1
|
Chen M, Li H, Li Y, Luo Y, He Y, Shui X, Lei W. Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). Int J Mol Med 2024; 54:115. [PMID: 39422043 PMCID: PMC11518579 DOI: 10.3892/ijmm.2024.5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive life‑threatening cardiopulmonary vascular disease involving various pathological mechanisms, including hypoxia, cellular metabolism, inflammation, abnormal proliferation and apoptosis. Specifically, metabolism has attracted the most attention. Glucose metabolism is essential to maintain the cardiopulmonary vascular function. However, once exposed to a noxious stimulus, intracellular glucose metabolism changes or switches to an alternative pathway more suitable for adaptation, which is known as metabolic reprogramming. By promoting the switch from oxidative phosphorylation to glycolysis, cellular metabolic reprogramming plays an important role in PH development. Suppression of glucose oxidation and secondary upregulation of glycolysis are responsible for various features of PH, including the proliferation and apoptosis resistance of pulmonary artery endothelial and smooth muscle cells. In the present review, the roles and importance of the glucose metabolism shift were discussed to aid in the development of new treatment approaches for PH.
Collapse
Affiliation(s)
- Meihong Chen
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hui Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yun Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yangui Luo
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaorong Shui
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
- Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
2
|
Jin M, Shi R, Gao D, Wang B, Li N, Li X, Sik A, Liu K, Zhang X. ErbB2 pY -1248 as a predictive biomarker for Parkinson's disease based on research with RPPA technology and in vivo verification. CNS Neurosci Ther 2024; 30:e14407. [PMID: 37564024 PMCID: PMC10848095 DOI: 10.1111/cns.14407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
AIMS This study aims to reveal a promising biomarker for Parkinson's disease (PD) based on research with reverse phase protein array (RPPA) technology for the first time and in vivo verification, which gains time for early intervention in PD, thus increasing the effectiveness of treatment and reducing disease morbidity. METHODS AND RESULTS We employed RPPA technology which can assess both total and post-translationally modified proteins to identify biomarker candidates of PD in a cellular PD model. As a result, the phosphorylation (pY-1248) of the epidermal growth factor receptor (EGFR) ErbB2 is a promising biomarker candidate for PD. In addition, lapatinib, an ErbB2 tyrosine kinase inhibitor, was used to verify this PD biomarker candidate in vivo. We found that lapatinib-attenuated dopaminergic neuron loss and PD-like behavior in the zebrafish PD model. Accordingly, the expression of ErbB2pY-1248 significantly increased in the MPTP-induced mouse PD model. Our results suggest that ErbB2pY-1248 is a predictive biomarker for PD. CONCLUSIONS In this study, we found that ErbB2pY-1248 is a predictive biomarker of PD by using RPPA technology and in vivo verification. It offers a new perspective on PD diagnosing and treatment, which will be essential in identifying individuals at risk of PD. In addition, this study provides new ideas for digging into biomarkers of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
- School of PsychologyNorth China University of Science and TechnologyTang'shanChina
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Xia Li
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd.Ji'nanChina
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical SchoolUniversity of PecsPécsHungary
- Institute of Clinical Sciences, Medical SchoolUniversity of BirminghamBirminghamUK
- Institute of Physiology, Medical SchoolUniversity of PecsPécsHungary
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Xiujun Zhang
- School of PsychologyNorth China University of Science and TechnologyTang'shanChina
| |
Collapse
|
3
|
Tsukiboshi Y, Horita H, Mikami Y, Noguchi A, Yokota S, Ogata K, Yoshioka H. Involvement of microRNA-4680-3p against phenytoin-induced cell proliferation inhibition in human palate cells. J Toxicol Sci 2024; 49:1-8. [PMID: 38191190 DOI: 10.2131/jts.49.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Cleft palate (CP) is one of the most common birth defects and is caused by a combination of genetic and/or environmental factors. Environmental factors such as pharmaceutical exposure in pregnant women are known to induce CP. Recently, microRNA (miRNA) was found to be affected by environmental factors. The aim of the present study was to investigate the involvement of miRNA against phenytoin (PHE)-induced inhibition of proliferation in human embryonic palatal mesenchymal (HEPM) cells. We demonstrated that PHE inhibited HEPM cell proliferation in a dose-dependent manner. We found that treatment with PHE downregulated cyclin-D1 and cyclin-E expressions in HEPM cells. Furthermore, PHE increased miR-4680-3p expression and decreased two downstream genes (ERBB2 and JADE1). Importantly, an miR-4680-3p-specific inhibitor restored HEPM cell proliferation and altered expression of ERBB2 and JADE1 in cells treated with PHE. These results suggest that PHE suppresses cell proliferation via modulation of miR-4680-3p expression.
Collapse
Affiliation(s)
| | - Hanane Horita
- Department of Pharmacy, Gifu University of Medical Science
| | - Yurie Mikami
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | - Azumi Noguchi
- Department Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Kenichi Ogata
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University
| | | |
Collapse
|
4
|
Liu B, Lu Y, Taledaohan A, Qiao S, Li Q, Wang Y. The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors. Molecules 2023; 29:75. [PMID: 38202657 PMCID: PMC10779805 DOI: 10.3390/molecules29010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Increased glycolysis is a key characteristic of malignant cells that contributes to their high proliferation rates and ability to develop drug resistance. The glycolysis rate-limiting enzyme hexokinase II (HK II) is overexpressed in most tumor cells and significantly affects tumor development. This paper examines the structure of HK II and the specific biological factors that influence its role in tumor development, as well as the potential of HK II inhibitors in antitumor therapy. Furthermore, we identify and discuss the inhibitors of HK II that have been reported in the literature.
Collapse
Affiliation(s)
- Bingru Liu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Shi Qiao
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Qingyan Li
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
Ma X, Chen J, Huang B, Fu S, Qu S, Yu R, Zhao Y. ErbB2-upregulated HK1 and HK2 promote breast cancer cell proliferation, migration and invasion. Med Oncol 2023; 40:154. [PMID: 37079118 DOI: 10.1007/s12032-023-02008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/24/2023] [Indexed: 04/21/2023]
Abstract
ErbB2 is overexpressed in 15-20% of breast cancer, which is associated with malignancy and poor prognosis. We previously reported that ErbB2 supports malignant progression of breast cancer by upregulating lactate dehydrogenase A (LDHA), an important enzyme in glycolysis. However, whether ErbB2 promotes breast cancer progression through other glycolytic enzymes remains unclear. Hexokinase 1 (HK1) and hexokinase 2 (HK2) are the first rate-limiting enzymes of glycolysis and both of them are increased in breast cancer. Here, we aim to investigate whether ErbB2 upregulates HK1 and HK2 and the role of HK1 and HK2 in the malignant progression of ErbB2-overexpressing breast cancer. In current study, we found that the mRNA level of ErbB2 was positively correlated with that of HK1 and HK2, respectively. Moreover, ErbB2 upregulated the protein levels of HK1 and HK2 in breast cancer cells. We also found that both siHK1 and siHK2 significantly inhibited the proliferation, migration and invasion of ErbB2-overexpressing breast cancer cells. Taken together, our findings suggested that ErbB2 promoted the malignant progression of breast cancer cells by upregulating HK1 and HK2, and HK1 and HK2 might serve as promising therapeutic targets for ErbB2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Xuejiao Ma
- Department of Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
- Department of Pharmacy, The First People's Hospital of Kunming City, Kunming, 650500, China
| | - Jingruo Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Bohan Huang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Shiqi Fu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Shuai Qu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Rong Yu
- Department of Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China.
| | - Yuhua Zhao
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
6
|
3-Bromopyruvate alleviates the development of monocrotaline-induced rat pulmonary arterial hypertension by decreasing aerobic glycolysis, inducing apoptosis, and suppressing inflammation. Chin Med J (Engl) 2020; 133:49-60. [PMID: 31923104 PMCID: PMC7028200 DOI: 10.1097/cm9.0000000000000577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PH) is a progressive disease with limited therapeutic options, ultimately leading to right heart failure and death. Recent findings indicate the role of the Warburg effect (aerobic glycolysis) in the development of PH. However, the effect of the glycolysis inhibitor 3-bromopyruvate (3-BrPA) on the pathogenesis of PH has not been well investigated. This study aimed to determine whether 3-BrPA inhibits PH and its possible mechanism. METHODS PH was induced in adult Sprague-Dawley rats by a single intraperitoneal injection of monocrotaline (MCT). 3-BrPA, or phosphate-buffered saline (PBS) was administered via intraperitoneal injection every other day from the first day of MCT-injection to 4 weeks of follow-up, and indices such as right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), pulmonary arteriolar remodeling indicated by percent media thickness (% MT), lactate levels and glucose consumption, were evaluated. Pulmonary arteriolar remodeling and right ventricular hypertrophy were observed in hematoxylin-eosin-stained lung sections. Western blotting, immunohistochemistry, and/or immunofluorescence analyses were used to measure the expression of relevant proteins. A cytochrome C release apoptosis assay and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling staining were used to measure cell apoptosis. RESULTS MCT-induced PH showed a significant increase in glucose consumption (0 vs. 4 weeks: 0.87 ± 0.23 vs. 2.94 ± 0.47, P = 0.0042) and lactate production (0 vs. 4 weeks: 4.19 ± 0.34 vs. 8.06 ± 0.67, P = 0.0004). Treatment with 3-BrPA resulted in a concomitant reduction in glucose consumption (1.10 ± 0.35 vs. 3.25 ± 0.47, P = 0.0063), lactate production (5.09 ± 0.55 vs. 8.06 ± 0.67, P = 0.0065), MCT-induced increase in RVSP (39.70 ± 2.94 vs. 58.85 ± 2.32, P = 0.0004), pulmonary vascular remodeling (% MT, 43.45% ± 1.41% vs. 63.66% ± 1.78%, P < 0.0001), and right ventricular hypertrophy (RVHI, 38.57% ± 2.69% vs. 62.61% ± 1.57%, P < 0.0001) when compared with those of the PBS-treated group. 3-BrPA, a hexokinase 2 inhibitor, exerted its beneficial effect on PH by decreasing aerobic glycolysis and was also associated with inhibiting the expression of glucose transporter protein-1, inducing apoptosis, and suppressing inflammation. CONCLUSIONS 3-BrPA might have a potential beneficial effect on the PH treatment.
Collapse
|
7
|
Srivastava T, Joshi T, Jiang Y, Heruth DP, Rezaiekhaligh MH, Novak J, Staggs VS, Alon US, Garola RE, El-Meanawy A, McCarthy ET, Zhou J, Boinpelly VC, Sharma R, Savin VJ, Sharma M. Upregulated proteoglycan-related signaling pathways in fluid flow shear stress-treated podocytes. Am J Physiol Renal Physiol 2020; 319:F312-F322. [PMID: 32628542 DOI: 10.1152/ajprenal.00183.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ultrafiltrate flow over the major processes and cell body generates fluid flow shear stress (FFSS) on podocytes. Hyperfiltration-associated increase in FFSS can lead to podocyte injury and detachment. Previously, we showed that FFSS-induced upregulation of the cyclooxygenase 2 (COX2)-PGE2-prostaglandin E receptor 2 (EP2) axis in podocytes activates Akt-glycogen synthase kinase-3β-β-catenin and MAPK/ERK signaling in response to FFSS. Integrative MultiOmics Pathway Resolution (IMPRes) is a new bioinformatic tool that enables simultaneous time-series analysis of more than two groups to identify pathways and molecular connections. In the present study, we used previously characterized COX2 [prostaglandin-endoperoxide synthase 2 (Ptgs2)], EP2 (Ptger2), and β1-catenin (Ctnnb1) as "seed genes" from an array data set of four groups analyzed over a time course. The 3 seed genes shared 7 pathways and 50 genes of 14 pathways and 89 genes identified by IMPRes. A composite of signaling pathways highlighted the temporal molecular connections during mechanotransduction signaling in FFSS-treated podocytes. We investigated the "proteoglycans in cancer" and "galactose metabolism" pathways predicted by IMPRes. A custom-designed PCR array validated 60.7% of the genes predicted by IMPRes analysis, including genes for the above-named pathways. Further validation using Western blot analysis showed increased expression of phosho-Erbb2, phospho-mammalian target of rapamycin (mTOR), CD44, and hexokinase II (Hk2); decreased total Erbb2, galactose mutarotase (Galm), and β-1,4-galactosyltransferase 1 (B4galt1); and unchanged total mTOR and AKT3. These findings corroborate our previously reported results. This study demonstrates the potential of the IMPRes method to identify novel pathways. Identifying the "proteoglycans in cancer" and "galactose metabolism" pathways has generated a lead to study the significance of FFSS-induced glycocalyx remodeling and possible detachment of podocytes from the glomerular matrix.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri.,Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Department of Oral and Craniofacial Sciences, University of Missouri School of Dentistry, Kansas City, Missouri
| | - Trupti Joshi
- Department of Health Management and Informatics and University of Missouri Informatics Institute, University of Missouri, Columbia, Missouri.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,MU Data Science and Informatics Institute, University of Missouri, Columbia, Missouri
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Daniel P Heruth
- Children's Mercy Research Institute, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri
| | - Mohamed H Rezaiekhaligh
- Section of Nephrology, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri
| | - Jan Novak
- Department of Microbiology, University of Alabama, Birmingham, Alabama
| | - Vincent S Staggs
- Biostatistics and Epidemiology Core, Children's Mercy Kansas City, Department of Pediatrics, University of Missouri, Kansas City, Missouri
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri, Kansas City, Missouri
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri, Kansas City
| | - Ashraf El-Meanawy
- Division of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Varun C Boinpelly
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Ram Sharma
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Virginia J Savin
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation, Kansas City, Missouri.,Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| |
Collapse
|
8
|
Li X, Zhang D, Ding J, Li L, Wang Z. Identification of ATP2C1 mutations in the patients of Hailey-Hailey disease. BMC MEDICAL GENETICS 2020; 21:120. [PMID: 32487029 PMCID: PMC7268385 DOI: 10.1186/s12881-020-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/20/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Familial benign chronic pemphigus, also known as Hailey-Hailey disease (HHD), is a clinically rare bullous Dermatosis. However the mechanism has not been clarified. The study aim to detect novel mutations in exons of ATP2C1 gene in HHD patients; to explore the possible mechnism of HHD pathogenesis by examining the expression profile of hSPCA1, miR-203, p63, Notch1 and HKII proteins in the skin lesions of HHD patients. METHODS Genomic DNA was extracted from peripheral blood of HHD patients. All exons of ATP2C1 gene in HHD patients were amplified by PCR and the products were purified and sequenced. All related signaling proteins of interest were stained by using skin lesion tissues from HHD patients and miR-203 levels were also determined. RESULTS One synonymous mutation c.G2598A (in exon 26), one nonsense mutation c.C635A and two missense mutations c.C1286A (p.A429D) and c. A1931G (p. D644G) were identified. The nonsense mutation changed codon UCG to stop codon UAG, causing a premature polypeptide chain of the functional region A. The two missense mutations were located in the region P (phosphorylation region) and the Mn binding site of hSPCA1. The level of hSPCA1 was significantly decreased in HHD patients compared to the normal human controls, accompanied by an increase of miR-203 level and a decrease of p63 and HKII levels. CONCLUSION In our study, we found four mutations in HHD. Meanwhile we found increase of miR-203 level and a decrease of p63 and HKII levels. In addition, Notch1, which was negatively regulated p63, is downregulated. These factors may be involved in the signaling pathways of HHD pathogenesis. Our data showed that both p63 and miR-203 may have significant regulatory effects on Notch1 in the skin.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Dingwei Zhang
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiahui Ding
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Li Li
- Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhenghui Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, NO. 157 Xi Wu Road, Xi'an, 710004, Shaan'xi Province, China.
| |
Collapse
|
9
|
Kanhaiya K, Czeizler E, Gratie C, Petre I. Controlling Directed Protein Interaction Networks in Cancer. Sci Rep 2017; 7:10327. [PMID: 28871116 PMCID: PMC5583175 DOI: 10.1038/s41598-017-10491-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Control theory is a well-established approach in network science, with applications in bio-medicine and cancer research. We build on recent results for structural controllability of directed networks, which identifies a set of driver nodes able to control an a-priori defined part of the network. We develop a novel and efficient approach for the (targeted) structural controllability of cancer networks and demonstrate it for the analysis of breast, pancreatic, and ovarian cancer. We build in each case a protein-protein interaction network and focus on the survivability-essential proteins specific to each cancer type. We show that these essential proteins are efficiently controllable from a relatively small computable set of driver nodes. Moreover, we adjust the method to find the driver nodes among FDA-approved drug-target nodes. We find that, while many of the drugs acting on the driver nodes are part of known cancer therapies, some of them are not used for the cancer types analyzed here; some drug-target driver nodes identified by our algorithms are not known to be used in any cancer therapy. Overall we show that a better understanding of the control dynamics of cancer through computational modelling can pave the way for new efficient therapeutic approaches and personalized medicine.
Collapse
Affiliation(s)
- Krishna Kanhaiya
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
| | - Eugen Czeizler
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
- National Institute for Research and Development for Biological Sciences, Bucharest, Romania
| | - Cristian Gratie
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
| | - Ion Petre
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland.
| |
Collapse
|
10
|
Roy D, Sheng GY, Herve S, Carvalho E, Mahanty A, Yuan S, Sun L. Interplay between cancer cell cycle and metabolism: Challenges, targets and therapeutic opportunities. Biomed Pharmacother 2017; 89:288-296. [PMID: 28235690 DOI: 10.1016/j.biopha.2017.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 12/31/2022] Open
Abstract
A growing interest has emerged in the field of studying the cross-talk between cancer cell cycle and metabolism. In this review, we aimed to present how metabolism and cell cycle are correlated and how cancer cells get energy to drive cell cycle. Cell proliferation and cell death largely depend on the metabolic activity of the cell. Cell cycle proteins, e.g. cyclin D, cyclin dependent kinase (CDK), some pro-apoptotic and anti-apoptotic proteins, and P53 have been shown to be regulated by metabolic crosstalk. Dysregulation of this cross-talk between metabolism and cell cycle leads to degenerative disorder(s) and cancer. It is not fully understood the actual reason of aberration between metabolism and cell cycle, but it is a hallmark of cancer research. Herein, we discussed the role of some regulatory molecules relative of cell cycle and metabolism and highlight how they control the function of each other. We also pointed out, current therapeutic opportunities and some additional crucial therapeutic targets on these fields that could be a breakthrough in cancer research.
Collapse
Affiliation(s)
- Debmalya Roy
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Gao Ying Sheng
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| | - Semukunzi Herve
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Evandro Carvalho
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Arpan Mahanty
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Li Sun
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|