lead to specific cellular responses and fates. In major cancers, ncRNAs have been identified as both oncogenic drivers and tumor suppressors, indicating a complex regulatory network among these ncRNAs. Herein, we provide a comprehensive review of the various ncRNAs and their functional roles in cancer, and the pre-clinical and clinical development of ncRNA-based therapeutics. A deeper understanding of ncRNAs could facilitate better design of personalized therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
31
|
Huang X, Sun L, Wen S, Deng D, Wan F, He X, Tian L, Liang L, Wei C, Gao K, Fu Q, Li Y, Jiang J, Zhai R, He M. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma. Cancer Sci 2020; 111:3338-3349. [PMID: 32506598 PMCID: PMC7469810 DOI: 10.1111/cas.14516] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomal long noncoding RNA (lncRNA) has been found to be associated with the development of cancers. However, the expression characteristics and the biological roles of exosomal lncRNAs in hepatocellular carcinoma (HCC) remain unknown. Here, by RNA sequencing, we found 9440 mRNAs and 8572 lncRNAs were differentially expressed (DE-) in plasma exosomes between HCC patients and healthy controls. Exosomal DE-lncRNAs displayed higher expression levels and tissue specificity, lower expression variability and splicing efficiency than DE-mRNAs. Six candidate DE-lncRNAs (fold change 6 or more, P ≤ .01) were high in HCC cells and cell exosomes. The knockdown of these candidate DE-lncRNAs significantly affected the migration, proliferation, and apoptosis in HCC cells. In particular, a novel DE-lncRNA, RP11-85G21.1 (lnc85), promoted HCC cellular proliferation and migration by targeted binding and regulating of miR-324-5p. More importantly, the level of serum lnc85 was highly expressed in both Alpha-fetoprotein (AFP)-positive and AFP-negative HCC patients and allowed distinguishing AFP-negative HCC from healthy control and liver cirrhosis (area under the receiver operating characteristic curve, 0.869; sensitivity, 80.0%; specificity, 76.5%) with high accuracy. Our finding offers a new insight into the association between the dysregulation of exosomal lncRNA and HCC, suggesting that lnc85 could be a potential biomarker of HCC.
Collapse
Affiliation(s)
- Xuejing Huang
- School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Medical University Laboratory Animal CenterNanningChina
| | - Liyuan Sun
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Sha Wen
- Guangxi Medical University Laboratory Animal CenterNanningChina
| | - Deli Deng
- Department of Infectious DiseasesThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Fengjie Wan
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Xiao He
- School of Public HealthGuilin Medical UniversityGuilinChina
| | - Li Tian
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Lifang Liang
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Chunmeng Wei
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Kaiping Gao
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐ BioresourcesNanningChina
| | - Yasi Li
- School of Global Public HealthNew York UniversityNew YorkNYUSA
| | - Jianning Jiang
- Department of Infectious DiseasesThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rihong Zhai
- Guangdong Key laboratory for Genome Stability and Disease PreventionShenzhen University Health Science CentreShenzhenChina
- Carson Cancer CenterShenzhen UniversityShenzhenChina
| | - Min He
- School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Medical University Laboratory Animal CenterNanningChina
- Key Laboratory of High‐Incidence Tumor Prevention and Treatment (Guangxi Medical University)Ministry of EducationNanningChina
| |
Collapse
|
32
|
Kim SS, Baek GO, Ahn HR, Sung S, Seo CW, Cho HJ, Nam SW, Cheong JY, Eun JW. Serum small extracellular vesicle-derived LINC00853 as a novel diagnostic marker for early hepatocellular carcinoma. Mol Oncol 2020; 14:2646-2659. [PMID: 32525601 PMCID: PMC7530776 DOI: 10.1002/1878-0261.12745] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to identify novel long noncoding RNA (lncRNA) biomarkers for hepatocellular carcinoma (HCC) using publicly available tissue genomic datasets and validate their diagnostic utility for early-stage HCC. Differentially expressed lncRNAs between 371 HCC and 50 nontumor tissues were obtained from The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA_LIHC) project. Subsequently, the expression of the serum- and extracellular vesicle (EV)-derived lncRNA was assessed in 10 patients with HCC and 10 healthy controls using RT-qPCR. The candidate lncRNAs were validated in 90 HCC and 92 non-HCC (29 healthy control, 28 chronic hepatitis, 35 liver cirrhosis) patients. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated for the candidate lncRNAs and the current HCC biomarker, alpha-fetoprotein (AFP). SFTA1P, HOTTIP, HAGLROS, LINC01419, HAGLR, CRNDE, and LINC00853 were markedly upregulated in HCC in TCGA_LIHC dataset. Among them, LINC00853 has not been reported in relation to HCC before. In patients with HCC, only expression of small EV-derived LINC00853 (EV-LINC00853) was increased. EV-LINC00853 showed excellent discriminatory ability in the diagnosis of all-stage HCC (AUC = 0.934, 95% confidence interval = 0.887-0.966). Moreover, using a 14-fold increase and 20 ng·mL-1 as cutoffs for EV-LINC00853 expression and AFP level, respectively, EV-LINC00853 was found to have a sensitivity of 93.75% and specificity of 89.77%, while AFP showed only 9.38% sensitivity and 72.73% specificity for the diagnosis of early-stage HCC (mUICC stage I). EV-LINC00853 had a positivity of 97% and 67% in AFP-negative and AFP-positive early HCC, respectively. Serum EV-derived LINC00853 may be a novel potential diagnostic biomarker for early HCC, especially for AFP-negative HCC.
Collapse
Affiliation(s)
- Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | - Hye Ri Ahn
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Suna Sung
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Chul Won Seo
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | - Suk Woo Nam
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, Graduate School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
33
|
Wu H, Wei M, Jiang X, Tan J, Xu W, Fan X, Zhang R, Ding C, Zhao F, Shao X, Zhang Z, Shi R, Zhang W, Wu G. lncRNA PVT1 Promotes Tumorigenesis of Colorectal Cancer by Stabilizing miR-16-5p and Interacting with the VEGFA/VEGFR1/AKT Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:438-450. [PMID: 32276209 PMCID: PMC7139143 DOI: 10.1016/j.omtn.2020.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 01/07/2023]
Abstract
Recently, the long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was reported to be involved in the pathogenesis of several cancers, including human colorectal cancer (CRC). However, the molecular basis for cancer initiation, development, and progression remains unclear. In this study, we observe that upregulated PVT1 is associated with poor prognosis and bad clinicopathological features of CRC patients. In vitro means of PVT1 loss in a CRC cell line inhibit cell proliferation, migration, and invasion. Furthermore, dual-luciferase reporter and RNA pull-down assays indicated that PVT1 binds to miR-16-5p, which has been shown to play strong tumor suppressive roles in CRC. Targeted loss of miR-16-5p partially rescues the suppressive effect induced by PVT1 knockdown. Vascular endothelial growth factor A (VEGFA), a direct downstream target of miR-16-5p, was suppressed by PVT1 knockdown in CRC cells. Overexpression of VEGFA is known to modulate the AKT signaling cascade by activating vascular endothelial growth factor receptor 1 (VEGFR1). We, therefore, show that PVT1 loss combined with miR-16-5p overexpression reduces tumor volume maximally when propagated within a mouse xenograft model. We conclude that the PVT1-miR-16-5p/VEGFA/VEGFR1/AKT axis directly coordinates the response in CRC pathogenesis and suggest PVT1 as a novel target for potential CRC therapy.
Collapse
Affiliation(s)
- Hailu Wu
- Medical School of Southeast University, Nanjing 210009, People's Republic of China; Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Ming Wei
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Xinglu Jiang
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Jiacheng Tan
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Wei Xu
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Rui Zhang
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Chenbo Ding
- Medical School of Southeast University, Nanjing 210009, People's Republic of China
| | - Fengfeng Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiangyu Shao
- Department of Gastrointestinal Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Zhigang Zhang
- Medical School of Southeast University, Nanjing 210009, People's Republic of China; Department of Gastrointestinal Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Ruihua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
34
|
Unfried JP, Fortes P. LncRNAs in HCV Infection and HCV-Related Liver Disease. Int J Mol Sci 2020; 21:ijms21062255. [PMID: 32214045 PMCID: PMC7139329 DOI: 10.3390/ijms21062255] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with poor coding capacity that may interact with proteins, DNA, or other RNAs to perform structural and regulatory functions. The lncRNA transcriptome changes significantly in most diseases, including cancer and viral infections. In this review, we summarize the functional implications of lncRNA-deregulation after infection with hepatitis C virus (HCV). HCV leads to chronic infection in many patients that may progress to liver cirrhosis and hepatocellular carcinoma (HCC). Most lncRNAs deregulated in infected cells that have been described function to potentiate or block the antiviral response and, therefore, they have a great impact on HCV viral replication. In addition, several lncRNAs upregulated by the infection contribute to viral release. Finally, many lncRNAs have been described as deregulated in HCV-related HCC that function to enhance cell survival, proliferation, and tumor progression by different mechanisms. Interestingly, some HCV-related HCC lncRNAs can be detected in bodily fluids, and there is great hope that they could be used as biomarkers to predict cancer initiation, progression, tumor burden, response to treatment, resistance to therapy, or tumor recurrence. Finally, there is high confidence that lncRNAs could also be used to improve the suboptimal long-term outcomes of current HCC treatment options.
Collapse
Affiliation(s)
| | - P. Fortes
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
35
|
Qi M, Yu B, Yu H, Li F. Integrated analysis of a ceRNA network reveals potential prognostic lncRNAs in gastric cancer. Cancer Med 2020; 9:1798-1817. [PMID: 31923354 PMCID: PMC7050084 DOI: 10.1002/cam4.2760] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have important biological functions as competing endogenous RNAs (ceRNAs) in tumors, yet the functions and regulatory mechanisms of lncRNA-related ceRNAs in gastric cancer have not been fully elucidated. In this study, we constructed a lncRNA-miRNA-mRNA ceRNA network and identified potential lncRNA biomarkers in gastric cancer. Basing on the RNA profiles downloaded from The Cancer Genome Atlas (TCGA) platform, the gastric cancer-specific differentially expressed lncRNAs, miRNAs, and mRNAs were screened for constructing a ceRNA network using bioinformatic tools. The enrichment analysis of the biological processes in Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathways was performed on the ceRNA-related DEmRNAs. According to the modularization of protein-protein interaction (PPI) network, we extracted a ceRNA subnetwork and analyzed the correlation between the expression of the lncRNAs involved and specific clinical features of patients. Next, the expression of highly up-regulated in liver cancer (HULC) and RP11-314B1.2 showed significant changes in several pathological processes involved in gastric cancer, and nine lncRNAs were found to be correlated with the overall survival of patients with gastric cancer. Through the univariate and multivariate Cox regression analyses, two lncRNAs (LINC00106 and RP11-999E24.3) were identified and utilized to establish a risk score model for assessing the prognosis of patients. The analysis results were also partially verified using quantitative real-time PCR. The findings from this study indicate that HULC, RP11-314B1.2, LINC00106, and RP11-999E24.3 could be considered as potential therapeutic targets or prognostic biomarkers in gastric cancer, and provide a new perspective for cancer pathogenesis research.
Collapse
Affiliation(s)
- Mingran Qi
- Department of PathogenobiologyThe Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchunJilinChina
| | - Bingxin Yu
- Department of UltrasoundChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Huiyuan Yu
- School of Public HealthJilin UniversityChangchunJilinChina
| | - Fan Li
- Department of PathogenobiologyThe Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchunJilinChina
- The Key Laboratory for Bionics EngineeringMinistry of EducationJilin UniversityChinaChangchunJilinChina
- Engineering Research Center for Medical Biomaterials of Jilin ProvinceJilin UniversityChangchunJilinChina
- Key Laboratory for Biomedical Materials of Jilin ProvinceJilin UniversityChangchunJilinChina
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaXinjiangChina
| |
Collapse
|
36
|
Song M, Wang X, Luo Y, Liu Z, Tan W, Ye P, Fu Z, Lu F, Xiang W, Tang L, Yao L, Nie Y, Xiao J. Cantharidin suppresses gastric cancer cell migration/invasion by inhibiting the PI3K/Akt signaling pathway via CCAT1. Chem Biol Interact 2020; 317:108939. [PMID: 31945315 DOI: 10.1016/j.cbi.2020.108939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Abstract
Cantharidin (CTD) is a traditional Chinese medicine that shows an anticancer effects in multiple types of cancer cells. However, the mechanism of CTD anti-cancer function in gastric cancer (GC) is still unclear. The aim of the present study was to investigate the underlying mechanism that CTD inhibits proliferation and migration through suppression of the PI3K/Akt signaling. CTD induced GC cell apoptosis and inhibited metastasis measured by CCK8 assays as well as wound healing assays and transwell assays. Mechanistic investigations suggested that CTD modulated the PI3K/Akt signaling via western-blot and quantitative q-PCR. In addition, we identified and confirmed CCAT1 as a novel direct target of CTD inhibited PI3K/AKt signaling expression. In conclusion, our results provide new point into the critical role of CTD in suppressing PI3K/Akt signaling via down-regulation of CCAT1, resulting in suppression GC cell growth and migration/invasion.
Collapse
Affiliation(s)
- Mengyun Song
- The Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China; Nankai University, School of Medicine, Tianjin, People's Republic of China
| | - Xianfei Wang
- The Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yajun Luo
- The Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zilin Liu
- The Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Wang Tan
- The Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Pengcheng Ye
- The Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zhiming Fu
- The Department of Gastrointestinal Surgery 1, Hainan general hospital, Haikou, Hainan, People's Republic of China
| | - Fei Lu
- The Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Wanping Xiang
- The Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Linghan Tang
- The Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Lin Yao
- The Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yuqiang Nie
- The Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, People's Republic of China
| | - Jiangwei Xiao
- The Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
37
|
Umemori M, Kurata M, Yamamoto A, Yamamoto K, Ishibashi S, Ikeda M, Tashiro K, Kimura T, Sato S, Takahashi H, Kitagawa M. The expression of MYC is strongly dependent on the circular PVT1 expression in pure Gleason pattern 4 of prostatic cancer. Med Mol Morphol 2020; 53:156-167. [PMID: 31932969 DOI: 10.1007/s00795-020-00243-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022]
Abstract
PVT1 is a long-noncoding RNA and is highly expressed in various cancers including prostate cancers with stabilizing MYC protein. To characterize the objective biological features of the different morphological components such as Gleason patterns (GP) in prostate cancer, biopsy specimens containing only single pure GP (GP3, GP4, GP5) are used to analyze the relationship between PVT1 expression and MYC protein expression. The expressions of PVT1 and MYC were analyzed by quantitative PCR and the labeling index (LI) of MYC protein by immunohistochemical staining. PVT1, MYC, and MYC protein were highly expressed in GP 4, and interestingly the expression between PVT1 and MYC LI significantly correlated only in GP 4. In vitro experiments, the expression of MYC protein was slightly reduced by small interfering RNA against PVT1, while strongly reduced against specifically circular PVT1, splicing variants derived from the PVT1. Taken together, the expression characteristics of PVT1, MYC, and MYC protein differed depending on the GP. In particular, circular PVT1 might be strongly involved in the stabilization of MYC protein in GP4 and suggest different biological features.
Collapse
Affiliation(s)
- Miyaka Umemori
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Pathology, The Jikei University Hospital, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Akiko Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kojiro Tashiro
- Department of Urology, The Jikei University Hospital, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University Hospital, Tokyo, Japan
| | - Shun Sato
- Department of Pathology, The Jikei University Hospital, Tokyo, Japan
| | | | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
38
|
Sun J, Zhang P, Yin T, Zhang F, Wang W. Upregulation of LncRNA PVT1 Facilitates Pancreatic Ductal Adenocarcinoma Cell Progression and Glycolysis by Regulating MiR-519d-3p and HIF-1A. J Cancer 2020; 11:2572-2579. [PMID: 32201527 PMCID: PMC7066006 DOI: 10.7150/jca.37959] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
The long, noncoding RNA (lncRNA) PVT1, as an important epigenetic regulator, has a critical role in carcinogenesis. However, its role in pancreatic ductal adenocarcinoma (PDAC) has not been fully investigated. Here, the up-regulated expression of lncRNA PVT1 is found in our PDAC tumor samples. Knockdown of it suppressed PDCA cells growth and glycolysis. An inverse association between miR-519d-3p and PVT1 was found. RIP, RNA pulldown and luciferase assay showed that PVT1 directly targets miR-519d-3p by binding with microRNA binding site. Bioinformatics analysis and study indicated that HIF-1A is a target of miR-519d-3p. Collectively, our findings suggested that PVT1 could act as an oncogenic lncRNA, and promote tumor progression by regulating HIF-1A via competing with miR-519d-3p.
Collapse
Affiliation(s)
- Junwei Sun
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
| | - Pingping Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Affiliated Hubei Cancer Hospital of Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, Hubei 430079, China
| | - Tao Yin
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Affiliated Hubei Cancer Hospital of Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, Hubei 430079, China
| | - Feng Zhang
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Affiliated Hubei Cancer Hospital of Huazhong University of Science and Technology, 116 Zhuodaoquan South Road, Wuhan, Hubei 430079, China
| | - Weixing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei 430060, China
- ✉ Corresponding author: Weixing Wang (e-mail: )
| |
Collapse
|
39
|
Qiu C, Li S, Sun D, Yang S. lncRNA PVT1 accelerates progression of non-small cell lung cancer via targeting miRNA-526b/EZH2 regulatory loop. Oncol Lett 2019; 19:1267-1272. [PMID: 32002028 PMCID: PMC6960390 DOI: 10.3892/ol.2019.11237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Biological function of plasmacytoma variant translocation 1 (PVT1) in influencing the progression of non-small cell lung cancer (NSCLC) through Micro ribonucleic acid (miRNA)-526b/EZH2 regulatory loop was elucidated. Relative levels of PVT1 and miRNA-526b in NSCLC tissues were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Prognostic potential of PVT1 in NSCLC was assessed by Kaplan-Meier curves. The interaction among PVT1/miRNA-526b/EZH2 regulatory loop was confirmed by dual-luciferase reporter gene assay. Regulatory effects of PVT1/miRNA-526b/EZH2 axis on viability and wound closure of A549 cells were evaluated by cell counting kit-8 (CCK-8) and wound closure assay, respectively. PVT1 was upregulated in NSCLC tissues, while miRNA-526b was downregulated. PVT1 level was negatively related to that of miR-526 in NSCLC tissues. Worse survival was seen in NSCLC patients expressing high level of PVT1 compared to those with low level. Knockdown of PVT1 attenuated viability and wound closure ability in A549 cells, which were partially reversed after miRNA-526b knockdown. miRNA-526b is the downstream target of PVT1 and its level was negatively regulated by PVT1. EZH2 is the target gene of miRNA-526b. Transfection of miRNA-526b mimic remarkably downregulated EZH2 in A549 cells. Importantly, the attenuated viability and wound closure ability in A549 cells overexpressing miRNA-526b were reversed after EZH2 overexpression. PVT1 is upregulated in NSCLC, and predicts a poor prognosis. PVT1 accelerates the progression of NSCLC via targeting miRNA-526b/EZH2 regulatory loop.
Collapse
Affiliation(s)
- Chun Qiu
- Department of Medical Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 570311, P.R. China
| | - Sai Li
- Department of Medical Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 570311, P.R. China
| | - Datong Sun
- Department of Medical Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 570311, P.R. China
| | - Shenghui Yang
- Department of Medical Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
40
|
Pal G, Huaman J, Levine F, Orunmuyi A, Olapade-Olaopa EO, Onagoruwa OT, Ogunwobi OO. Long Noncoding RNA from PVT1 Exon 9 Is Overexpressed in Prostate Cancer and Induces Malignant Transformation and Castration Resistance in Prostate Epithelial Cells. Genes (Basel) 2019; 10:E964. [PMID: 31766781 PMCID: PMC6969942 DOI: 10.3390/genes10120964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is the most common non-cutaneous cancer and second leading cause of cancer-related death for men in the United States. The nonprotein coding gene locus plasmacytoma variant translocation 1 (PVT1) is located at 8q24 and is dysregulated in different cancers. PVT1 gives rise to several alternatively spliced transcripts and microRNAs. There are at least twelve exons of PVT1, which make separate transcripts, and likely have different functions. Here, we demonstrate that PVT1 exon 9 is significantly overexpressed in PCa tissues in comparison to normal prostate tissues. Both transient and stable overexpression of PVT1 exon 9 significantly induced greater prostate epithelial cell migration, as well as increased proliferation and corresponding proliferating cell nuclear antigen (PCNA) expression. Notably, implantation into mice of a non-tumorigenic prostate epithelial cell line stably overexpressing PVT1 exon 9 resulted in the formation of malignant tumors. Furthermore, PVT1 exon 9 overexpression significantly induced castration resistance. Consequently, PVT1 exon 9 expression is important for PCa initiation and progression, and holds promise as a therapeutic target in PCa.
Collapse
Affiliation(s)
- Gargi Pal
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
| | - Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
| | - Fayola Levine
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
| | - Akintunde Orunmuyi
- Nuclear Medicine Department, College of Medicine, University of Ibadan, Ibadan 200222, Nigeria
| | | | - Onayemi T. Onagoruwa
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| |
Collapse
|
41
|
Guo Y, Bai M, Lin L, Huang J, An Y, Liang L, Liu Y, Huang W. LncRNA DLEU2 aggravates the progression of hepatocellular carcinoma through binding to EZH2. Biomed Pharmacother 2019; 118:109272. [DOI: 10.1016/j.biopha.2019.109272] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/27/2022] Open
|
42
|
Luo Z, Cao P. Long noncoding RNA PVT1 promotes hepatoblastoma cell proliferation through activating STAT3. Cancer Manag Res 2019; 11:8517-8527. [PMID: 31572006 PMCID: PMC6759231 DOI: 10.2147/cmar.s213707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
Background Hepatoblastoma is the most common liver malignancy in children. The long noncoding RNA (IncRNA) PVT1 plays oncogenic roles in human cancers; however, its regulation and function in hepatoblastoma remain poorly understood. Purpose This study was designed to investigate the regulation and function of PVT1 in hepatoblastoma. Methods PVT1 expression was compared between human hepatoblastoma tissues and adjacent non-tumor tissues, and then analyzed using Kaplan-Meier method. The proliferation of hepatoblastoma cells was determined by BrdU incorporation assay. The tumor xenograft model was used to assess tumor proliferation in vivo. The gene expression level was measured by qRT-pCR, Western blot and immunohistochemistry analyses. Results Compared with normal counterparts, PVT1 is upregulated in human hepatoblastoma tissues as well as in hepatoblastoma cell lines. Additionally, PVT1 promotes the proliferation of hepatoblastoma cells in vitro and accelerates tumor growth in xenograft model in vivo. Mechanistically, PVT1 promotes the activation of the signal transducer and activator of transcription 3 (STAT3), which leads to the transcriptional activation of downstream targets involved in cell cycle progression, and moreover,STAT3 inhibition with the selective inhibitor stattic abolishes PVT1 pro-proliferative role in hepatoblastoma cells. Conclusion PVT1 promotes hepatoblastoma cell proliferation through activating STAT3-induced cell cycle progression, which may implicate PVT1 as a potential therapeutic target for hepatoblastoma treatment.
Collapse
Affiliation(s)
- Zhenqin Luo
- Oncology Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Peiguo Cao
- Oncology Department, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
43
|
Ogunwobi OO, Kumar A. Chemoresistance Mediated by ceRNA Networks Associated With the PVT1 Locus. Front Oncol 2019; 9:834. [PMID: 31508377 PMCID: PMC6718704 DOI: 10.3389/fonc.2019.00834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Competitive endogenous RNA (ceRNA) networks have emerged as critical regulators of carcinogenesis. Their activity is mediated by various non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, which competitively bind to targets, thereby modulating gene expression and activity of proteins. Of particular interest, ncRNAs encoded by the 8q24 chromosomal region are associated with the development and progression of several human cancers, most prominently lncPVT1. Chemoresistance presents a significant obstacle in the treatment of cancer and is associated with dysregulation of normal cell processes, including abnormal proliferation, differentiation, and epithelial-mesenchymal transition. CeRNA networks have been shown to regulate these processes via both direct sponging/repression and epigenetic mechanisms. Here we present a review of recent literature examining the contribution of ncRNAs encoded by the PVT1 locus and their associated ceRNA networks to the development of resistance to common chemotherapeutic agents used to treat human cancers.
Collapse
Affiliation(s)
- Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Adithya Kumar
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| |
Collapse
|
44
|
The role of long noncoding RNA in major human disease. Bioorg Chem 2019; 92:103214. [PMID: 31499258 DOI: 10.1016/j.bioorg.2019.103214] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNAs whose transcripts are longer than 200nt in length and lack the ability to encode proteins due to lack of specific open reading frames. lncRNAs were once thought to represent transcriptome noise or garbage sequences and a byproduct of RNA polymerase II (Pol II), and thereby ignored by researchers. In fact, lncRNA was involved in a wide variety of physiological and pathological processes in organisms. Comprehensive study of lncRNA does not only provide explanations to the physiological and pathological processes of living organisms, but also gives us new perspectives to the diagnosis, prevention and treatment of some clinical diseases. Therefore, the study of lncRNA is a very broad field of great research value and significance. RESULTS This article reviews the function of lncRNAs and their role in major human diseases. CONCLUSIONS Numerous studies show that lncRNA might serve as a biomarker for diagnosis and prognosis of various diseases. Compared to conventional biomarkers, lncRNA seems to have a higher diagnostic and prognostic values, not only because of their tissue and disease specific expression patterns, but also due to their highly stable physical and chemical properties.
Collapse
|
45
|
Ghafouri-Fard S, Omrani MD, Taheri M. Long noncoding RNA PVT1: A highly dysregulated gene in malignancy. J Cell Physiol 2019; 235:818-835. [PMID: 31297833 DOI: 10.1002/jcp.29060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Recent studies have verified the contribution of several long noncoding RNAs (lncRNAs) in the carcinogenesis. Among the highly acknowledged lncRNAs is the human homolog of the plasmacytoma variant translocation gene, which is called PVT1. PVT1 resides near Myc oncogene and regulates the oncogenic process through modulation of several signaling pathways, such as TGF-β, Wnt/ β-catenin, PI3K/AKT, and mTOR pathways. This lncRNA has a circular form as well. Expression analyses and functional studies have appraised the oncogenic roles of PVT1 and circPVT1. Experiments in several cancer cell lines have shown that PVT1 silencing suppresses cancer cell proliferation, whereas its overexpression has the opposite effect. Its silencing has led to the accumulation of cells in the G0/G1 phase and diminished the number of cells in the S phase. Moreover, genome-wide association studies have signified the role of single nucleotide polymorphisms of this lncRNA in conferring risk of lymphoma in different populations. In the current study, we have summarized recent data about the role of PVT1 and circPVT1 in the carcinogenesis process.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Xuan W, Yu H, Zhang X, Song D. Crosstalk between the lncRNA UCA1 and microRNAs in cancer. FEBS Lett 2019; 593:1901-1914. [PMID: 31166011 DOI: 10.1002/1873-3468.13470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a major subset of highly conserved non-coding RNAs (ncRNAs) that consist of at least 200 nucleotides and have limited protein-coding potential. Cumulative data have shown that lncRNAs are deregulated in many types of cancer and may control pathophysiological processes of cancer at various levels, including transcription, post-transcription and translation. Recently, lncRNAs have been demonstrated to interact with microRNAs (miRNAs), another major subset of ncRNAs, which regulate physiological and pathological processes by inhibiting target mRNA translation or promoting mRNA degradation. The lncRNA urothelial carcinoma-associated 1 (UCA1) has recently gained much attention as it is overexpressed in many types of cancer and is involved in carcinogenesis. Here, we review the crosstalk between UCA1 and miRNAs during the pathogenesis of cancer, with a focus on cancer-cell proliferation, invasion, drug resistance, and metabolism.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Hongyu Yu
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- The First Hospital and Institute of Immunology, Jilin University, Changchun, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Zou B, Wang D, Xu K, Liu JL, Yuan DY, Meng Z, Zhang B. Prognostic value of long non-coding RNA plasmacytoma variant translocation1 in human solid tumors: A meta-analysis. Medicine (Baltimore) 2019; 98:e16087. [PMID: 31277104 PMCID: PMC6635238 DOI: 10.1097/md.0000000000016087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoma variant translocation 1 (PVT1) is highly expressed in a variety of cancer tissues and is related to the clinicopathological features and prognosis. However, the prognostic value of PVT1 is still controversial. Therefore, this systematic evaluation and meta-analysis were performed to evaluate the relationship between PVT1 expression and clinicopathological features.PubMed, EMBASE, Web of science, and Cochrane library databases were searched for literature collection according to inclusion criteria and exclusion criteria. The pooled hazard ratios (HRs) or odds ratios (ORs) were used to evaluate the association between PVT1 expression and overall survival, tumor size, tumor-node-metastasis (TNM) stage, lymph node metastasis, and distant metastasis.A total of 39 articles including 3974 patients were included in the study. The results showed that the expression of PVT1 was closely related to the overall survival rate of cancers (HR = 1.64, 95% confidence interval [CI]: 1.50-1.78, P < .000001). Subgroup analysis showed that the high expression of PVT1 was closely related to the low overall survival rate of patients with clear cell renal cell carcinoma, breast cancer, cervical cancer, colon cancer, epithelial ovarian cancer, gastric cancer, lung cancer, and osteosarcoma. In addition, the high expression of PVT1 was positively correlated with tumor size (OR = 1.50, 95% CI: 1.14-1.96, P = .004), TNM stage (OR = 3.39, 95% CI: 2.73-4.20, P < .00001), lymph node metastasis (OR = 2.60, 95% CI: 1.76-3.84, P < .00001), and distant metastasis (OR = 2.94, 95% CI: 1.90-4.56, P < .00001).PVT1 could serve as a marker for the size, TNM stage, metastasis, and prognosis of different type of cancers.
Collapse
Affiliation(s)
- Bo Zou
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
| | - Dong Wang
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
| | - Kai Xu
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
- Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Jian-lin Liu
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
| | - Dao-ying Yuan
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
- Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Zhen Meng
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
- Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Bin Zhang
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Medical College of Liaocheng University
- Key Laboratory of Oral Maxillofacial-Head and Neck Medical Biology of Shandong Province
- Precision Biomedical Key Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|
48
|
Zheng C, Xiao Y, Li Y, He D. Knockdown of long non-coding RNA PVT1 inhibits the proliferation of Raji cells through cell cycle regulation. Oncol Lett 2019; 18:1225-1234. [PMID: 31423183 PMCID: PMC6607259 DOI: 10.3892/ol.2019.10450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA plasmacytoma variant translocation 1 (PVT1) has been reported to be associated with oncogenesis. However, the functional role of PVT1 in Burkitt lymphoma has not yet been addressed. The purpose of the present study was to investigate the effect of PVT1 knockdown by small interfering RNA (siRNA) on the proliferation of Burkitt lymphoma Raji cells and to explore its possible mechanism of action. An effective siRNA targeting PVT1 was screened and the corresponding short hairpin RNA (shRNA) was reconstructed into a lentiviral vector. Cell proliferation and cell cycle distribution were assessed by Cell Counting kit-8 assay and flow cytometry, respectively. Protein expression levels of c-Myc, cyclin-dependent kinase inhibitor1A (CDKN1A, P21) and cyclin E1 (CCNE1) were detected by western blotting. A polymerase chain reaction (PCR) array was used to analyse the expression of genes associated with the cell cycle. PVT1 knockdown markedly suppressed proliferation, and induced cell cycle arrest at the G0/G1 phase in Raji cells. Protein expression levels of c-Myc and CCNE1 were reduced, whereas P21 protein expression was markedly increased following downregulation of PVT1 in Raji cells. The cell cycle PCR array revealed that 54 genes were upregulated and 26 genes were downregulated in Raji cells following PVT1 knockdown. Reverse transcription-quantitative PCR demonstrated that cyclin G2 (CCNG2), CDKN1A, Retinoblastoma-like 2 (RBL2, p130), HUS1 checkpoint homolog, cyclin dependent kinase inhibitor 3 (CDKN3) and cyclin dependent kinase inhibitor 1B (CDKN1B) expression were upregulated, whereas the expression levels of CCNE1, cyclin D1 (CCND1) and cell division cycle 20 (CDC20) were downregulated in Raji cells with PVT1 knockdown. In conclusion, PVT1 knockdown may inhibit the proliferation of Raji cells by arresting cells in G0/G1 phase. Furthermore, inhibition of cell proliferation may be associated with a reduction inc-Myc expression and alterations in the expression levels of cell cycle-associated genes.
Collapse
Affiliation(s)
- Chanli Zheng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yu Xiao
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Key Laboratory for Regenerative Medicine of Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dongmei He
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
49
|
Han Y, Li X, He F, Yan J, Ma C, Zheng X, Zhang J, Zhang D, Meng C, Zhang Z, Ji X. Knockdown of lncRNA PVT1 Inhibits Glioma Progression by Regulating miR-424 Expression. Oncol Res 2019; 27:681-690. [PMID: 30832754 PMCID: PMC7848267 DOI: 10.3727/096504018x15424939990246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmacytoma variability translocation 1 (PVT1), an oncogene, has been reported to be highly expressed in many tumors, including human glioma, gastric cancer, and non-small cell lung cancer. Functionally, it could also regulate the development of tumor cells. However, its specific roles and pathogenesis in human gliomas are still not clear. This study investigated the function and mechanism of PVT1 knockdown in the proliferation and malignant transformation of human gliomas. We first examined the expression levels of PVT1 and miR-424 in human glioma tissues and cell lines. We also used gene manipulation techniques to explore the effects of PVT1 knockdown on cell viability, migration, invasion, and miR-424. We found that PVT1 knockdown effectively inhibited cell viability, migration, and invasion of human glioma cells and increased miR-424 expression. Based on the negative correlation between PVT1 and miR-424, we then confirmed the direct interaction between PVT1 and miR-424 using RNA immunoprecipitation (RIP) and luciferase reporter assays. Further, we established a xenograft nude mouse model to determine the role and mechanism of PVT1 on tumor growth in vivo. In addition, PVT1 knockdown was shown to promote miR-424 in vivo. In summary, the present study demonstrated that PVT1 knockdown could negatively regulate miR-424 to inhibit human glioma cell activity, migration, and invasiveness. PVT1 knockdown could negatively regulate miR-424 to inhibit cellular activity, migration, and invasiveness in human gliomas, which explained the oncogenic mechanism of PVT1 in human gliomas. It also suggested that PVT1 might be a novel therapeutic target for human gliomas.
Collapse
Affiliation(s)
- Yanjie Han
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Xinxin Li
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Fei He
- Department of Cardiothoracic Surgery, Huai-He Hospital, College of Medicine, Henan University, Kaifeng, Henan, P.R. China
| | - Jiliang Yan
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Chunyan Ma
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Xiaoli Zheng
- Hospital Infection Control Office, First Affiliated Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Jinli Zhang
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Donghui Zhang
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Cuiping Meng
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Zhen Zhang
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Xinying Ji
- Henan International Joint Laboratory of Nuclear Protein Regulation, Henan University College of Medicine, Kaifeng, Henan, P.R. China
| |
Collapse
|
50
|
Li S, Bian H, Cao Y, Juan C, Cao Q, Zhou G, Fang Y. Identification of novel lncRNAs involved in the pathogenesis of childhood acute lymphoblastic leukemia. Oncol Lett 2018; 17:2081-2090. [PMID: 30675275 PMCID: PMC6341812 DOI: 10.3892/ol.2018.9832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/08/2018] [Indexed: 12/13/2022] Open
Abstract
This study aimed to explore novel long non-coding RNAs (lncRNAs) and the underlying mechanisms involved in childhood acute lymphoblastic leukemia (cALL). The GSE67684 dataset was downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) and lncRNAs (DELs) between Days 0, 8, 15 and 33 were isolated using random variance model corrective analysis of variance. Overlapping DEGs and DELs were clustered using Cluster 3.0. Bio-functional enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Interactions between lncRNAs and mRNAs were calculated using dynamic simulations, and interactions among mRNAs were predicted using the STRING database. lncRNA-mRNA and protein-protein interaction (PPI) networks were visualized using Cytoscape. Subsequently, the expression levels of lncRNAs in biological samples from children with or without cALL were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 593 overlapping DEGs and 21 DELs were identified. After clustering, Profile 26 exhibited a continuously increasing temporal trend, whereas Profile 1 exhibited a continuous decreasing trend. Upregulated DEGs were significantly enriched in 1,825 GO terms and 166 KEGG pathways, whereas downregulated DEGs were significantly enriched in 196 GO terms and 90 KEGG pathways. The lncRNAs NONHSAT027612.2 and NONHSAT134556.2 were the top two regulators in the lncRNA-mRNA network. Toll-like receptor 4, cathepsin G, nucleotide-binding oligomerization domain containing 2 and cathepsin S may be considered the hub genes of the PPI network. RT-qPCR results indicated that the expression levels of the lncRNAs NONHSAT027612.2 and NONHSAT134556.2 were significantly elevated in the blood and bone marrow of patients with cALL compared with the controls. In conclusion, the lncRNAs NONHSAT027612.2 and NONHSAT134556.2 may serve important roles in the pathogenesis of cALL via regulating immune response-associated pathways.
Collapse
Affiliation(s)
- Sheng Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Pediatrics, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Hongliang Bian
- Department of Pediatrics, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Yizhi Cao
- The First Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenxia Juan
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongjun Fang
- Department of Hematology and Oncology, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|