1
|
Wang H, Hu J, Zhou W, Qian A. Metabolic reprogramming in the pathogenesis and progression of nasopharyngeal carcinoma: molecular mechanisms and therapeutic implications. Am J Cancer Res 2024; 14:4049-4064. [PMID: 39267663 PMCID: PMC11387871 DOI: 10.62347/vyat9271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique head and neck cancer with a complex etiology involving genetic predispositions, environmental factors, and Epstein-Barr virus (EBV) infection. Despite progress in radiotherapy and chemotherapy, the prognosis for advanced NPC is still unfavorable, prompting the need for innovative therapeutic approaches. Metabolic reprogramming plays a crucial role in the development and progression of NPC, marked by substantial changes in glycolysis, lipid, and amino acid metabolism. These alterations aid tumor cell proliferation, survival under stress, and immune evasion, with features such as enhanced aerobic glycolysis (Warburg effect) and shifts in lipid and amino acid pathways. Oncogenic drivers like MYC, RAS, EGFR, and the loss of tumor suppressors such as TP53 and PTEN, along with key signaling pathways including mTOR, AMPK, and HIF-1α, orchestrate these metabolic changes. This review discusses the molecular mechanisms of metabolic reprogramming in NPC and outlines potential therapeutic targets within these pathways. Advances in metabolic imaging and biomarker discovery are also enhancing the precision of diagnostics and treatment monitoring, fostering personalized medicine in NPC treatment. This manuscript aims to provide a detailed overview of the current research and its implications for improving NPC management and patient outcomes through targeted metabolic therapies.
Collapse
Affiliation(s)
- Hongli Wang
- Department of Otolaryngology, The Affiliated People's Hospital of Ningbo University Ningbo, Zhejiang, China
| | - Jiandao Hu
- Department of Otolaryngology, The Affiliated People's Hospital of Ningbo University Ningbo, Zhejiang, China
| | - Weibang Zhou
- Department of Otolaryngology, The Affiliated People's Hospital of Ningbo University Ningbo, Zhejiang, China
| | - Aijuan Qian
- Department of Otolaryngology, The Affiliated People's Hospital of Ningbo University Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Zargar S, Wani TA, Alamery S, Yaseen F. Olmutinib Reverses Thioacetamide-Induced Cell Cycle Gene Alterations in Mice Liver and Kidney Tissues, While Wheat Germ Treatment Exhibits Limited Efficacy at Gene Level. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:639. [PMID: 38674285 PMCID: PMC11052166 DOI: 10.3390/medicina60040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: TAA is potent hepatic/renal toxicant. Conversely, WGO is a potent dietary supplement with impressive antioxidant properties. Olmutinib is an apoptotic chemotherapy drug that does not harm the liver or kidney. This study investigated the impact of olmutinib and wheat germ oil (WGO) on Thioacetamide (TAA)-induced gene alterations in mice liver and kidney tissues. Materials and Methods: Adult male C57BL/6 mice were exposed to 0.3% TAA in drinking water for 14 days, followed by the oral administration of olmutinib (30 mg/kg) and WGO (1400 mg/kg) for 5 consecutive days. Treatment groups included the following: groups I (control), II (TAA-exposed), III (TAA + olmutinib), IV (TAA + WGO), and V (TAA + olmutinib + WGO). Results: The findings revealed that TAA exposure increased MKi67 and CDKN3 gene expression in liver and kidney tissues. Olmutinib treatment effectively reversed these TAA-induced effects, significantly restoring MKi67 and CDKN3 gene expression. WGO also reversed MKi67 effects in the liver but exhibited limited efficacy in reversing CDKN3 gene alterations induced by TAA exposures in both the liver and kidney. TAA exposure showed the tissue-specific expression of TP53, with decreased expression in the liver and increased expression in the kidney. Olmutinib effectively reversed these tissue-specific alterations in TP53 expression. While WGO treatment alone could not reverse the gene alterations induced by TAA exposure, the co-administration of olmutinib and WGO exhibited a remarkable potentiation of therapeutic effects in both the liver and kidney. The gene interaction analysis revealed 77.4% of physical interactions and co-localization between MKi67, CDKN3, and TP53 expressions. Protein-protein interaction networks also demonstrated physical interactions between MKi67, TP53, and CDKN3, forming complexes or signaling cascades. Conclusions: It was predicted that the increased expression of the MKi67 gene by TAA leads to the increase in TP53, which negatively regulates the cell cycle via increased CDKN3 expression in kidneys and the restoration of TP53 levels in the liver. These findings contribute to our understanding of the effects of olmutinib and WGO on TAA-induced gene expression changes and highlight their contrasting effects based on cell cycle alterations.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| | - Fatimah Yaseen
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.A.); (F.Y.)
| |
Collapse
|
3
|
Siak PY, Heng WS, Teoh SSH, Lwin YY, Cheah SC. Precision medicine in nasopharyngeal carcinoma: comprehensive review of past, present, and future prospect. J Transl Med 2023; 21:786. [PMID: 37932756 PMCID: PMC10629096 DOI: 10.1186/s12967-023-04673-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high propensity for lymphatic spread and distant metastasis. It is prominent as an endemic malignancy in Southern China and Southeast Asia regions. Studies on NPC pathogenesis mechanism in the past decades such as through Epstein Barr Virus (EBV) infection and oncogenic molecular aberrations have explored several potential targets for therapy and diagnosis. The EBV infection introduces oncoviral proteins that consequently hyperactivate many promitotic pathways and block cell-death inducers. EBV infection is so prevalent in NPC patients such that EBV serological tests were used to diagnose and screen NPC patients. On the other hand, as the downstream effectors of oncogenic mechanisms, the promitotic pathways can potentially be exploited therapeutically. With the apparent heterogeneity and distinct molecular aberrations of NPC tumor, the focus has turned into a more personalized treatment in NPC. Herein in this comprehensive review, we depict the current status of screening, diagnosis, treatment, and prevention in NPC. Subsequently, based on the limitations on those aspects, we look at their potential improvements in moving towards the path of precision medicine. The importance of recent advances on the key molecular aberration involved in pathogenesis of NPC for precision medicine progression has also been reported in the present review. Besides, the challenge and future outlook of NPC management will also be highlighted.
Collapse
Affiliation(s)
- Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Win Sen Heng
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Sharon Siew Hoon Teoh
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia
| | - Yu Yu Lwin
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Medicine, Mandalay, Myanmar
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, 71010, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
4
|
Yapindi L, Bowley T, Kurtaneck N, Bergeson RL, James K, Wilbourne J, Harrod CK, Hernandez BY, Emerling BM, Yates C, Harrod R. Activation of p53-regulated pro-survival signals and hypoxia-independent mitochondrial targeting of TIGAR by human papillomavirus E6 oncoproteins. Virology 2023; 585:1-20. [PMID: 37257253 PMCID: PMC10527176 DOI: 10.1016/j.virol.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
The high-risk subtype human papillomaviruses (hrHPVs) infect and oncogenically transform basal epidermal stem cells associated with the development of squamous-cell epithelial cancers. The viral E6 oncoprotein destabilizes the p53 tumor suppressor, inhibits p53 K120-acetylation by the Tat-interacting protein of 60 kDa (TIP60, or Kat5), and prevents p53-dependent apoptosis. Intriguingly, the p53 gene is infrequently mutated in HPV + cervical cancer clinical isolates which suggests a possible paradoxical role for this gatekeeper in viral carcinogenesis. Here, we demonstrate that E6 activates the TP53-induced glycolysis and apoptosis regulator (TIGAR) and protects cells against oncogene-induced oxidative genotoxicity. The E6 oncoprotein induces a Warburg-like stress response and activates PI3K/PI5P4K/AKT-signaling that phosphorylates the TIGAR on serine residues and induces its hypoxia-independent mitochondrial targeting in hrHPV-transformed cells. Primary HPV + cervical cancer tissues contain high levels of TIGAR, p53, and c-Myc and our xenograft studies have further shown that lentiviral-siRNA-knockdown of TIGAR expression inhibits hrHPV-induced tumorigenesis in vivo. These findings suggest the modulation of p53 pro-survival signals and the antioxidant functions of TIGAR could have key ancillary roles during HPV carcinogenesis.
Collapse
Affiliation(s)
- Lacin Yapindi
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Tetiana Bowley
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Nick Kurtaneck
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Rachel L Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Kylie James
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Jillian Wilbourne
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Carolyn K Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States
| | - Brenda Y Hernandez
- Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu, HI, 96813, United States
| | | | - Courtney Yates
- Laboratory Animal Resource Center, Southern Methodist University, Dallas, TX, 75275, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences and the Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX, 75275-0376, United States.
| |
Collapse
|
5
|
Khot M, Sood A, Pushpa Tryphena K, Pinjala P, Srivastava S, Bala Singh S, Kumar Khatri D. Dimethyl fumarate ameliorates Parkinsonian pathology by modulating autophagy and apoptosis via Nrf2-TIGAR-LAMP2/Cathepsin D axis. Brain Res 2023; 1815:148462. [PMID: 37315723 DOI: 10.1016/j.brainres.2023.148462] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Mounting evidence suggests a role for oxidative stress and accumulation of dysfunctional organelle and misfolded proteins in PD. Autophagosomes mediate the clearance of these cytoplasmic proteins via delivery to lysosomes to form autophagolysosomes, followed by degradation of the protein by lysosomal enzymes. In PD, autophagolysosome accumulation occurs initiating a plethora of events resulting in neuronal death by apoptosis. This study evaluated the effect of Dimethylfumarate (DMF), an Nrf2 activator in the rotenone-induced mouse PD model. In PD mice, there was decreased expression of LAMP2 and LC3, which resulted in inhibition of autophagic flux and increased expression of cathepsin D, which mediated apoptosis. The role of Nrf2 activation in alleviating oxidative stress is well known. Our study elucidated the novel mechanism underlying the neuroprotective effect of DMF. The loss of dopaminergic neurons induced by rotenone was lessened to a significant extent by pre-treatment with DMF. DMF promoted autophagosome formation and inhibited apoptosis by removing the inhibitory effect of p53 on TIGAR. TIGAR expression upregulated LAMP2 expression and downregulated Cathepsin D, promoting autophagy and inhibiting apoptosis. Thus, it was proved that DMF confers neuroprotection against rotenone-induced dopaminergic neurodegeneration and could be used as a potential therapeutic agent for PD and its progression.
Collapse
Affiliation(s)
- Mayuri Khot
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Poojitha Pinjala
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, 500037, Telangana, India.
| |
Collapse
|
6
|
Lv S, Chen X, Chen Y, Gong D, Mao G, Shen C, Xia T, Cheng J, Luo Z, Cheng Y, Li W, Zeng J. Ginsenoside Rg3 induces apoptosis and inhibits proliferation by down-regulating TIGAR in rats with gastric precancerous lesions. BMC Complement Med Ther 2022; 22:188. [PMID: 35840932 PMCID: PMC9284801 DOI: 10.1186/s12906-022-03669-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/06/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ginsenoside Rg3 (GRg3) is one of the main active ingredients in Chinese ginseng extract and has various biological effects, such as immune-enhancing, antitumour, antiangiogenic, immunomodulatory and anti-inflammatory effects. This study aimed to investigate the therapeutic effect of GRg3 on gastric precancerous lesion (GPL) induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and the potential mechanism of action. METHODS The MNNG-ammonia composite modelling method was used to establish a rat model of GPL. Histopathological changes in the rat gastric mucosa were observed by pathological analysis using haematoxylin-eosin staining to assess the success rate of the composite modelling method. Alcian blue-periodic acid Schiff staining was used to observe intestinal metaplasia in the rat gastric mucosa. Apoptosis was detected in rat gastric mucosal cells by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling staining. The production level of reactive oxygen species (ROS) was determined by the dihydroethidium fluorescent probe method, and that of TP53-induced glycolysis and apoptosis regulator (TIGAR) protein was determined by immunohistochemical staining and western blotting. The production levels of nicotinamide adenine dinucleotide phosphate (NADP) and glucose-6-phosphate dehydrogenase (G6PDH) were determined by an enzyme-linked immunosorbent assay, and that of glutathione (GSH) was determined by microanalysis. RESULTS GRg3 significantly alleviated the structural disorganization and cellular heteromorphism in the form of epithelial glands in the gastric mucosa of rats with GPL and retarded the progression of the disease. Overexpression of TIGAR and overproduction of NADP, GSH and G6PDH occurred in the gastric mucosal epithelium of rats with GPL, which in turn led to an increase in the ROS concentration. After treatment with GRg3, the expression of TIGAR and production of NADP, GSH G6PDH decreased, causing a further increase in the concentration of ROS in the gastric mucosal epithelium, which in turn induced apoptosis and played a role in inhibiting the abnormal proliferation and differentiation of gastric mucosal epithelial cells. CONCLUSION Grg3 can induce apoptosis and inhibit cell proliferation in MNNG-induced GPL rats. The mechanism may be related to down-regulating the expression levels of TIGAR and production levels of GSH, NADP and G6PD, and up-regulating the concentration of ROS.
Collapse
Affiliation(s)
- Shangbin Lv
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaodong Chen
- Department of Gastrointestinal Surgery, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Mao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caifei Shen
- Digestive Endoscopy Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Cheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaoliang Luo
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Cheng
- Sichuan University West China Hospital Ganzi Hospital, Ganzi, China
| | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jinhao Zeng
- Department of Chinese Internal Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin 2021; 42:1547-1555. [PMID: 33510458 PMCID: PMC8463536 DOI: 10.1038/s41401-020-00588-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 02/02/2023] Open
Abstract
TIGAR (TP53-induced glycolysis and apoptosis regulator) is the downstream target gene of p53, contains a functional sequence similar to 6-phosphofructose kinase/fructose-2, 6-bisphosphatase (PFKFB) bisphosphatase domain. TIGAR is mainly located in the cytoplasm; in response to stress, TIGAR is translocated to nucleus and organelles, including mitochondria and endoplasmic reticulum to regulate cell function. P53 family members (p53, p63, and p73), some transcription factors (SP1 and CREB), and noncoding miRNAs (miR-144, miR-885-5p, and miR-101) regulate the transcription of TIGAR. TIGAR mainly functions as fructose-2,6-bisphosphatase to hydrolyze fructose-1,6-diphosphate and fructose-2,6-diphosphate to inhibit glycolysis. TIGAR in turn facilitates pentose phosphate pathway flux to produce nicotinamide adenine dinucleotide phosphate (NADPH) and ribose, thereby promoting DNA repair, and reducing intracellular reactive oxygen species. TIGAR thus maintains energy metabolism balance, regulates autophagy and stem cell differentiation, and promotes cell survival. Meanwhile, TIGAR also has a nonenzymatic function and can interact with retinoblastoma protein, protein kinase B, nuclear factor-kappa B, hexokinase 2, and ATP5A1 to mediate cell cycle arrest, inflammatory response, and mitochondrial protection. TIGAR might be a potential target for the prevention and treatment of cardiovascular and neurological diseases, as well as cancers.
Collapse
|
8
|
Song Y, Wang PY, Zheng Y, Liu C, Wang XM. Expression of TIGAR and its correlation with clinicopathology, prognosis, and 18F-FDG PET/CT parameters in patients with resectable pancreatic ductal adenocarcinoma. Nucl Med Commun 2021; 42:528-534. [PMID: 33481504 DOI: 10.1097/mnm.0000000000001366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the expression of TP53-inducible glycolysis and apoptosis regulator (TIGAR) and its relationship with clinical pathology and prognosis; and to analyze the correlation between TIGAR expression and 18F-labeled fluoro-2-deoxyglucose (18F-FDG) PET/computed tomography (CT) parameters in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS We retrospectively analyzed the data of 23 patients who underwent preoperative 18F-FDG PET/CT examinations and were confirmed to have PDAC by postoperative pathology. TIGAR was detected using immunohistochemistry. The relationships between TIGAR expression and clinicopathology and its value in predicting the prognosis of patients with PDAC were analyzed. The correlations between TIGAR expression and 18F-FDG PET/CT parameters [standard uptake value (SUV) max, SUVmean, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG)] were analyzed. RESULTS The expression of TIGAR was low in 34.8% of patients and high in 65.2% of patients. There was no correlation between TIGAR expression and clinicopathology. The overall survival of patients with high TIGAR expression was significantly shorter than that of patients with low TIGAR expression (11.2 vs. 35.4 months). The 18F-FDG PET/CT parameters: SUVmax, SUVmean, SUVpeak, MTV, and TLG were positively correlated with TIGAR expression, but only the MTV correlation with TIGAR expression was statistically significant. CONCLUSION TIGAR is highly expressed in PDAC. Its expression is independent of clinicopathological data and can be used as an independent prognostic factor. TIGAR expression was significantly positively correlated with the 18F-FDG PET/CT parameter MTV.
Collapse
Affiliation(s)
| | | | | | - Chang Liu
- Pathology, Shengjing hospital of China Medical University, Shenyang, China
| | | |
Collapse
|
9
|
Chandel V, Sharma PP, Nayar SA, Jha NK, Jha SK, Rathi B, Kumar D. In silico identification of potential inhibitor for TP53-induced glycolysis and apoptosis regulator in head and neck squamous cell carcinoma. 3 Biotech 2021; 11:117. [PMID: 33604233 DOI: 10.1007/s13205-021-02665-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the six most common cancer globally and most common cancer in men in India. The metabolic regulation is highly altered and is considered as a hall mark of HNSCC. TP53-induced glycolysis and apoptosis regulator (TIGAR) plays very important role in the development and progression of HNSCC. The aim of our study is to identify a novel FDA approved anticancer inhibitor against mutated TP53-induced glycolysis and apoptosis regulator (TIGAR) through drug repurposing approach. A library of 105 FDA approved anticancer compounds were screened using molecular docking approach against TIGAR (PDB: 3DCY) both Wild-Type (WT) and mutated (Mut). Specific mutations in TIGAR were identified using cBioPortal, a cancer genomics database and mutated structure was modelled using SWISS-MODEL. Out of 510 sequenced cases/patients samples, 17(3%) patients showed alteration in TIGAR [TIGARWT and TIGARMut (R88W)]. The virtual drug screening showed 45 drugs out of 105 high binding affinity with TIGAR, Trabectedin showed highest binding affinity with both TIGARWT (- 13.3 kcal/mol) as well as TIGARMut (R88W) (- 13.8 kcal/mol). The molecular docking studies were validated using molecular dynamics simulation (MD Simulation) of protein-ligand complex of TIGAR and Trabectedin for 100 ns. The MD Simulation of Trabectedin complex showed more stable with TIGARMut (R88W) compared to TIGARWT. Moreover, the string analysis revealed that metabolic-related genes, HK2, PFKFB1, PFKM, PFKP, PFKL, FBP1 are closely associated with TIGAR in HNSCC. Our findings suggest that Trabectedin can be proposed as an inhibitor for [TIGARMut (R88W)] which can be used to target metabolic signalings in HNSCC. However, further investigation and in vitro and in vivo validation our findings required to understand the molecular mechanisms of regulation of Trabectedin in HNSCC.
Collapse
|
10
|
Liu Z, Wu Y, Zhang Y, Yuan M, Li X, Gao J, Zhang S, Xing C, Qin H, Zhao H, Zhao Z. TIGAR Promotes Tumorigenesis and Protects Tumor Cells From Oxidative and Metabolic Stresses in Gastric Cancer. Front Oncol 2019; 9:1258. [PMID: 31799200 PMCID: PMC6878961 DOI: 10.3389/fonc.2019.01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer cells adopt glycolysis to facilitate the generation of biosynthetic substrates demanded by cell proliferation and growth, and to adapt to stress conditions such as excessive reactive oxygen species (ROS) accumulation. TIGAR (TP53-induced glycolysis and apoptosis regulator) is a fructose-2,6-bisphosphatase that is regulated by p53. TIGAR functions to inhibit glycolysis and promote antioxidative activities, which assists the generation of NADPH to maintain the levels of GSH and thus reduces intracellular ROS. However, the functions of TIGAR in gastric cancer (GC) remain unclear. TIGAR expression levels were detected by immunoblotting and immunohistochemistry in gastric cancer samples, along with four established cell lines of GC. The functions of TIGAR were determined by utilizing shRNA-mediated knockdown experiments. The NADPH/NADP+ ratio, ROS, mitochondrial ATP production, and phosphorus oxygen ratios were determined in TIGAR-depleted cells. Xenograft experiment was conducted with BALB/c nude mice. TIGAR was up-regulated compared with corresponding non-cancerous tissues in primary GCs. TIGAR knockdown significantly reduced cell proliferation and increased apoptosis. TIGAR protected cancer cells from oxidative stress-caused damages, but also glycolysis defects. TIGAR also increased the production of NADPH in gastric cancer cells. TIGAR knockdown led to increased ROS production, elevated mitochondrial ATP production, and phosphorus oxygen ratios. The prognosis of high TIGAR expression patients was significantly poorer than those with low TIGAR expression. Taken together, TIGAR exhibits oncogenic features in GC, which can be evaluated as a target for intervention in the treatment of GC.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Wu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Menglang Yuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuelu Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiyue Gao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shanni Zhang
- Department of Anesthesia, Dalian Maternal and Child Health Care Hospital, Dalian, China
| | - Chengjuan Xing
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongbo Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zuowei Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Tu C, Zeng Z, Qi P, Li X, Guo C, Xiong F, Xiang B, Zhou M, Liao Q, Yu J, Li Y, Li X, Li G, Xiong W. Identification of genomic alterations in nasopharyngeal carcinoma and nasopharyngeal carcinoma-derived Epstein-Barr virus by whole-genome sequencing. Carcinogenesis 2019; 39:1517-1528. [PMID: 30102338 DOI: 10.1093/carcin/bgy108] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common tumor in southern China with marked ethnic and geographic distributions and concomitant Epstein-Barr virus (EBV) infection. However, the molecular basis of NPC remains largely unknown, and the role of EBV genomic variations in the pathogenesis of NPC is unclear. Whole-genome sequencing of a collection of 12 EBV-positive paired NPC tumor/peripheral blood samples from Hunan Province was performed, and the FBXO11 gene was subjected to further functional analyses. We identified 69 missense mutations in signaling pathways typically altered in cancer, including NF-κB and Wnt/Hedgehog/Notch. Additionally, 122 variations were identified in non-coding regions. Among these, a subset of genes was confirmed as dysregulated in NPC by mining the NPC cDNA microarray database. The randomly selected gene, FBXO11, could promote the malignant progression of NPC in vitro. Full-length EBV genomes from 8 of the 12 patients with NPC were also successfully assembled, and latent EBV infection is a primary cause of NPC. The various subtypes of EBV detected exhibited clear correlations with its geographical distribution. This study has explored novel biological markers and tumorigenic pathways with substantial potential to enhance therapeutic strategies for NPC.
Collapse
Affiliation(s)
- Chaofeng Tu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Qi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Yu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Raffaele M, Pittalà V, Zingales V, Barbagallo I, Salerno L, Li Volti G, Romeo G, Carota G, Sorrenti V, Vanella L. Heme Oxygenase-1 Inhibition Sensitizes Human Prostate Cancer Cells towards Glucose Deprivation and Metformin-Mediated Cell Death. Int J Mol Sci 2019; 20:ijms20102593. [PMID: 31137785 PMCID: PMC6566853 DOI: 10.3390/ijms20102593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
High levels of heme oxygenase (HO)-1 have been frequently reported in different human cancers, playing a major role in drug resistance and regulation of cancer cell redox homeostasis. Metformin (MET), a drug widely used for type 2 diabetes, has recently gained interest for treating several cancers. Recent studies indicated that the anti-proliferative effects of metformin in cancer cells are highly dependent on glucose concentration. The present work was directed to determine whether use of a specific inhibitor of HO-1 activity, alone or in combination with metformin, affected metastatic prostate cancer cell viability under different concentrations of glucose. MTT assay and the xCELLigence system were used to evaluate cell viability and cell proliferation in DU145 human prostate cancer cells. Cell apoptosis and reactive oxygen species were analyzed by flow cytometry. The activity of HO-1 was inhibited using a selective imidazole-based inhibitor; genes associated with antioxidant systems and cell death were evaluated by qRT-PCR. Our study demonstrates that metformin suppressed prostate cancer growth in vitro and increased oxidative stress. Disrupting the antioxidant HO-1 activity, especially under low glucose concentration, could be an attractive approach to potentiate metformin antineoplastic effects and could provide a biochemical basis for developing HO-1-targeting drugs against solid tumors.
Collapse
Affiliation(s)
- Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Science, Pharmaceutical Chemistry Section, University of Catania, 95125 Catania, Italy.
| | - Veronica Zingales
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Ignazio Barbagallo
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Loredana Salerno
- Department of Drug Science, Pharmaceutical Chemistry Section, University of Catania, 95125 Catania, Italy.
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Romeo
- Department of Drug Science, Pharmaceutical Chemistry Section, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| | - Luca Vanella
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
13
|
Maurer GD, Heller S, Wanka C, Rieger J, Steinbach JP. Knockdown of the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) Sensitizes Glioma Cells to Hypoxia, Irradiation and Temozolomide. Int J Mol Sci 2019; 20:ijms20051061. [PMID: 30823646 PMCID: PMC6429390 DOI: 10.3390/ijms20051061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to decrease glycolysis, to activate the pentose phosphate pathway, and to provide protection against oxidative damage. Hypoxic regions are considered characteristic of glioblastoma and linked with resistance to current treatment strategies. Here, we established that LNT-229 glioma cell lines stably expressed shRNA constructs targeting TIGAR, and exposed them to hypoxia, irradiation and temozolomide. The disruption of TIGAR enhanced levels of reactive oxygen species and cell death under hypoxic conditions, as well as the effectiveness of irradiation and temozolomide. In addition, TIGAR was upregulated by HIF-1α. As a component of a complex network, TIGAR contributes to the metabolic adjustments that arise from either spontaneous or therapy-induced changes in tumor microenvironment.
Collapse
Affiliation(s)
- Gabriele D Maurer
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Sonja Heller
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Christina Wanka
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tuebingen, Eberhard Karls University, 72076 Tuebingen, Germany.
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology and University Cancer Center (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ) Heidelberg, and German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
TIGAR knockdown enhanced the anticancer effect of aescin via regulating autophagy and apoptosis in colorectal cancer cells. Acta Pharmacol Sin 2019; 40:111-121. [PMID: 29769743 DOI: 10.1038/s41401-018-0001-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
Our previous study showed that TP53-induced glycolysis and apoptosis regulator (TIGAR) regulated ROS, autophagy, and apoptosis in response to hypoxia and chemotherapeutic drugs. Aescin, a triterpene saponin, exerts anticancer effects and increases ROS levels. The ROS is a key upstream signaling to activate autophagy. Whether there is a crosstalk between TIGAR and aescin in regulating ROS, autophagy, and apoptosis is unknown. In this study, we found that aescin inhibited cell viability and colony formation, and induced DNA damage, cell cycle arrest, and apoptosis in cancer cell lines HCT-116 and HCT-8 cells. Concurrently, aescin increased the expression of TIGAR, ROS levels, and autophagy activation. Knockdown of TIGAR enhanced the anticancer effects of aescin in vitro and in vivo, whereas overexpression of TIGAR or replenishing TIGAR downstream products, NADPH and ribose, attenuated aescin-induced apoptosis. Furthermore, aescin-induced ROS elevation and autophagy activation were further strengthened by TIGAR knockdown in HCT-116 cells. However, autophagy inhibition by knockdown of autophagy-related gene ATG5 or 3-methyladenine (3-MA) exaggerated aescin-induced apoptosis when TIGAR was knocked down. In conclusion, TIGAR plays a dual role in determining cancer cell fate via inhibiting both apoptosis and autophagy in response to aescin, which indicated that inhibition of TIGAR and/or autophagy may be a junctional therapeutic target in treatment of cancers with aescin.
Collapse
|
15
|
GongSun X, Zhao Y, Jiang B, Xin Z, Shi M, Song L, Qin Q, Wang Q, Liu X. Inhibition of MUC1-C regulates metabolism by AKT pathway in esophageal squamous cell carcinoma. J Cell Physiol 2018; 234:12019-12028. [PMID: 30523643 PMCID: PMC6587484 DOI: 10.1002/jcp.27863] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive tumors worldwide. The Mucin 1 (MUC1) heterodimeric protein has been confirmed that is overexpressed in ESCC and induced adverse outcomes. However, the detailed mechanism(s) remained challenging. So, we investigated the relationship between MUC1‐C and metabolism in ESCC cells. In the results, TP53‐induced glycolysis and apoptosis regulator (TIGAR) was overexpressed and correlative with MUC1‐C positively in ESCC tissue. Targeting MUC1‐C inhibits AKT–mTORC–S6K1 signaling and blocks TIGAR translation. We found that the inhibitory effect of GO‐203 on TIGAR was mediated by inhibition of AKT–mTOR–S6K1 pathway. The findings also demonstrated that the suppressive effect of GO‐203 on TIGAR is related to the decrease of glutathione level, the increase of reactive oxygen species and the loss of mitochondrial transmembrane membrane potential. In xenograft tissues, GO‐203 inhibited the growth of ESCC cells and lead to the low expression of transmembrane C‐terminal subunit (MUC1‐C) and TIGAR. This evidence supports the contention that MUC1‐C is significant for metabolism in ESCC and indicated that MUC1‐C is a potential target for the treatment of ESCC.
Collapse
Affiliation(s)
- Xin GongSun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - YongQiang Zhao
- Department of Thoracic Surgery, Laiwu City People's Hospital, Laiwu, Shandong, China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - ZhongWei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - QiMing Qin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qiang Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - XiangYan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Geng J, Yuan X, Wei M, Wu J, Qin ZH. The diverse role of TIGAR in cellular homeostasis and cancer. Free Radic Res 2018; 52:1240-1249. [PMID: 30284488 DOI: 10.1080/10715762.2018.1489133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) is a p53 target protein that plays critical roles in glycolysis and redox balance. Accumulating evidence shows that TIGAR is highly expressed in cancer. TIGAR redirects glycolysis and promotes carcinoma growth by providing metabolic intermediates and reductive power derived from pentose phosphate pathway (PPP). The expression of TIGAR in cancer is positively associated with chemotherapy resistance, suggesting that TIGAR could be a novel therapeutic target. In this review, we briefly presented the function of TIGAR in metabolic homeostasis in normal and cancer cells. Finally, we discussed the future directions of TIGAR research in cancer.
Collapse
Affiliation(s)
- Ji Geng
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Xiao Yuan
- b Pathology Department , The First Affiliated Hospital of Soochow University , Suzhou , PR China
| | - Mingzhen Wei
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Junchao Wu
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| | - Zheng-Hong Qin
- a Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Sciences , Soochow University , Suzhou , PR China
| |
Collapse
|
17
|
Shen M, Zhao X, Zhao L, Shi L, An S, Huang G, Liu J. Met is involved in TIGAR-regulated metastasis of non-small-cell lung cancer. Mol Cancer 2018; 17:88. [PMID: 29753331 PMCID: PMC5948872 DOI: 10.1186/s12943-018-0839-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/27/2018] [Indexed: 01/04/2023] Open
Abstract
TIGAR is a p53 target gene that is known to protect cells from ROS-induced apoptosis by promoting the pentose phosphate pathway. The role of TIGAR in tumor cell invasion and metastasis remains elusive. Here we found that downregulation of TIGAR reduced the invasion and metastasis of NSCLC cells in vitro and in vivo. Immunohistochemical analysis of 72 NSCLC patients showed that TIGAR and Met protein expression was positively correlated with late stages of lung cancer. Besides, patients with high co-expression of TIGAR and Met presented a significantly worse survival. In addition, we found that Met signaling pathway is involved in TIGAR-induced invasion and metastasis. Our study indicates that TIGAR/Met pathway may be a novel target for NSCLC therapy. It is necessary to evaluate the expression of TIGAR before Met inhibitors are used for NSCLC treatment.
Collapse
Affiliation(s)
- Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liang Shi
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Institute of Nuclear Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
18
|
Romeo M, Hutchison T, Malu A, White A, Kim J, Gardner R, Smith K, Nelson K, Bergeson R, McKee R, Harrod C, Ratner L, Lüscher B, Martinez E, Harrod R. The human T-cell leukemia virus type-1 p30 II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis. Virology 2018; 518:103-115. [PMID: 29462755 DOI: 10.1016/j.virol.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/23/2018] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30II, associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors.
Collapse
Affiliation(s)
- Megan Romeo
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Tetiana Hutchison
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Aditi Malu
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Averi White
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Janice Kim
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Rachel Gardner
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Katie Smith
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Katherine Nelson
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Rachel Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Ryan McKee
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Carolyn Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States
| | - Lee Ratner
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Bernhard Lüscher
- Institute of Biochemistry, Klinikum, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Ernest Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, Dallas, TX 75275-0376, Unites States.
| |
Collapse
|
19
|
Luo W, Qin L, Li B, Liao Z, Liang J, Xiao X, Xiao X, Mo Y, Huang G, Zhang Z, Zhou X, Li P. Inactivation of HMGCL promotes proliferation and metastasis of nasopharyngeal carcinoma by suppressing oxidative stress. Sci Rep 2017; 7:11954. [PMID: 28931870 PMCID: PMC5607293 DOI: 10.1038/s41598-017-11025-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Altered metabolism is considered as a hallmark of cancer. Here we investigated expression of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) 2 lyase (HMGCL), an essential enzyme in ketogenesis, which produces ketone bodies by the breakdown of fatty acids to supply energy, in nasopharyngeal carcinoma (NPC). The expression of HMGCL was silenced in NPC tissue. Downregulation of HMGCL in NPC was associated with low intracellular β-hydroxybutyrate (β-HB) production, thereby reducing reactive oxygen species (ROS) generation. Ectopic expression of HMGCL restored β-HB level, associated with suppressed proliferation and colony formation of NPC cells in vitro and decreased tumorigenicity in vivo. HMGCL suppressed the migration and invasion of NPC cells in vitro via mesenchymal-epithelial transition. Furthermore, extracellular β-HB supply suppressed the proliferation and migration of NPC cells. Both intra- and extracellular β-HB exerting a suppressive role in NPC depends on ROS generation. Ketogenesis may be impaired in NPC cells due to lack of HMGCL expression, suggesting that it may be a promising target in NPC therapy.
Collapse
Affiliation(s)
- Wenqi Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liting Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhipeng Liao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiezhen Liang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiling Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China.
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
20
|
Rothenberger NJ, Stabile LP. Hepatocyte Growth Factor/c-Met Signaling in Head and Neck Cancer and Implications for Treatment. Cancers (Basel) 2017; 9:cancers9040039. [PMID: 28441771 PMCID: PMC5406714 DOI: 10.3390/cancers9040039] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Aberrant signaling of the hepatocyte growth factor (HGF)/c-Met pathway has been identified as a promoter of tumorigenesis in several tumor types including head and neck squamous cell carcinoma (HNSCC). Despite a relatively low c-Met mutation frequency, overexpression of HGF and its receptor c-Met has been observed in more than 80% of HNSCC tumors, with preclinical and clinical studies linking overexpression with cellular proliferation, invasion, migration, and poor prognosis. c-Met is activated by HGF through a paracrine mechanism to promote cellular morphogenesis enabling cells to acquire mesenchymal phenotypes in part through the epithelial-mesenchymal transition, contributing to metastasis. The HGF/c-Met pathway may also act as a resistance mechanism against epidermal growth factor receptor (EGFR) inhibition in advanced HNSCC. Furthermore, with the identification of a biologically distinct subset of HNSCC tumors acquired from human papillomavirus (HPV) infection that generally portends a good prognosis, high expression of HGF or c-Met in HPV-negative tumors has been associated with worse prognosis. Dysregulated HGF/c-Met signaling results in an aggressive HNSCC phenotype which has led to clinical investigations for targeted inhibition of this pathway. In this review, HGF/c-Met signaling, pathway alterations, associations with clinical outcomes, and preclinical and clinical therapeutic strategies for targeting HGF/c-Met signaling in HNSCC are discussed.
Collapse
Affiliation(s)
- Natalie J Rothenberger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- University of Pittsburgh Cancer Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Hong M, Xia Y, Zhu Y, Zhao HH, Zhu H, Xie Y, Fan L, Wang L, Miao KR, Yu H, Miao YQ, Wu W, Zhu HY, Chen YY, Xu W, Qian SX, Li JY. TP53-induced glycolysis and apoptosis regulator protects from spontaneous apoptosis and predicts poor prognosis in chronic lymphocytic leukemia. Leuk Res 2016; 50:72-77. [PMID: 27693855 DOI: 10.1016/j.leukres.2016.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Circulating chronic lymphocytic leukemia (CLL) cells appear not to be overly utilizing aerobic glycolysis. However, recurrent contact with CLL cells in a stromal microenvironment leads to increased aerobic glycolysis and the cells' overall glycolytic capacity, which promotes cell survival and proliferation. TP53-induced glycolysis and apoptosis regulator (TIGAR) has been directly implicated in cellular metabolism in the control of glycolysis. TIGAR inhibits glycolysis and protects cells from intracellular reactive oxygen species (ROS)-associated apoptosis. METHODS TIGAR mRNA expression was investigated by quantitative PCR in 102 newly diagnosed CLL patients. Furthermore, the relationship between the expression of TIGAR and its clinical characteristics and prognosis were investigated. Moreover, we also investigated the correlation between TIGAR expression and apoptosis in primary CLL cells. RESULTS Our data revealed that TIGAR overexpression was correlated with the protection from spontaneous apoptosis in CLL cells, and is strongly associated with advanced Binet stage, unmutated immunoglobulin heavy-chain variable region (IGHV) status, CD38 positivity, β2-microglobulin and p53 aberrations. Higher expression of TIGAR was associated with shorter treatment-free survival (median: three months vs. 51 months, P=0.0108), worse overall survival (median: 74 months vs. not reached, P=0.0242), and the diverse responses to fludarabine-based chemotherapy. TIGAR expression in patients resistant to chemotherapy was significantly higher than in patients sensitive to chemotherapy (mean: 0.3859±0.1710 vs. 0.0974±0.0291, P=0.0290). CONCLUSION Taken together, our findings revealed that high TIGAR expression is closely correlated with worse clinical outcome in CLL patients, and depicted how bioenergetic characteristics could be therapeutically exploited in CLL.
Collapse
Affiliation(s)
- Ming Hong
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yu Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Hui-Hui Zhao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Han Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yue Xie
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Kou-Rong Miao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Hui Yu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yu-Qing Miao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Wei Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Hua-Yuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yao-Yu Chen
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Si-Xuan Qian
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.
| | - Jian-Yong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
22
|
LIU LIANHUA, YANG XIAOFENG. Prevertebral space effusion caused by the breaking of swollen lymphonodi retropharynici in nasopharyngeal carcinoma: A case report. Oncol Lett 2016; 11:3766-3768. [DOI: 10.3892/ol.2016.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 01/18/2016] [Indexed: 11/06/2022] Open
|
23
|
Wang H, Xu Z, Ma M, Wang N, Wang K. Network analysis of microRNAs, transcription factors, target genes and host genes in nasopharyngeal carcinoma. Oncol Lett 2016; 11:3821-3828. [PMID: 27313701 DOI: 10.3892/ol.2016.4476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/17/2016] [Indexed: 12/25/2022] Open
Abstract
Numerous studies on the morbidity of nasopharyngeal carcinoma (NPC) have identified several genes, microRNAs (miRNAs or miRs) and transcription factors (TFs) that influence the pathogenesis of NPC. However, summarizing all the regulatory networks involved in NPC is challenging. In the present study, the genes, miRNAs and TFs involved in NPC were considered as the nodes of the so-called regulatory network, and the associations between them were investigated. To clearly represent these associations, three regulatory networks were built seperately, namely, the differentially expressed network, the associated network and the global network. The differentially expressed network is the most important one of these three networks, since its nodes are differentially expressed genes whose mutations may lead to the development of NPC. Therefore, by modifying the aberrant expression of those genes that are differentially expressed in this network, their dysregulation may be corrected and the tumorigenesis of NPC may thus be prevented. Analysis of the aforementioned three networks highlighted the importance of certain pathways, such as self-adaptation pathways, in the development of NPC. For example, cyclin D1 (CCND1) was observed to regulate Homo sapiens-miR-20a, which in turn targeted CCND1. The present study conducted a systematic analysis of the pathogenesis of NPC through the three aforementioned regulatory networks, and provided a theoretical model for biologists. Future studies are required to evaluate the influence of the highlighted pathways in NPC.
Collapse
Affiliation(s)
- Hao Wang
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China; Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Zhiwen Xu
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China; Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Mengyao Ma
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China; Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ning Wang
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China; Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Kunhao Wang
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China; Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
24
|
Lu TX, Young KH, Xu W, Li JY. TP53 dysfunction in diffuse large B-cell lymphoma. Crit Rev Oncol Hematol 2016; 97:47-55. [PMID: 26315382 DOI: 10.1016/j.critrevonc.2015.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/05/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
|