1
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
2
|
Ochoa SV, Casas Z, Albarracín SL, Sutachan JJ, Torres YP. Therapeutic potential of TRPM8 channels in cancer treatment. Front Pharmacol 2023; 14:1098448. [PMID: 37033630 PMCID: PMC10073478 DOI: 10.3389/fphar.2023.1098448] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer is a multifactorial process associated with changes in signaling pathways leading to cell cycle variations and gene expression. The transient receptor potential melastatin 8 (TRPM8) channel is a non-selective cation channel expressed in neuronal and non-neuronal tissues, where it is involved in several processes, including thermosensation, differentiation, and migration. Cancer is a multifactorial process associated with changes in signaling pathways leading to variations in cell cycle and gene expression. Interestingly, it has been shown that TRPM8 channels also participate in physiological processes related to cancer, such as proliferation, survival, and invasion. For instance, TRPM8 channels have an important role in the diagnosis, prognosis, and treatment of prostate cancer. In addition, it has been reported that TRPM8 channels are involved in the progress of pancreatic, breast, bladder, colon, gastric, and skin cancers, glioblastoma, and neuroblastoma. In this review, we summarize the current knowledge on the role of TRPM8 channels in cancer progression. We also discuss the therapeutic potential of TRPM8 in carcinogenesis, which has been proposed as a molecular target for cancer therapy.
Collapse
Affiliation(s)
- Sara V. Ochoa
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| |
Collapse
|
3
|
Jones CA, Hazlehurst LA. Role of Calcium Homeostasis in Modulating EMT in Cancer. Biomedicines 2021; 9:1200. [PMID: 34572386 PMCID: PMC8471317 DOI: 10.3390/biomedicines9091200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Calcium is essential for cells to perform numerous physiological processes. In cancer, the augmentation of calcium signaling supports the more proliferative and migratory cells, which is a characteristic of the epithelial-to-mesenchymal transition (EMT). By genetically and epigenetically modifying genes, channels, and entire signaling pathways, cancer cells have adapted to survive with an extreme imbalance of calcium that allows them to grow and metastasize in an abnormal manner. This cellular remodeling also allows for the evasion of immune surveillance and the development of drug resistance, which lead to poor prognosis in patients. Understanding the role calcium flux plays in driving the phenotypes associated with invasion, immune suppression, metastasis, and drug resistance remains critical for determining treatments to optimize clinical outcomes and future drug discovery.
Collapse
Affiliation(s)
| | - Lori A. Hazlehurst
- Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
4
|
Di Pompo G, Cortini M, Baldini N, Avnet S. Acid Microenvironment in Bone Sarcomas. Cancers (Basel) 2021; 13:cancers13153848. [PMID: 34359749 PMCID: PMC8345667 DOI: 10.3390/cancers13153848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Although rare, malignant bone sarcomas have devastating clinical implications for the health and survival of young adults and children. To date, efforts to identify the molecular drivers and targets have focused on cancer cells or on the interplay between cancer cells and stromal cells in the tumour microenvironment. On the contrary, in the current literature, the role of the chemical-physical conditions of the tumour microenvironment that may be implicated in sarcoma aggressiveness and progression are poorly reported and discussed. Among these, extracellular acidosis is a well-recognized hallmark of bone sarcomas and promotes cancer growth and dissemination but data presented on this topic are fragmented. Hence, we intended to provide a general and comprehensive overview of the causes and implications of acidosis in bone sarcoma. Abstract In bone sarcomas, extracellular proton accumulation is an intrinsic driver of malignancy. Extracellular acidosis increases stemness, invasion, angiogenesis, metastasis, and resistance to therapy of cancer cells. It reprograms tumour-associated stroma into a protumour phenotype through the release of inflammatory cytokines. It affects bone homeostasis, as extracellular proton accumulation is perceived by acid-sensing ion channels located at the cell membrane of normal bone cells. In bone, acidosis results from the altered glycolytic metabolism of bone cancer cells and the resorption activity of tumour-induced osteoclasts that share the same ecosystem. Proton extrusion activity is mediated by extruders and transporters located at the cell membrane of normal and transformed cells, including vacuolar ATPase and carbonic anhydrase IX, or by the release of highly acidic lysosomes by exocytosis. To date, a number of investigations have focused on the effects of acidosis and its inhibition in bone sarcomas, including studies evaluating the use of photodynamic therapy. In this review, we will discuss the current status of all findings on extracellular acidosis in bone sarcomas, with a specific focus on the characteristics of the bone microenvironment and the acid-targeting therapeutic approaches that are currently being evaluated.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Margherita Cortini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
5
|
Xu Q, Kong N, Zhang J, Bai N, Bi J, Li W. Expression of transient receptor potential cation channel subfamily M member 8 in gastric cancer and its clinical significance. Exp Ther Med 2021; 21:377. [PMID: 33680099 PMCID: PMC7918222 DOI: 10.3892/etm.2021.9808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022] Open
Abstract
Transient receptor potential cation channel subfamily M member (TRPM8) is abnormally expressed in many malignant tumors, such as breast cancer and pancreatic cancer, but its expression in gastric cancer (GC) has remained unclear. The present study aimed to detect TRPM8 expression and to explore its clinical significance in GC. Western blotting and immunohistochemistry were used to detect the protein expression of TRPM8 in 134 pairs of GC and adjacent healthy tissues. The association of TRMP8 with the 5-year overall survival rate of patients with GC was assessed using a Cox regression model. TRPM8 protein expression was significantly elevated (P<0.05) in gastric tumor cells (SUN-1, AGS, SNU-5 and NCI-N87) and was significantly associated with tumor diameter (P=0.003), Tumor-Node-Metastasis stage (P=0.003), lymph node metastasis (P=0.001) and cancer cell remote metastasis (P=0.010) in patients with GC. The expression of TRPM8 protein was significantly higher in GC patients with a tumor diameter of ≥2.5 cm. Additionally, TRPM8 protein expression in patients with metastases was significantly higher compared with patients without metastasis. Cox regression analysis revealed that TRPM8 protein expression was an independent risk factor for prognosis (odds ratio, 1.625; 95% CI=0.552-3.128) in patients with GC. In addition, the 5-year overall survival rate of patients with high expression of TRPM8 protein (64.44%) in GC was significantly lower compared with patients with low expression (12.36%). TRPM8 was highly expressed in GC tissues and may promote GC cell proliferation and metastasis in vivo.
Collapse
Affiliation(s)
- Qiqi Xu
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Na Kong
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Jun Zhang
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Nan Bai
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Jingtao Bi
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Wendong Li
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| |
Collapse
|
6
|
TRPM8 channel inhibitor-encapsulated hydrogel as a tunable surface for bone tissue engineering. Sci Rep 2021; 11:3730. [PMID: 33580126 PMCID: PMC7881029 DOI: 10.1038/s41598-021-81041-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
A major limitation in the bio-medical sector is the availability of materials suitable for bone tissue engineering using stem cells and methodology converting the stochastic biological events towards definitive as well as efficient bio-mineralization. We show that osteoblasts and Bone Marrow-derived Mesenchymal Stem Cell Pools (BM-MSCP) express TRPM8, a Ca2+-ion channel critical for bone-mineralization. TRPM8 inhibition triggers up-regulation of key osteogenesis factors; and increases mineralization by osteoblasts. We utilized CMT:HEMA, a carbohydrate polymer-based hydrogel that has nanofiber-like structure suitable for optimum delivery of TRPM8-specific activators or inhibitors. This hydrogel is ideal for proper adhesion, growth, and differentiation of osteoblast cell lines, primary osteoblasts, and BM-MSCP. CMT:HEMA coated with AMTB (TRPM8 inhibitor) induces differentiation of BM-MSCP into osteoblasts and subsequent mineralization in a dose-dependent manner. Prolonged and optimum inhibition of TRPM8 by AMTB released from the gels results in upregulation of osteogenic markers. We propose that AMTB-coated CMT:HEMA can be used as a tunable surface for bone tissue engineering. These findings may have broad implications in different bio-medical sectors.
Collapse
|
7
|
Nair V, Tran M, Behar RZ, Zhai S, Cui X, Phandthong R, Wang Y, Pan S, Luo W, Pankow JF, Volz DC, Talbot P. Menthol in electronic cigarettes: A contributor to respiratory disease? Toxicol Appl Pharmacol 2020; 407:115238. [PMID: 32950532 PMCID: PMC8167901 DOI: 10.1016/j.taap.2020.115238] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/15/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
Menthol is widely used in tobacco products. This study compared the effects of menthol on human bronchial epithelium using submerged cultures, a VITROCELL® cloud chamber that provides air liquid interface (ALI) exposure without solvents or heating, and a Cultex ALI system that delivers aerosol equivalent to that inhaled during vaping. In submerged culture, menthol significantly increased calcium influx and mitochondrial reactive oxygen species (ROS) via the TRPM8 receptor, responses that were inhibited by a TRPM8 antagonist. VITROCELL® cloud chamber exposure of BEAS-2B monolayers increased mitochondrial protein oxidation, expression of the antioxidant enzyme SOD2, activation of NF-κB, and secretion of inflammatory cytokines (IL-6 and IL-8). Proteomics data collected following ALI exposure of 3D EpiAirway tissue in the Cultex showed upregulation of NRF-2-mediated oxidative stress, oxidative phosphorylation, and IL-8 signaling. Across the three platforms, menthol adversely effected human bronchial epithelium in a manner that could lead to respiratory disease.
Collapse
Affiliation(s)
- Vijayalekshmi Nair
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Malcolm Tran
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Rachel Z Behar
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Song Zhai
- Department of Statistics, University of California, Riverside, CA 92521, USA
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA 92521, USA
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Yuhuan Wang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Songqin Pan
- Proteomics Facility IIGB, University of California, Riverside, CA 92521, USA
| | - Wentai Luo
- Department of Civil and Environmental Engineering, Portland State University, Portland, OR, USA
| | - James F Pankow
- Department of Civil and Environmental Engineering, Portland State University, Portland, OR, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
8
|
De Logu F, Ugolini F, Caporalini C, Palomba A, Simi S, Portelli F, Campanacci DA, Beltrami G, Massi D, Nassini R. TRPA1 Expression in Synovial Sarcoma May Support Neural Origin. Biomolecules 2020; 10:biom10101446. [PMID: 33076385 PMCID: PMC7602570 DOI: 10.3390/biom10101446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Synovial sarcoma (SS) is a malignant mesenchymal soft tissue neoplasm. Despite its name, the cells of origin are not synovial cells, but rather neural, myogenic, or multipotent mesenchymal stem cells have been proposed as possible cells originators. Unlike other sarcomas, an unusual presentation of long-term pain at the tumor site has been documented, but the exact mechanisms have not been fully clarified yet. The transient receptor potential ankyrin 1 (TRPA1) is a nonselective cation channel mainly expressed in primary sensory neurons, where it functions as a pain sensor. TRPA1 have also been described in multiple non-excitable cells, including those derived from neural crest stem cells such as glial cells and, in particular, Schwann cell oligodendrocytes and astrocytes. We evaluated TRPA1 expression in SS. We selected a cohort of 41 SSs, and by immunohistochemistry, we studied TRPA1 expression. TRPA1 was found in 92.6% of cases. Triple TRPA1/pS100/SOX10 and TRPA1/SLUG/SNAIL staining strongly supports a neural origin of SS. TRPA1 positivity was also observed in a subset of cases negative with pS100, SOX10 and/or SLUG/SNAIL, and these divergent phenotypes may reflect a process of tumor plasticity and dedifferentiation of neural-derived SSs. Given the functional diversity of TRPA1 and its expression in neuronal and non-neuronal multipotent neural crest stem cells, it remains to be determined whether TRPA1 expression in SSs neoplastic cells plays a role in the molecular mechanism associated with premonitory pain symptoms and tumor progression.
Collapse
Affiliation(s)
- Francesco De Logu
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.D.L.); (R.N.)
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | | | - Annarita Palomba
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | - Sara Simi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | - Francesca Portelli
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
| | - Domenico Andrea Campanacci
- Orthopedics and Traumatology Section, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.A.C.); (G.B.)
| | - Giovanni Beltrami
- Orthopedics and Traumatology Section, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (D.A.C.); (G.B.)
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.U.); (A.P.); (S.S.); (F.P.)
- Correspondence: ; Tel.: +39-055-794-9082
| | - Romina Nassini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, 50139 Florence, Italy; (F.D.L.); (R.N.)
| |
Collapse
|
9
|
Chinigò G, Fiorio Pla A, Gkika D. TRP Channels and Small GTPases Interplay in the Main Hallmarks of Metastatic Cancer. Front Pharmacol 2020; 11:581455. [PMID: 33132914 PMCID: PMC7550629 DOI: 10.3389/fphar.2020.581455] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential (TRP) cations channels, as key regulators of intracellular calcium homeostasis, play a central role in the essential hallmarks of cancer. Among the multiple pathways in which TRPs may be involved, here we focus our attention on the ones involving small guanosine triphosphatases (GTPases), summarizing the main processes associated with the metastatic cascade, such as migration, invasion and tumor vascularization. In the last decade, several studies have highlighted a bidirectional interplay between TRPs and small GTPases in cancer progression: TRP channels may affect small GTPases activity via both Ca2+-dependent or Ca2+-independent pathways, and, conversely, some small GTPases may affect TRP channels activity through the regulation of their intracellular trafficking to the plasma membrane or acting directly on channel gating. In particular, we will describe the interplay between TRPC1, TRPC5, TRPC6, TRPM4, TRPM7 or TRPV4, and Rho-like GTPases in regulating cell migration, the cooperation of TRPM2 and TRPV2 with Rho GTPases in increasing cell invasiveness and finally, the crosstalk between TRPC1, TRPC6, TRPM8, TRPV4 and both Rho- and Ras-like GTPases in inducing aberrant tumor vascularization.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Alessandra Fiorio Pla
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Dimitra Gkika
- Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France.,Univ. Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
10
|
Catacuzzeno L, Sforna L, Esposito V, Limatola C, Franciolini F. Ion Channels in Glioma Malignancy. Rev Physiol Biochem Pharmacol 2020; 181:223-267. [DOI: 10.1007/112_2020_44] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Wong KK, Banham AH, Yaacob NS, Nur Husna SM. The oncogenic roles of TRPM ion channels in cancer. J Cell Physiol 2019; 234:14556-14573. [PMID: 30710353 DOI: 10.1002/jcp.28168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
12
|
Aung T, Asam C, Haerteis S. Ion channels in sarcoma: pathophysiology and treatment options. Pflugers Arch 2019; 471:1163-1171. [PMID: 31377822 DOI: 10.1007/s00424-019-02299-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
Sarcomas are characterized by aggressive growth and a high metastasis potentially leading in most cases to a lethal outcome. These malignant tumors of the connective tissue have a high heterogeneity with numerous genetic mutations resulting in more than 100 types of sarcoma that can be grouped into two main kinds: soft tissue sarcoma and bone sarcoma. Sarcomas are often diagnosed at late disease stage, whereas a guaranteed diagnosis of the sarcoma type is fundamental for successful therapy. However, there is no appropriate therapy available. Therefore, the need for new therapies, which prolong survival and improve quality of life, is high. In the last two decades, the role of ion channels in cancer has emerged. Ion channels seem to be an ideal target for anti-tumor therapies. However, different cancer types have their own altered ion channel pattern, and the knowledge about the tumor-associated ion channel expression is fundamental. Here, we focus on the role of different ion channels in sarcoma, their pathophysiology, and possible treatment options.
Collapse
Affiliation(s)
- Thiha Aung
- Abteilung für Plastische, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Claudia Asam
- Lehrstuhl für Molekulare und Zelluläre Anatomie, Universität Regensburg, 93053, Regensburg, Germany
| | - Silke Haerteis
- Lehrstuhl für Molekulare und Zelluläre Anatomie, Universität Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
13
|
Liu J, Hu G, Gong Y, Yu Q, He B, Li W, He Z, Hao W, He Z, Liu Y. Silencing of TRPM8 inhibits aggressive tumor phenotypes and enhances gemcitabine sensitivity in pancreatic cancer. Pancreatology 2018; 18:935-944. [PMID: 30316690 DOI: 10.1016/j.pan.2018.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/04/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
The transient receptor potential TRPM8 ion channel is required for cellular proliferation in pancreatic epithelia and adenocarcinoma. To elucidate the mechanism that mediates the function of TRPM8, we examined its role in the proliferation and invasion of pancreatic cancer (PC) cells. TRPM8 expression increased in both the PC tissues and cell lines; a high TRPM8 expression was correlated with poorer prognosis in patients with PC. In PC cell lines, PACN-1 and BxPC-3, Ca2+ influxes could be evoked by TRPM8; the sensitivity of PC cells to gemcitabine was increased, while the proliferation and invasion of PC cells were suppressed after RNA interference-mediated silencing of TRPM8. The mechanism of TRPM8 in gemcitabine-based chemotherapy was then investigated. The expression and activity of multidrug resistance-associated proteins, P-gp, MRP-2, LRP, was significantly reduced in response to TRPM8 silence. Moreover, TRPM8 knockdown significantly increased hENT1 protein levels and the ratio of Bax/Bcl-2 while decreased the protein levels of RRM1. Thus, TRPM8 is required for PC cell proliferation and invasion and was closely related to the gemcitabine sensitivity of PC. The modulation of TRPM8 expression may help improve treatment response of PC by combining with traditional chemotherapy.
Collapse
Affiliation(s)
- JieFeng Liu
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - GuoHuang Hu
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - YuJing Gong
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - QianLe Yu
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - Bin He
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - WangHao Li
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - ZhiGuo He
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - WenJie Hao
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - ZiChao He
- Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University, Changsha, 410006, People's Republic of China
| | - YiPing Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.
| |
Collapse
|
14
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
15
|
Du JD, Zheng X, Chen YL, Huang ZQ, Cai SW, Jiao HB, Zhu ZM, Hu B. Elevated Transient Receptor Potential Melastatin 8 (TRPM8) Expression Is Correlated with Poor Prognosis in Pancreatic Cancer. Med Sci Monit 2018; 24:3720-3725. [PMID: 29860264 PMCID: PMC6015479 DOI: 10.12659/msm.909968] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The transient receptor potential melastatin 8 (TRPM8) was found to be expressed abnormally in a variety of tumors and is associated with unfavorable prognosis in human cancers. However, its clinical significance in pancreatic cancer (PC) is mostly unknown. MATERIAL AND METHODS qRT-PCR was performed to measure the expression of TRPM8 in 110 pairs of PC tissues and the adjacent non-cancerous tissues. The association of TRPM8 expression with the clinical characters of PC patients was analyzed using the chi-square test. Furthermore, the prognostic value of TRPM8 was determined with Kaplan-Meier survival curve and Cox regression analysis. RESULTS We found that the expression level of TRPM8 was significantly elevated in PC tissues compared to the non-cancerous controls (P<0.001). In addition, a close relationship was observed between elevated TRPM8 expression with large tumor size (P=0.001), advanced TNM (P=0.013), and distant metastasis (P=0.034). Survival analysis suggested that patients with high TRPM8 expression has worse OS (P=0.001) and DFS (P<0.001) than those with low TRPM8 expression. Moreover, TRPM8 was confirmed as a valuable prognostic biomarker for OS (HR=1.913; 95% CI: 1.020-3.589; P=0.043) or DFS (HR=2.374; 95% CI: 1.269-4.443; P=0.007) of PC patients. CONCLUSIONS This study shows that TRPM8 expression is significantly up-regulated in PC and it might be a useful prognostic factor for patients with PC.
Collapse
Affiliation(s)
- Jun-Dong Du
- Department of Heptapobiliary Surgery, First Affiliated Hospital to General Hospital of the PLA, Beijing, China (mainland)
| | - Xi Zheng
- Department of Division Three for Senior Officers, First Affiliated Hospital to General Hospital of the PLA, Beijing, China (mainland)
| | - Yong-Liang Chen
- Department of Heptapobiliary Surgery, General Hospital of PLA, Beijing, China (mainland)
| | - Zhi-Qiang Huang
- Department of Heptapobiliary Surgery, General Hospital of PLA, Beijing, China (mainland)
| | - Shou-Wang Cai
- Department of Heptapobiliary Surgery, General Hospital of PLA, Beijing , China (mainland)
| | - Hua-Bo Jiao
- Department of Heptapobiliary Surgery, First Affiliated Hospital to General Hospital of the PLA, Beijing, China (mainland)
| | - Zi-Man Zhu
- Department of Heptapobiliary Surgery, First Affiliated Hospital to General Hospital of the PLA, Beijing, China (mainland)
| | - Bin Hu
- Department of Heptapobiliary Surgery, First Affiliated Hospital to General Hospital of the PLA, Beijing, China (mainland)
| |
Collapse
|
16
|
Fels B, Bulk E, Pethő Z, Schwab A. The Role of TRP Channels in the Metastatic Cascade. Pharmaceuticals (Basel) 2018; 11:E48. [PMID: 29772843 PMCID: PMC6027473 DOI: 10.3390/ph11020048] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
A dysregulated cellular Ca2+ homeostasis is involved in multiple pathologies including cancer. Changes in Ca2+ signaling caused by altered fluxes through ion channels and transporters (the transportome) are involved in all steps of the metastatic cascade. Cancer cells thereby "re-program" and "misuse" the cellular transportome to regulate proliferation, apoptosis, metabolism, growth factor signaling, migration and invasion. Cancer cells use their transportome to cope with diverse environmental challenges during the metastatic cascade, like hypoxic, acidic and mechanical cues. Hence, ion channels and transporters are key modulators of cancer progression. This review focuses on the role of transient receptor potential (TRP) channels in the metastatic cascade. After briefly introducing the role of the transportome in cancer, we discuss TRP channel functions in cancer cell migration. We highlight the role of TRP channels in sensing and transmitting cues from the tumor microenvironment and discuss their role in cancer cell invasion. We identify open questions concerning the role of TRP channels in circulating tumor cells and in the processes of intra- and extravasation of tumor cells. We emphasize the importance of TRP channels in different steps of cancer metastasis and propose cancer-specific TRP channel blockade as a therapeutic option in cancer treatment.
Collapse
Affiliation(s)
- Benedikt Fels
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| |
Collapse
|
17
|
Wang Y, Yang T, Zhang Z, Lu M, Zhao W, Zeng X, Zhang W. Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells. Cancer Sci 2017; 108:859-867. [PMID: 28205334 PMCID: PMC5448616 DOI: 10.1111/cas.13201] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/07/2017] [Accepted: 02/11/2017] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNA (lncRNA) have been the focus of increasing attention due to the role they play in many diseases, including osteosarcoma. The function of taurine upregulated gene 1 (TUG1) and its mechanism in osteosarcoma remain unclear. In our research, we found that TUG1 was elevated and correlated with a poor prognosis in osteosarcoma patients. In addition, the following functional experiment showed that decreased TUG1 could remarkably inhibit osteosarcoma cell migration and invasion, indicating that TUG1 functioned as an oncogene in osteosarcoma. Moreover, we revealed that TUG1 and Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), a metastasis-related gene targeted by microRNA-335-5p (miR-335-5p), had the same miR-335-5p combining site. The subsequent luciferase assay verified TUG1 was a target of miR-335-5p. Furthermore, the results of a real-time quantitative PCR showed that TUG1 and miR-335-5p could affect each other's expression. respectively. Finally, we affirmed that TUG1 affected ROCK1 expression and ROCK1-mediated migration/invasion by working as a competitive endogenous RNA (ceRNA) via miR-335-5p. In summary, the findings of this study, based on ceRNA theory, combining the research foundation of miR-335-5p and ROCK1, and taking TUG1 as a new study point, provide new insight into molecular-level reversing migration and invasion of osteosarcoma.
Collapse
Affiliation(s)
- Yong Wang
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China.,Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tao Yang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhen Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ming Lu
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Xiandong Zeng
- Department of Surgery Oncology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Weiguo Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Wang Y, Yang T, Liu Y, Zhao W, Zhang Z, Lu M, Zhang W. Decrease of miR-195 Promotes Chondrocytes Proliferation and Maintenance of Chondrogenic Phenotype via Targeting FGF-18 Pathway. Int J Mol Sci 2017; 18:ijms18050975. [PMID: 28471382 PMCID: PMC5454888 DOI: 10.3390/ijms18050975] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Slow growth and rapid loss of chondrogenic phenotypes are the major problems affecting chronic cartilage lesions. The role of microRNA-195 (miR-195) and its detailed working mechanism in the fore-mentioned process remains unknown. Fibroblastic growth factor 18 (FGF-18) plays a key role in cartilage homeostasis; whether miR-195 could regulate FGF-18 and its downstream signal pathway in chondrocyte proliferation and maintenance of chondrogenic phenotypes still remains unclear. The present research shows elevated miR-195 but depressed FGF-18 expressed in joint fluid specimens of 20 patients with chronic cartilage lesions and in CH1M and CH3M chondrocytes when compared with that in joint fluid specimens without cartilage lesions and in CH1W and CH2W chondrocytes, respectively. The following loss of function test revealed that downregulation of miR-195 by transfection of miR-195 inhibitors promoted chondrocyte proliferation and expression of a type II collagen α I chain (Col2a1)/aggrecan. Through the online informatics analysis we theoretically predicted that miR-195 could bind to a FGF-18 3' untranslated region (3'UTR), also, we verified that a miR-195 could regulate the FGF-18 and its downstream pathway. The constructed dual luciferase assay further confirmed that FGF-18 was a direct target of miR-195. The executed anti-sense experiment displayed that miR-195 could regulate chondrocyte proliferation and Col2a1/aggrecan expression via the FGF-18 pathway. Finally, through an in vivo anterior cruciate ligament transection (ACLT) model, downregulation of miR-195 presented a significantly protective effect on chronic cartilage lesions. Evaluating all of the outcomes of the current research revealed that a decrease of miR-195 protected chronic cartilage lesions by promoting chondrocyte proliferation and maintenance of chondrogenic phenotypes via the targeting of the FGF-18 pathway and that the miR-195/FGF-18 axis could be a potential target in the treatment of cartilage lesions.
Collapse
Affiliation(s)
- Yong Wang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
- The 4th Department of Orthopedic Surgery, The Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, China.
| | - Tao Yang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yadong Liu
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Wei Zhao
- The 4th Department of Orthopedic Surgery, The Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, China.
| | - Zhen Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Ming Lu
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Weiguo Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|