1
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
2
|
Magrassi L, Pinton G, Luzzi S, Comincini S, Scravaglieri A, Gigliotti V, Bernardoni BL, D’Agostino I, Juretich F, La Motta C, Garavaglia S. A New Vista of Aldehyde Dehydrogenase 1A3 (ALDH1A3): New Specific Inhibitors and Activity-Based Probes Targeting ALDH1A3 Dependent Pathways in Glioblastoma, Mesothelioma and Other Cancers. Cancers (Basel) 2024; 16:2397. [PMID: 39001459 PMCID: PMC11240489 DOI: 10.3390/cancers16132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Aldehyde dehydrogenases of the subfamily 1A (ALDH1A) are enzymes necessary for the oxidation of all-trans or 9-cis retinal to retinoic acid (RA). Retinoic acid and its derivatives are important for normal development and maintenance of epithelia, reproduction, memory, and immune function in adults. Moreover, in recent years, it has been demonstrated that ALDH1A members are also expressed and functional in several human cancers where their role is not limited to the synthesis of RA. Here, we review the current knowledge about ALDH1A3, one of the 1A isoforms, in cancers with an emphasis on two of the deadliest tumors that affect humans: glioblastoma multiforme and mesothelioma. In both tumors, ALDH1A3 is considered a negative prognostic factor, and its level correlates with excessive proliferation, chemoresistance, and invasiveness. We also review the recent attempts to develop both ALDH1A3-selective inhibitors for cancer therapy and ALDH1A3-specific fluorescent substrates for fluorescence-guided tumor resection.
Collapse
Affiliation(s)
- Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
- Istituto di Genetica Molecolare—CNR, 27100 Pavia, Italy
| | - Giulia Pinton
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Sabino Luzzi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Sergio Comincini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy;
| | - Andrea Scravaglieri
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Valentina Gigliotti
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Bianca Laura Bernardoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Ilaria D’Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Francesca Juretich
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Silvia Garavaglia
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| |
Collapse
|
3
|
Ardizzoia A, Jemma A, Redaelli S, Silva M, Bentivegna A, Lavitrano M, Conconi D. AhRR and PPP1R3C: Potential Prognostic Biomarkers for Serous Ovarian Cancer. Int J Mol Sci 2023; 24:11455. [PMID: 37511212 PMCID: PMC10380391 DOI: 10.3390/ijms241411455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The lack of effective screening and successful treatment contributes to high ovarian cancer mortality, making it the second most common cause of gynecologic cancer death. Development of chemoresistance in up to 75% of patients is the cause of a poor treatment response and reduced survival. Therefore, identifying potential and effective biomarkers for its diagnosis and prognosis is a strong critical need. Copy number alterations are frequent in cancer, and relevant for molecular tumor stratification and patients' prognoses. In this study, array-CGH analysis was performed in three cell lines and derived cancer stem cells (CSCs) to identify genes potentially predictive for ovarian cancer patients' prognoses. Bioinformatic analyses of genes involved in copy number gains revealed that AhRR and PPP1R3C expression negatively correlated with ovarian cancer patients' overall and progression-free survival. These results, together with a significant association between AhRR and PPP1R3C expression and ovarian cancer stemness markers, suggested their potential role in CSCs. Furthermore, AhRR and PPP1R3C's increased expression was maintained in some CSC subpopulations, reinforcing their potential role in ovarian cancer. In conclusion, we reported for the first time, to the best of our knowledge, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.A.); (A.J.); (S.R.); (M.S.); (A.B.); (M.L.)
| |
Collapse
|
4
|
Peng W, Feng H, Pang L, Zhang J, Hao Y, Wei X, Xia Q, Wei Z, Song W, Wang S, Liu J, Chen K, Wang T. Downregulation of CAMK2N1 due to DNA Hypermethylation Mediated by DNMT1 that Promotes the Progression of Prostate Cancer. JOURNAL OF ONCOLOGY 2023; 2023:4539045. [PMID: 36755811 PMCID: PMC9902116 DOI: 10.1155/2023/4539045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 02/01/2023]
Abstract
Calcium/calmodulin-dependentprotein kinase II inhibitor I (CAMK2N1) as one of the tumor suppressor genes is significantly downregulated in prostate cancer (PCa). Reduced expression of CAMK2N1 is positively correlated with PCa progression. However, the mechanisms of CAMK2N1 downregulation in PCa are still unclear. The promoter region of CAMK2N1 contains a large number of CG loci, providing the possibility for DNA methylation. Consequently, we hypothesized that DNA methylation can result in the reduced expression of CAMK2N1 in PCa. In the presented study, the DNA methylation level of CAMK2N1 in prostate cells and clinical specimens was determined by bisulfite sequencing (BS), pyrosequencing, and in silico analysis. Results showed that CAMK2N1 was highly methylated in PCa cells and tissues compared to normal prostate epithelial cells and nonmalignant prostate tissues, which was associated with the clinicopathological characteristics in PCa patients. Afterwards, we explored the expression of CAMK2N1 and its DNA methylation level by qRT-PCR, western blot, BS, and methylation-specific PCR in PCa cells after 5-Aza-CdR treatment or DNMT1 genetic modification, which demonstrated that the reduced expression of CAMK2N1 can be restored by 5-Aza-CdR treatment via demethylation. Moreover, DNMT1 formed a positive feedback loop with CAMK2N1 in PCa cells. The expression of CAMK2N1 was downregulated by DNMT1-mediated DNA methylation, which reversely induced DNMT1 expression through activating AKT or ERK signaling pathway. Finally, functional assays including wound healing, invasion, and migration assay, as well as the xenograft model in nude mice indicated that CAMK2N1 inhibited the invasion, migration, and proliferation of PCa cells and these effects were reversed by DNMT1 overexpression. In conclusion, DNMT1-mediated hypermethylation of CAMK2N1 not only downregulates the gene expression but also promotes the progression of PCa.
Collapse
Affiliation(s)
- Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linhao Pang
- Department of Urology, Suining Central Hospital, Chongqing Medical University, Suining, China
| | - Junfeng Zhang
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewen Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhao Y, Ye G, Wang Y, Luo D. MiR-4461 Inhibits Tumorigenesis of Renal Cell Carcinoma by Targeting PPP1R3C. Cancer Biother Radiopharm 2022; 37:503-514. [PMID: 32915648 DOI: 10.1089/cbr.2020.3846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Renal cell carcinoma (RCC) is one of the most common and malignant tumors in the urinary system. The aim of this research was to investigate the mechanism and clinical significance of miR-4461 in the RCC progression. Materials and Methods: Twenty-eight (28) paired RCC tissue samples and adjacent nontumor tissue samples, as well as RCC cell lines were used to measure the expression of miR-4461 and protein phosphatase 1 regulatory subunit 3C (PPP1R3C) transcript by real-time quantitative PCR. The target relationship between miR-4461 and PPP1R3C was predicted by TargetScan and further verified by dual-luciferase reporter gene assay and RNA pull-down assay. Cell Counting Kit-8 (CCK-8) assay and BrdU ELISA assay were performed to measure RCC cell viability and proliferation. In addition, caspase-3 activity assay and cell adhesion assay were implemented to measure RCC cell apoptosis and adhesion. Results: MiR-4461 was lowly expressed both in RCC tissues and cells, while upregulated PPP1R3C was tested in RCC tissues and cells. In addition, miR-4461 was validated to directly target PPP1R3C, thereby negatively regulating PPP1R3C. Particularly, miR-4461 exerted a clear inhibitory effect on the malignant phenotypes of RCC cells by binding and inhibiting PPP1R3C. Conclusion: MiR-4461, which served as a tumor suppressor, inhibited RCC progression by targeting and downregulating PPP1R3C.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - Gang Ye
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - You Wang
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| | - Dan Luo
- Department of Nephrology, Wuhan Third Hospital, Wuhan, China
| |
Collapse
|
6
|
Mandal P, Saha SS, Sen S, Bhattacharya A, Bhattacharya NP, Bucha S, Sinha M, Chowdhury RR, Mondal NR, Chakravarty B, Chatterjee T, Roy S, Chattapadhyay A, Sengupta S. Cervical cancer subtypes harbouring integrated and/or episomal HPV16 portray distinct molecular phenotypes based on transcriptome profiling of mRNAs and miRNAs. Cell Death Discov 2019; 5:81. [PMID: 30937183 PMCID: PMC6433907 DOI: 10.1038/s41420-019-0154-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneity in cervical cancers (CaCx) in terms of HPV16 physical status prompted us to investigate the mRNA and miRNA signatures among the different categories of CaCx samples. We performed microarray-based mRNA expression profiling and quantitative real-time PCR-based expression analysis of some prioritised miRNAs implicated in cancer-related pathways among various categories of cervical samples. Such samples included HPV16-positive CaCx cases that harboured either purely integrated HPV16 genomes (integrated) and those that harboured episomal viral genomes, either pure or concomitant with integrated viral genomes (episomal), which were compared with normal cervical samples that were either HPV negative or positive for HPV16. The mRNA expression profile differed characteristically between integrated and episomal CaCx cases for enriched biological pathways. miRNA expression profiles also differed among CaCx cases compared with controls (upregulation—miR-21, miR-16, miR-205, miR-323; downregulation—miR-143, miR-196b, miR-203, miR-34a; progressive upregulation—miR-21 and progressive downregulation—miR-143, miR-34a, miR-196b and miR-203) in the order of HPV-negative controls, HPV16-positive non-malignant samples and HPV16-positive CaCx cases. miR-200a was upregulated in HPV16-positive cervical tissues irrespective of histopathological status. Expression of majority of the predicted target genes was negatively correlated with their corresponding miRNAs, irrespective of the CaCx subtypes. E7 mRNA expression correlated positively with miR-323 expression among episomal cases and miR-203, among integrated cases. miR-181c expression was downregulated only among the episomal CaCx cases and negatively correlated with protein coding transcript of the proliferative target gene, CKS1B of the significantly enriched “G2/M DNA Damage Checkpoint Regulation” pathway among CaCx cases. Thus, the two CaCx subtypes are distinct entities at the molecular level, which could be differentially targeted for therapy. In fact, availability of a small molecule inhibitor of CKS1B, suggests that drugging CKS1B could be a potential avenue of treating the large majority of CaCx cases harbouring episomal HPV16.
Collapse
Affiliation(s)
- Paramita Mandal
- 1National Institute of Biomedical Genomics, Kalyani, West Bengal India.,6Present Address: Department of Zoology, The University of Burdwan, Burdwan, West Bengal India
| | - Sweta Sharma Saha
- 1National Institute of Biomedical Genomics, Kalyani, West Bengal India.,Present Address: Section of Haematology/Oncology, Department of Medicine, university of Chicago, 5841 S Maryland Ave MC 2115, Chicago, IL 60637 USA
| | - Shrinka Sen
- 1National Institute of Biomedical Genomics, Kalyani, West Bengal India.,8Present Address: Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064 India
| | | | - Nitai P Bhattacharya
- 2Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India
| | - Sudha Bucha
- 2Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India
| | - Mithun Sinha
- 2Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064 India.,9Present Address: Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH USA
| | - Rahul Roy Chowdhury
- 3Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Nidhu Ranjan Mondal
- 3Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Biman Chakravarty
- 3Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Tanmay Chatterjee
- 3Department of Gynecology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Sudipta Roy
- Sri Aurobindo Seva Kendra, 1H, Gariahat Road (S) Jodhpur Park, Kolkata, 700068 West Bengal India
| | | | - Sharmila Sengupta
- 1National Institute of Biomedical Genomics, Kalyani, West Bengal India
| |
Collapse
|
7
|
Geeitha S, Thangamani M. Incorporating EBO-HSIC with SVM for Gene Selection Associated with Cervical Cancer Classification. J Med Syst 2018; 42:225. [DOI: 10.1007/s10916-018-1092-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
|
8
|
Deng J, Zhang J, Wang C, Wei Q, Zhou D, Zhao K. Methylation and expression of PTPN22 in esophageal squamous cell carcinoma. Oncotarget 2018; 7:64043-64052. [PMID: 27613842 PMCID: PMC5325424 DOI: 10.18632/oncotarget.11581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a fatal disease contributed by both genetic and epigenetic factors. The epigenetic alteration of protein tyrosine phosphatase non-receptor type 22 (PTPN22) and its clinical significance in ESCC were still not yet clarified. A quantitative methylation study of PTPN22 and its expression were conducted in 121 and 31 paired tumor and adjacent normal tissue (ANT), respectively. Moreover, the association between PTPN22 methylation and clinicopathological parameters was evaluated. We found that the methylation level of PTPN22 was significantly elevated in tumor tissues (66.3%) relative to ANT (62.1%) (p=0.005). The methylation level of non-smoking ANT (59.1%) was significant lower than smoking ESCC tissue (65.8%) (p=0.03); similarly, the methylation levels in ANT with no lymph node invasion (57.6%) were significant lower than tumor tissues with lymph node invasion (67.5%) (p=0.001). PTPN22 expression in ESCC was lower than normal tissues, however the difference was not statistically significant (p=0.55). Lower expression was more frequently occurred in N1-3 and III stage patients, while higher expression was more likely to occur in N0 and I-II stage patients. Lower expression of PTPN22 was associated with poor overall survival (p=0.04). Taken together, PTPN22 was hypermethylationed in ESCC. Hypermethylation was associated with lymph node invasion. The PTPN22 expression may act as a prognostic biomarker to identify patients at risk of high grade.
Collapse
Affiliation(s)
- Jiaying Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Junhua Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunyu Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qing Wei
- Department of Pathology, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Daizhan Zhou
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kuaile Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Sun H, Wang Y, Chen Y, Li Y, Wang S. pETM: a penalized Exponential Tilt Model for analysis of correlated high-dimensional DNA methylation data. Bioinformatics 2018; 33:1765-1772. [PMID: 28165116 DOI: 10.1093/bioinformatics/btx064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/31/2017] [Indexed: 12/31/2022] Open
Abstract
Motivation DNA methylation plays an important role in many biological processes and cancer progression. Recent studies have found that there are also differences in methylation variations in different groups other than differences in methylation means. Several methods have been developed that consider both mean and variance signals in order to improve statistical power of detecting differentially methylated loci. Moreover, as methylation levels of neighboring CpG sites are known to be strongly correlated, methods that incorporate correlations have also been developed. We previously developed a network-based penalized logistic regression for correlated methylation data, but only focusing on mean signals. We have also developed a generalized exponential tilt model that captures both mean and variance signals but only examining one CpG site at a time. Results In this article, we proposed a penalized Exponential Tilt Model (pETM) using network-based regularization that captures both mean and variance signals in DNA methylation data and takes into account the correlations among nearby CpG sites. By combining the strength of the two models we previously developed, we demonstrated the superior power and better performance of the pETM method through simulations and the applications to the 450K DNA methylation array data of the four breast invasive carcinoma cancer subtypes from The Cancer Genome Atlas (TCGA) project. The developed pETM method identifies many cancer-related methylation loci that were missed by our previously developed method that considers correlations among nearby methylation loci but not variance signals. Availability and Implementation The R package 'pETM' is publicly available through CRAN: http://cran.r-project.org . Contact sw2206@columbia.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hokeun Sun
- Department of Statistics, Pusan National University, Busan, Korea
| | - Ya Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yong Chen
- Division of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Xu Z, Zhou Y, Shi F, Cao Y, Dinh TLA, Wan J, Zhao M. Investigation of differentially-expressed microRNAs and genes in cervical cancer using an integrated bioinformatics analysis. Oncol Lett 2017; 13:2784-2790. [PMID: 28454467 DOI: 10.3892/ol.2017.5766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the most common types of cancer among women worldwide. In order to identify the microRNAs (miRNAs/miRs) and mRNAs associated with the carcinogenesis of cervical cancer, and to investigate the molecular mechanisms of cervical cancer, an miRNA microarray, GSE30656, and 3 mRNA microarrays, GSE63514, GSE39001 and GSE9750, for cervical cancer were retrieved from Gene Expression Omnibus. These datasets were analyzed in order to obtain differentially-expressed genes (DEGs) and miRNAs using the GEO2R tool. Gene Ontology (GO) and pathway enrichment analysis for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery. Protein-protein interaction (PPI) analysis for DEGs was conducted using The Search Tool for the Retrieval of Interacting Genes software and visualized using Cytoscape, followed by hub gene identification, and biological process and pathway enrichment analysis of the module selected from the PPI network using the Molecular Complex Detection plugin. In addition, miRecords was applied to predict the targets of differentially-expressed miRNAs. A total of 44 DEGs and 15 differentially-expressed miRNAs were identified. These DEGs were mainly enriched in GO terms associated with the cell cycle. In the PPI network, cyclin-dependent kinase 1, topoisomerase DNA IIα, aurora kinase A (AURKA) and minichromosome maintenance complex component 2 (MCM2) had higher degrees of connectivity. A significant module was detected from the PPI network. AURKA, MCM2 and kinesin family member 20A exhibited higher degrees in this module, while the genes in the module were mainly involved in the cell cycle and the DNA replication pathway. In addition, estrogen receptor 1 was predicted as the potential target of 13 miRNAs. A total of 10 DEGs were identified as potential targets of miR-203. In conclusion, the results indicated that microarray dataset analysis may provide a useful method for the identification of key genes and patterns to successfully identify determinants of the carcinogenesis of cervical cancer. The functional studies of candidate genes and miRNAs from these databases may lead to an increased understanding of the development of cervical cancer.
Collapse
Affiliation(s)
- Zhanzhan Xu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Shi
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yexuan Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Thi Lan Anh Dinh
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Min Zhao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
11
|
JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells. J Virol 2016; 91:JVI.01925-16. [PMID: 27795443 DOI: 10.1128/jvi.01925-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023] Open
Abstract
The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. IMPORTANCE Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism of action determined by the JunD component of AP-1, a factor enhancing cell survival in v-Src-transformed cells. We show that the loss of JunD results in the aberrant activation of a genetic program leading to cell death. This program requires the activation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Since DAPK1 is phosphorylated and inhibited by v-Src, these results highlight the importance of this kinase and the multiple mechanisms controlled by v-Src to antagonize the tumor suppressor function of DAPK1.
Collapse
|
12
|
Puttipanyalears C, Kitkumthorn N, Buranapraditkun S, Keelawat S, Mutirangura A. Breast cancer upregulating genes in stromal cells by LINE-1 hypermethylation and micrometastatic detection. Epigenomics 2016; 8:475-86. [PMID: 27035076 DOI: 10.2217/epi-2015-0007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Changes in the methylation level of genes containing LINE-1 alter host gene regulation. AIM This study demonstrates that paracrine signaling of breast cancer influences the epigenetic regulation of stromal cells. METHODS We proved in vitro and in vivo breast cancer promoted LINE-1 methylation exists exclusively in female stromal cells. RESULTS Genes containing LINE-1 of breast cancer stromal cells were upregulated. Furthermore, one of the genes, MUC-1, was demonstrated to have expression in plasma cells from the lymph nodes of patients with lymph node metastasis or micrometastasis. CONCLUSION Breast cancer sends a paracrine signal to stroma cells causing LINE-1 epigenetic regulation. Moreover, the regulated genes in stroma cells are potential biomarkers for detecting breast cancer micrometastasis.
Collapse
Affiliation(s)
- Charoenchai Puttipanyalears
- Inter-Department Program of BioMedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Molecular Genetics of Cancer & Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy & Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somboon Keelawat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer & Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Zhao M, Zhang L, Qiu X, Zeng F, Chen W, An Y, Hu B, Wu X, Wu X. BLCAP arrests G₁/S checkpoint and induces apoptosis through downregulation of pRb1 in HeLa cells. Oncol Rep 2016; 35:3050-8. [PMID: 26986503 DOI: 10.3892/or.2016.4686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/18/2016] [Indexed: 11/06/2022] Open
Abstract
BLCAP (bladder cancer-associated protein) gene exhibited tumor suppressor function in different tumors and is regarded as a candidate tumor suppressor gene; however, the mechanism by which BLCAP exerts its function remains elusive. This study investigated the functional association between BLCAP and proliferation or apoptosis in cervical cancer cells, to identify the functional motifs of BLCAP. The BLCAP-shRNA expression vector based on pRNA-U6.1/Hygro plasmid was used to specifically inhibit BLCAP activity in HeLa cells. The optimal shRNA plasmid was selected to knock down BLCAP expression and the biological effects were investigated. The effects on cell cycle and apoptosis were detected by flow cytometric or Annexin V-FITC staining analysis. The gene expression profiles of HeLa cells transfected with blcap-wt and BLCAP-shRNA were analyzed using human signal pathway gene Oligochips. The levels of protein expression and interaction of BLCAP with Rb1 proteins were determined by western blotting and Co-IP assays. The site-specific mutagenesis assay was used to identify amino acid residues important for BLCAP. Significantly differentially expressed genes were found by gene Oligo chips analysis. These genes were all correlated with proliferation, cell cycle and apoptosis. The results of western blotting and Co-IP assays confirmed that overexpression of BLCAP could interact with Rb1 and inhibit Rb1 phosphorylation. Further investigation revealed that SAXX mutation in the key regions of BLCAP suppressed the function of BLCAP and significantly increased the level of phosphorylated Rb1 protein. Here our findings suggested that the functional association of BLCAP and Rb1 might play important roles in proliferation and apoptosis of HeLa cells. It suggested that BLCAP could be a novel therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Min Zhao
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li Zhang
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiaoping Qiu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fanyu Zeng
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wen Chen
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yuehui An
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bicheng Hu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xufeng Wu
- Department of Gynecology, Hubei Maternity and Child Care Hospital, Wuhan, Hubei 430070, P.R. China
| | - Xinxing Wu
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
14
|
Wei X, Zhang S, Cao D, Zhao M, Zhang Q, Zhao J, Yang T, Pei M, Wang L, Li Y, Yang X. Aberrant Hypermethylation of SALL3 with HPV Involvement Contributes to the Carcinogenesis of Cervical Cancer. PLoS One 2015; 10:e0145700. [PMID: 26697877 PMCID: PMC4689451 DOI: 10.1371/journal.pone.0145700] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/06/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the methylation status of the promoter region of spalt-like transcription factor 3 (SALL3) and the expression of SALL3 in cervical cancer to explore the function of this gene in cervical cancer carcinogenesis. METHODS The methylation status of SALL3 was detected by methylation-specific PCR, and SALL3 gene expression was assessed by real-time quantitative PCR in the cervical cancer cell lines, SiHa, HeLa and C33A, as well as in cervical cancer tissue samples (n = 23), matched pericarcinomatous tissue samples (n = 23) and normal cervix tissue samples (n = 17). MTT was used to measure the cell viability and proliferation capacity of SiHa and HeLa cells. RESULTS The SALL3 promoter was completely methylated in SiHa cells, unmethylated in C33A cells and partially methylated in HeLa cells. After treatment of SiHa and HeLa cells with 5 μM and 10 μM of 5-Azacytidine (5-Aza), respectively, the methylation level of the SALL3 promoter decreased and observed increase in the degree of unmethylation in a dose-dependent manner. Moreover, the relative expression of SALL3 mRNA increased as the concentration of 5-Aza increased in SiHa (p<0.05) and HeLa (p<0.05) cells. This above-mentioned increase in SALL3 mRNA in SiHa cells was more remarkable than that observed in HeLa cells. Cell proliferation capacity also decreased after administration of 5-Aza to SiHa and HeLa cells (p<0.05). Methylation of the SALL3 promoter was observed in 15 of 23 (65.21%) cervical cancer tissue samples, 15 of 23 (65.21%) matched pericarcinomatous tissue samples and 5 of 17 (29.41%) normal cervical tissue samples (p<0.05). SALL3 mRNA expression was significantly lower in cervical cancer and pericarcinomatous tissues compared with normal cervical tissues (p<0.05). In all cervix tissue samples, HPV infection was positively associated with hypermethylation of the promoter region of SALL3 (p<0.05, r = 0.408), and the expression of SALL3 mRNA in HPV-positive tissues was lower than that in HPV-negative tissues (p<0.05). CONCLUSION The aberrant hypermethylation of SALL3 together with HPV involvement inactivated its function as a tumor suppressor and contributed to carcinogenesis in cervical cancer.
Collapse
Affiliation(s)
- Xing Wei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Shaohua Zhang
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Xi’an Medical College, Xi’an 710077, China
| | - Di Cao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Minyi Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Qian Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Juan Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Ting Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Meili Pei
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Li Wang
- Center of Maternal and Child Health Care, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Yang Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Medical School, Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- * E-mail:
| |
Collapse
|