1
|
Smith R, Gee KN, Kalvapudi S, Pachimatla A, Swamidoss R, Vedire Y, Washington D, Reid M, Barbi J, Yendamuri S. Sex-based differences in the lung immune microenvironment are associated with an increased risk of lung cancer in women. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00617-2. [PMID: 39019152 DOI: 10.1016/j.jtcvs.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/31/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE Lung cancer remains a major cause of mortality worldwide, necessitating further understanding of carcinogenesis and its driving factors, including those influenced by sex-dependent variables. We hypothesized that sex-specific lung immune composition may contribute to a greater risk of lung cancer in women. METHODS Data from 1056 lung cancer screenings were examined for an association between sex and lung cancer risk using time-to-event analyses. Immune profiling by flow cytometry was performed on male and female lungs of 3 independent mouse models: nontumor bearing, KRAS mutated, and urethane-exposed carcinogenic. A comparable analysis was performed on human bronchoalveolar lavage samples (n = 81) from patients with lung cancer. RESULTS Of the high-risk screening cohort examined, 60 patients (5.7%) developed lung cancer during median follow-up of 43.4 months. Multivariable stepwise modeling retained female sex (hazard ratio, 1.56; P < .01) and age (P < .01) as prognostic indicators for lung cancer development. Female lung immune profiles in patients included T-cell phenotypes consistent with exhaustion (eg, higher proportions of PD-1+ Ki67-; P = .02), an expanded pool of regulatory T-cells (P = .03), reduced effector T-cell frequencies (P = .008), and enhancements in suppressive myeloid populations (P = .02) versus male patients, and this is recapitulated in mouse studies. CONCLUSIONS Female smokers display higher risk for lung cancer. In murine models and humans, female sex is associated with robust immunosuppression within the lung. Further examination of this link will be important in developing immune-based approaches to lung cancer interception and their optimal application across the sexes.
Collapse
Affiliation(s)
- Randall Smith
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Kaylan N Gee
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY; Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tenn
| | - Sukumar Kalvapudi
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY; Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tenn
| | - Akhil Pachimatla
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Robert Swamidoss
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yeshwanth Vedire
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Deschana Washington
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Mary Reid
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Joseph Barbi
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY.
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY.
| |
Collapse
|
2
|
Sweed D, Elhamed SMA, Aiad HAS, Ehsan NA, Hemida AS, Dawoud MM. STIM1/SOX2 proteins are co-expressed in the tumor and microenvironmental stromal cells of pancreatic ductal adenocarcinoma and ampullary carcinoma. World J Surg Oncol 2024; 22:84. [PMID: 38532463 DOI: 10.1186/s12957-024-03356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and ampullary carcinoma (AAC) are lethal malignancies with modest benefits from surgery. SOX2 and STIM1 have been linked to anticancer activity in several human malignancies. This study included 94 tumor cases: 48 primary PDAC, 25 metastatic PDAC, and 21 primary AAC with corresponding non-tumor tissue. All cases were immunohistochemically stained for STIM1 and SOX2 and results were correlated with clinicopathologic data, patient survival, and BCL2 immunostaining results. Results revealed that STIM1 and SOX2 epithelial/stromal expressions were significantly higher in PDAC and AAC in comparison to the control groups. STIM1 and SOX2 expressions were positively correlated in the primary and metastatic PDAC (P = 0.016 and, P = 0.001, respectively). However, their expressions were not significantly associated with BCL2 expression. SOX2 epithelial/stromal expressions were positively correlated with the large tumor size in the primary AAC group (P = 0.052, P = 0.044, respectively). STIM1 stromal and SOX2 epithelial over-expressions had a bad prognostic impact on the overall survival of AAC (P = 0.002 and P = 0.001, respectively). Therefore, STIM1 and SOX2 co-expression in tumor cells and intra-tumoral stroma could contribute to the development of PDAC and AAC. STIM1/SOX2 expression is linked to a bad prognosis in AAC.
Collapse
Affiliation(s)
- Dina Sweed
- Pathology Department, National Liver Institute, Menoufia University, Shibin Al Koom, Egypt
| | | | - Hayam Abdel Samie Aiad
- Pathology Department, Faculty of Medicine, Menoufia University, Shibin Al Koom, 32511, Egypt
| | - Nermine Ahmed Ehsan
- Pathology Department, National Liver Institute, Menoufia University, Shibin Al Koom, Egypt
| | - Aiat Shaban Hemida
- Pathology Department, Faculty of Medicine, Menoufia University, Shibin Al Koom, 32511, Egypt
| | - Marwa Mohammed Dawoud
- Pathology Department, Faculty of Medicine, Menoufia University, Shibin Al Koom, 32511, Egypt.
| |
Collapse
|
3
|
Chandnani N, Mandal A, Gupta I, Mukherjee O, Rakshit S, Shanmugam G, George M, Sarkar K. Association of Wiskott-Aldrich syndrome protein (WASp) in epigenetic regulation of B cell differentiation in non-small-cell lung cancer (NSCLC). Med Oncol 2023; 41:28. [PMID: 38146020 DOI: 10.1007/s12032-023-02264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023]
Abstract
Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer which is the deadliest type of cancer for both men and women. Previous studies already showed that cell-intrinsic loss of WASp causes B cell tolerance and WASp deficiency in T helper (TH) cells is linked to negative effects on cytokine gene transcription necessary for TH1 differentiation. In the current study, we investigated the molecular mechanisms involved in WASp-mediated epigenetic regulation of B cell differentiation during NSCLC. Our ChIP-qPCR data suggest the less percentage enrichment of the B cell differentiating factors (Ikaros, Pax5, PU.1, BATF) and WASp across the WAS gene in the B cells of NSCLC patients in comparison with normal healthy donors and overexpression of WASp showed the reverse effects. WASp-depleted B cells while co-culturing with respective PBMCs isolated from normal healthy donors and NSCLC patients, we observed upregulation of TH2-, TH17-, and Treg-specific cytokines (IL4, ILI7A, IL10) & transcription factors (GATA3, RORC, FOXP3) and downregulation of TH1-specific cytokine (IFNγ) & transcription factor (TBX21). Our study showed that the overexpression of WASp resulted into upregulation of B cell differentiating factors, tumor suppressor protein (p53), histone methylation marker (H3K4me3) with concomitant downregulation of tumor-promoting factors (Notch 1, β-Catenin, DNAPKcs) and histone deacetylation marker (HDAC2) and increase in percentage cytotoxicity of NSCLC-specific cells (A549). Successful overexpression of WASp not only helps in epigenetic regulation of B cell differentiation but also supports tumor suppression in NSCLC. Thus, WASp can be targeted for therapeutic intervention of NSCLC.
Collapse
Affiliation(s)
- Nikhil Chandnani
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ayush Mandal
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ishika Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Oishi Mukherjee
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Leveraging Tumor Microenvironment Infiltration in Pancreatic Cancer to Identify Gene Signatures Related to Prognosis and Immunotherapy Response. Cancers (Basel) 2023; 15:cancers15051442. [PMID: 36900234 PMCID: PMC10000708 DOI: 10.3390/cancers15051442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The hallmark of pancreatic ductal adenocarcinoma (PDAC) is an exuberant tumor microenvironment (TME) comprised of diverse cell types that play key roles in carcinogenesis, chemo-resistance, and immune evasion. Here, we propose a gene signature score through the characterization of cell components in TME for promoting personalized treatments and further identifying effective therapeutic targets. We identified three TME subtypes based on cell components quantified by single sample gene set enrichment analysis. A prognostic risk score model (TMEscore) was established based on TME-associated genes using a random forest algorithm and unsupervised clustering, followed by validation in immunotherapy cohorts from the GEO dataset for its performance in predicting prognosis. Importantly, TMEscore positively correlated with the expression of immunosuppressive checkpoints and negatively with the gene signature of T cells' responses to IL2, IL15, and IL21. Subsequently, we further screened and verified F2R-like Trypsin Receptor1 (F2RL1) among the core genes related to TME, which promoted the malignant progression of PDAC and has been confirmed as a good biomarker with therapeutic potential in vitro and in vivo experiments. Taken together, we proposed a novel TMEscore for risk stratification and selection of PDAC patients in immunotherapy trials and validated effective pharmacological targets.
Collapse
|
5
|
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8 + T cells. Semin Cancer Biol 2022; 86:1045-1055. [PMID: 34048897 DOI: 10.1016/j.semcancer.2021.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell death-1 (PD-1; CD279) is a cell surface receptor that is expressed in both innate and adaptive immune cells. The role of PD-1 in adaptive immune cells, specifically in CD8+ T cells, has been thoroughly investigated but its significance in other immune cells is yet to be well established. This review will address the role of PD-1 based therapies in enhancing non-CD8+ T cell immune responses within cancer. Specifically, the expression and function of PD-1 in non-CD8+ immune cell compartments such as CD4+ T helper cell subsets, myeloid cells and innate lymphoid cells (ILCs) will be discussed. By understanding the immune cell specific function of PD-1 within tissue resident innate and adaptive immune cells, it will be possible to stratify patients for PD-1 based therapies for both immunogeneic and non-immunogeneic neoplastic disorders. With this knowledge from fundamental and translational studies, PD-1 based therapies can be utilized to enhance T cell independent immune responses in cancers.
Collapse
Affiliation(s)
- Stephanie Laba
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
6
|
Dwivedi M, Tiwari S, Kemp EH, Begum R. Implications of regulatory T cells in anti-cancer immunity: from pathogenesis to therapeutics. Heliyon 2022; 8:e10450. [PMID: 36082331 PMCID: PMC9445387 DOI: 10.1016/j.heliyon.2022.e10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Regulatory T cells (Tregs) play an essential role in maintaining immune tolerance and suppressing inflammation. However, Tregs present major hurdle in eliciting potent anti-cancer immune responses. Therefore, curbing the activity of Tregs represents a novel and efficient way towards successful immunotherapy of cancer. Moreover, there is an emerging interest in harnessing Treg-based strategies for augmenting anti-cancer immunity in different types of the disease. This review summarises the crucial mechanisms of Tregs’ mediated suppression of anti-cancer immunity and strategies to suppress or to alter such Tregs to improve the immune response against tumors. Highlighting important clinical studies, the review also describes current Treg-based therapeutic interventions in cancer, and discusses Treg-suppression by molecular targeting, which may emerge as an effective cancer immunotherapy and as an alternative to detrimental chemotherapeutic agents. Tregs are crucial in maintaining immune tolerance and suppressing inflammation. Tregs present a major obstacle to eliciting potent anti-tumor immune responses. The review summarizes current Treg-based therapeutic interventions in cancer. Treg can be an effective cancer immunotherapy target.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Tarsadi, Surat, Gujarat, 394350, India
- Corresponding author.
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, Uttar Pradesh, India
| | - E. Helen Kemp
- Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2RX, UK
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| |
Collapse
|
7
|
Sweed D, Taha M, Abd Elhamed S, Shams El Dein Mohamed A. The Prognostic Role of CD73/A2AR Expression and Tumor Immune Response in Periampullary Carcinoma Subtypes. Asian Pac J Cancer Prev 2022; 23:1239-1246. [PMID: 35485681 PMCID: PMC9375596 DOI: 10.31557/apjcp.2022.23.4.1239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/23/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Periampullary adenocarcinoma (PAAC) is a rare, lethal heterogeneous group of malignancy that differs in their molecular phenotypes. Ecto-5'-nucleotidase (CD73)/adenosine A2A Receptor (A2AR) pathway has shown an emerging role in cancer therapy through modulating the immune response. Therefore, this study aimed to explore the functional role of CD73 and A2AR in pancreatic ductal adenocarcinoma (PDAC) and ampullary carcinoma (AC). MATERIAL AND METHODS An immunohistochemical study for CD73 and A2AR carried on 48 PDAC cases, 21 AC cases and 34 adjacent non-tumor tissues that were taken from the farthest point of normal pancreatic tissue away from the tumor. RESULTS CD73 was overexpressed in the PDAC (p < 0.001), and AC (p = 0.004) groups compared to their non-tumor tissues. However, A2AR was overexpressed in the PDAC group (p = 0.003) but not in the AC group (p = 0.359) compared to non-tumor tissue. In the PDAC group, CD73 overexpression was significantly associated with longer overall survival (p = 0.018). In contrary, A2AR overexpression was significantly associated with high grade (p = 0.001) and late- stage (p = 0.01). Both markers had no prognostic impact on AC. In the meantime, tumor immune response showed a negative prognostic role in PDAC and AC. The prognostic role of tumor immune response in the PDAC group was strongly modulated by CD73 and A2AR expression. CONCLUSIONS PDAC and AC shared CD73 Overexpression while A2AR was overexpressed in PDAC only. In PDAC, CD73 and A2AR showed an opposed prognostic effect but both had no prognostic impact on AC. In addition, tumor immune response showed a controversial impact on the prognosis of PDAC and AC.
Collapse
Affiliation(s)
- Dina Sweed
- National Liver Institute, Menoufia University, Egypt.
| | - Mohammad Taha
- National Liver Institute, Menoufia University, Egypt.
| | | | | |
Collapse
|
8
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
9
|
Kiryu S, Ito Z, Suka M, Bito T, Kan S, Uchiyama K, Saruta M, Hata T, Takano Y, Fujioka S, Misawa T, Yamauchi T, Yanagisawa H, Sato N, Ohkusa T, Sugiyama H, Koido S. Prognostic value of immune factors in the tumor microenvironment of patients with pancreatic ductal adenocarcinoma. BMC Cancer 2021; 21:1197. [PMID: 34758773 PMCID: PMC8582170 DOI: 10.1186/s12885-021-08911-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Both activated tumor-infiltrating lymphocytes (TILs) and immune-suppressive cells, such as regulatory T cells (Tregs), in the tumor microenvironment (TME) play an important role in the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). METHODS The densities of TILs, programmed death receptor 1 (PD-1) + T cells, and forkhead box P3 (Foxp3) + T cells were analyzed by immunohistochemical staining. The associations of the immunological status of the PDAC microenvironment with overall survival (OS) time and disease-free survival (DFS) time were evaluated. RESULTS PDAC patients with a high density of TILs in the TME or PD-1-positive T cells in tertiary lymphoid aggregates (TLAs) demonstrated a significantly better prognosis than those with a low density of TILs or PD-1-negativity, respectively. Moreover, PDAC patients with high levels of Foxp3-expressing T cells showed a worse prognosis than those with low levels of Foxp3-expressing T cells. Importantly, even with a high density of the TILs in TME or PD-1-positive T cells in TLAs, PDAC patients with high levels of Foxp3-expressing T cells showed a worse prognosis than patients with low levels of Foxp3-expressing T cells. A PDAC TME with a high density of TILs/high PD-1 positivity/low Foxp3 expression was an independent predictive marker associated with superior prognosis. CONCLUSION Combined assessment of TILs, PD-1+ cells, and Foxp3+ T cells in the TME may predict the prognosis of PDAC patients following surgical resection.
Collapse
Affiliation(s)
- Sachie Kiryu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Tsuuse Bito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Shin Kan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Kan Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Taigo Hata
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Yuki Takano
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Shuichi Fujioka
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| | - Takashi Yamauchi
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, 3-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, 3-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita-city, Osaka, 565-0871 Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567 Japan
| |
Collapse
|
10
|
Mollica H, Teo YJ, Tan ASM, Tan DZM, Decuzzi P, Pavesi A, Adriani G. A 3D pancreatic tumor model to study T cell infiltration. Biomater Sci 2021; 9:7420-7431. [PMID: 34706370 DOI: 10.1039/d1bm00210d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The desmoplastic nature of the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME) prevents the infiltration of T cells and the penetration of chemotherapeutic drugs, posing a challenge to the validation of targeted therapies, including T cell immunotherapies. We present an in vitro 3D PDAC-TME model to observe and quantify T cell infiltration across the vasculature. In a three-channel microfluidic device, PDAC cells are cultured in a collagen matrix in the central channel surrounded, on one side, by endothelial cells (ECs) to mimic a blood vessel and, on the opposite side, by pancreatic stellate cells (PSCs) to simulate exocrine pancreas. The migration of T cells toward the tumor is quantified based on their activation state and TME composition. The presence of EC-lining drastically reduces T cell infiltration, confirming the essential role of the vasculature in controlling T cell trafficking. We show that activated T cells migrate ∼50% more than the not-activated ones toward the cancer cells. Correspondingly, in the absence of cancer cells, both activated and not-activated T cells present similar migration toward the PSCs. The proposed approach could help researchers in testing and optimizing immunotherapies for pancreatic cancer.
Collapse
Affiliation(s)
- Hilaria Mollica
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genova, 16163, Italy
| | - Yi Juan Teo
- Singapore Immunology Network, A*STAR, 8A Biomedical Groove, 138648, Singapore.
| | - Alrina Shin Min Tan
- Singapore Immunology Network, A*STAR, 8A Biomedical Groove, 138648, Singapore.
| | - Damien Zhi Ming Tan
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, 138673, Singapore
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, Genova, 16163, Italy
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, 138673, Singapore
| | - Giulia Adriani
- Singapore Immunology Network, A*STAR, 8A Biomedical Groove, 138648, Singapore. .,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
| |
Collapse
|
11
|
Prognostic Implications of Intratumoral and Peritumoral Infiltrating Lymphocytes in Pancreatic Ductal Adenocarcinoma. Curr Oncol 2021; 28:4367-4376. [PMID: 34898543 PMCID: PMC8628731 DOI: 10.3390/curroncol28060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to elucidate the prognostic implications of intratumoral and peritumoral infiltrating T-lymphocytes in pancreatic ductal adenocarcinoma (PDAC) through a meta-analysis. A total of 18 eligible studies and 2453 PDAC patients were included in the present study. Intratumoral and peritumoral infiltrating lymphocytes were evaluated using various markers, such as CD3, CD4, CD8, FOXP3, and immune cell score. The correlations between these parameters and overall and disease-free survival were investigated and used in the meta-analysis. High intratumoral infiltration of CD3-, CD4-, and CD8-expressing lymphocytes was significantly correlated with better overall survival (hazard ratio (HR) 0.747, 95% confidence interval (CI) 0.620-0.900, HR 0.755, 95% CI 0.632-0.902, and HR 0.754, 95% CI 0.611-0.930, respectively). However, there was no significant correlation between PDAC prognosis and intratumoral FOXP3 or immune cell score (HR 1.358, 95% CI 1.115-1.655 and HR 0.776, 95% CI 0.566-1.065, respectively). Moreover, there was no significant correlation between the prognosis and peritumoral infiltrating T-lymphocytes. In evaluations of disease-free survival, only high intratumoral CD4 infiltration was correlated with a better prognosis (HR 0.525, 95% CI 0.341-0.810). Our results showed that high intratumoral infiltrating lymphocytes were significantly correlated with a better PDAC prognosis. However, among the tumor-infiltrating lymphocytes, CD3, CD4, and CD8 had prognostic implications, but not FOXP3 and immune cell score.
Collapse
|
12
|
Hu L, Zhu M, Shen Y, Zhong Z, Wu B. The prognostic value of intratumoral and peritumoral tumor-infiltrating FoxP3+Treg cells in of pancreatic adenocarcinoma: a meta-analysis. World J Surg Oncol 2021; 19:300. [PMID: 34654443 PMCID: PMC8520308 DOI: 10.1186/s12957-021-02420-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs) are major participants in the tumor microenvironment. The prognostic value of TILs in patients with pancreatic cancer is still controversial. Methods The aim of our meta-analysis was to determine the impact of FoxP3+Treg cells on the survival of pancreatic cancer patients. We searched for related studies in PubMed, EMBASE, Ovid, and Cochrane Library from the time the databases were established to Mar 30, 2017. We identified studies reporting the prognostic value of FoxP3+Treg cells in patients with pancreatic cancer. Overall survival (OS) and disease-free survival (DFS)/progression-free survival (PFS)/relapse-free survival (RFS) were investigated by pooling the data. The pooled hazard ratios (HRs) with 95% confidence intervals (95% CI) were used to evaluate the association between FoxP3+Treg cells and survival outcomes of pancreatic cancer patients. A total of 972 pancreatic cancer patients from 8 studies were included in our meta-analysis. Results High levels of infiltration with FoxP3+Treg cells were significantly associated with poor OS (HR=2.13; 95% CI 1.64–2.77; P<0.05) and poor DFS/PFS/RFS (HR=1.70; 95% CI 1.04 ~ 2.78; P< 0.05). Similar results were also observed in the peritumoral tissue; high levels of FoxP3+Treg cells were associated with poor OS (HR =2.1795% CI, CI 1.50–3.13). Conclusion This meta-analysis indicated that high levels of intratumoral or peritumoral FoxP3+Treg cell infiltration could be recognized as a negative factor in the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Lingyu Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China
| | - Mingyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China.
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of JiaXing University, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
13
|
Mojtahedzadeh S, Opsahl A, Aguilar JK, Li D, Streiner N, Wang J, Trajkovic D, Boucher G, Coskran T, O'Neil SP, Ram S. Characterizing Intra-Tumor and Inter-Tumor Variability of Immune Cell Infiltrates in Murine Syngeneic Tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2133-2146. [PMID: 34428423 DOI: 10.1016/j.ajpath.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022]
Abstract
Murine tumors are indispensable model systems in preclinical immuno-oncology research. While immunologic heterogeneity is well-known to be an important factor that can influence treatment outcome, there is a severe paucity of data concerning the nature of this heterogeneity in murine tumor models. Using serial sectioning methodology combined with IHC analysis and whole-slide image analysis, the depth-dependent variation in immune-cell abundance in tumor specimens was investigated at single-cell resolution. Specifically, intra- and intertumor variability in cell density of nine immune-cell biomarkers was quantified in multiple murine tumor models. The analysis showed that intertumor variability was typically the dominant source of variation in measurements of immune-cell densities. Statistical power analysis revealed the effect of group size and variance in immune-cell density on the predictive power of detecting a statistically meaningful fold-change in immune-cell density. Intertumor variability in the ratio of immune-cell densities showed distinct patterns in select tumor models and revealed the existence of strong correlations between select biomarker pairs. Furthermore, the relative proportion of immune cells at different depths across tumor samples was preserved in some but not all tumor models, thereby revealing the existence of compositional heterogeneity. Taken together, these results reveal novel insights into the nature of immunologic heterogeneity, which is not accessible through typical omics approaches.
Collapse
MESH Headings
- Animals
- Biological Variation, Individual
- Cell Count
- Chemotaxis, Leukocyte/physiology
- Female
- Gene Expression Regulation, Neoplastic
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Transplantation
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Transplantation, Isogeneic
- Tumor Cells, Cultured
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Sepideh Mojtahedzadeh
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Alan Opsahl
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Joan-Kristel Aguilar
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Dingzhou Li
- Drug Safety Statistics, Drug Safety Research and Development, Pfizer, Inc., San Diego, California
| | - Nicole Streiner
- Oncology Research and Development, Pfizer, Inc., San Diego, California
| | - Jinwei Wang
- Oncology Research and Development, Pfizer, Inc., San Diego, California
| | - Dusko Trajkovic
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Germaine Boucher
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Timothy Coskran
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Shawn P O'Neil
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California
| | - Sripad Ram
- Departments of Global Pathology and Investigative Toxicology, Pfizer, Inc., San Diego, California.
| |
Collapse
|
14
|
The Present and Future Role of Microfluidics for Protein and Peptide-Based Therapeutics and Diagnostics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The implementation of peptide-based molecules within the medical field has vast potential, owing to their unique nature and predictable physicochemical profiles. However, peptide therapeutic usage is hindered by delivery-related challenges, meaning that their formulations must be altered to overcome these limitations. This process could be propelled by applying microfluidics (MFs) due to its highly controllable and adaptable attributes; however, therapeutic research within this field is extremely limited. Peptides possess multifunctional roles within therapeutic formulations, ranging from enhancing target specificity to acting as the active component of the medicine. Diagnostically, MFs are well explored in the field of peptides, as MFs provide an unsullied platform to provide fast yet accurate examinations. The capacity to add attributes, such as integrated sensors and microwells, to the MF chip, only enhances the attractiveness of MFs as a diagnostic platform. The structural individuality of peptides makes them prime candidates for diagnostic purposes, for example, antigen detection and isolation. Therefore, this review provides a useful insight into the current applications of MFs for peptide-based therapy and diagnostics and highlights potential gaps in the field that are yet to be explored or optimized.
Collapse
|
15
|
He C, Sun S, Zhang Y, Li S. Identification of Circulating Biomarkers and Construction of a Prognostic Signature for Survival Prediction in Locally Advanced Pancreatic Cancer After Irreversible Electroporation. J Inflamm Res 2021; 14:1689-1699. [PMID: 33953596 PMCID: PMC8091593 DOI: 10.2147/jir.s307884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Irreversible electroporation (IRE) is a novel treatment for locally advanced pancreatic cancer (LAPC), but the predictive factors, based on cytokines and immunocytes of survival, are still lacking. This study aimed to establish a risk model based on cytokines and immunocytes for LAPC patients undergoing IRE treatment. Patients and Methods Peripheral blood samples were obtained from 31 LAPC patients and 8 healthy control subjects before IRE. The phenotypes of lymphocytes were analyzed by flow cytometry, and the cytokines were evaluated with Luminex microarray assay. Least absolute shrinkage and selection operator (LASSO) and Cox regression were applied to assess the prognostic factors for overall survival (OS) and progression-free survival (PFS). A receiver operating characteristic (ROC) curve and a concordance index (C-index) were used to compare the abilities to predict survival rates. Results The relationship between multiple cytokines and clinical factors was evaluated and their prognostic value was compared. The five best predictors for OS and PFS, including CA19-9, CD3+CD4+ T cells, CD3+CD8+ T cells, IL-17A, and TNF-α were selected and incorporated into a new immune panel. A risk model based on this immune panel was established and exhibited significantly higher values of C-indexes and AUC for OS and PFS prediction as compared with tumor marker score and TNM stage system. Conclusion We presented a risk model based on a microarray assay of cytokines and lymphocytes for LAPC patients after receiving IRE treatment for the first time. The established risk model showed relatively good performance in survival prediction and was able to facilitate tailed patient management in clinical practice.
Collapse
Affiliation(s)
- Chaobin He
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shuxin Sun
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Shengping Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
16
|
Manzo T, Prentice BM, Anderson KG, Raman A, Schalck A, Codreanu GS, Nava Lauson CB, Tiberti S, Raimondi A, Jones MA, Reyzer M, Bates BM, Spraggins JM, Patterson NH, McLean JA, Rai K, Tacchetti C, Tucci S, Wargo JA, Rodighiero S, Clise-Dwyer K, Sherrod SD, Kim M, Navin NE, Caprioli RM, Greenberg PD, Draetta G, Nezi L. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J Exp Med 2021; 217:151833. [PMID: 32491160 PMCID: PMC7398173 DOI: 10.1084/jem.20191920] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.
Collapse
Affiliation(s)
- Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Boone M Prentice
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Kristin G Anderson
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.,Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
| | - Ayush Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aislyn Schalck
- Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Carina B Nava Lauson
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Silvia Tiberti
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Marissa A Jones
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Michelle Reyzer
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Breanna M Bates
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.,Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jeffrey M Spraggins
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Nathan H Patterson
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - John A McLean
- Center for Innovative Technology, Vanderbilt University, Nashville, TN
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milano, Italy
| | - Sara Tucci
- Laboratory of Clinical Biochemistry and Metabolism Center for Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Simona Rodighiero
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stacy D Sherrod
- Center for Innovative Technology, Vanderbilt University, Nashville, TN
| | - Michael Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas E Navin
- Department of Genetics and Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard M Caprioli
- Department of Biochemistry, Mass Spectrometry Research Center, Department of Chemistry, Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN
| | - Philip D Greenberg
- Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.,Departments of Medicine/Oncology and Immunology, University of Washington School of Medicine, Seattle, WA
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luigi Nezi
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milano, Italy.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
17
|
McGuigan AJ, Coleman HG, McCain RS, Kelly PJ, Johnston DI, Taylor MA, Turkington RC. Immune cell infiltrates as prognostic biomarkers in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. J Pathol Clin Res 2021; 7:99-112. [PMID: 33481339 PMCID: PMC7869931 DOI: 10.1002/cjp2.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Immune cell infiltration has been identified as a prognostic biomarker in several cancers. However, no immune based biomarker has yet been validated for use in pancreatic ductal adenocarcinoma (PDAC). We undertook a systematic review and meta-analysis of immune cell infiltration, measured by immunohistochemistry (IHC), as a prognostic biomarker in PDAC. All other IHC prognostic biomarkers in PDAC were also summarised. MEDLINE, EMBASE and Web of Science were searched between 1998 and 2018. Studies investigating IHC biomarkers and prognosis in PDAC were included. REMARK score and Newcastle-Ottawa scale were used for qualitative analysis. Random-effects meta-analyses were used to pool results, where possible. Twenty-six articles studied immune cell infiltration IHC biomarkers and PDAC prognosis. Meta-analysis found high infiltration with CD4 (hazard ratio [HR] = 0.65, 95% confidence interval [CI] = 0.51-0.83.) and CD8 (HR = 0.68, 95% CI = 0.55-0.84.) T-lymphocytes associated with better disease-free survival. Reduced overall survival was associated with high CD163 (HR = 1.62, 95% CI = 1.03-2.56). Infiltration of CD3, CD20, FoxP3 and CD68 cells, and PD-L1 expression was not prognostic. In total, 708 prognostic biomarkers were identified in 1101 studies. In summary, high CD4 and CD8 infiltration are associated with better disease-free survival in PDAC. Increased CD163 is adversely prognostic. Despite the publication of 708 IHC prognostic biomarkers in PDAC, none has been validated for clinical use. Further research should focus on reproducibility of prognostic biomarkers in PDAC in order to achieve this.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Biomarkers/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/pathology
- Disease-Free Survival
- Humans
- Immunohistochemistry
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/pathology
- Prognosis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reproducibility of Results
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Andrew J McGuigan
- The Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
| | - Helen G Coleman
- The Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
- Centre for Public HealthQueen's University BelfastBelfastUK
| | - R Stephen McCain
- Centre for Public HealthQueen's University BelfastBelfastUK
- Department of Hepatobiliary SurgeryMater Hospital, Belfast Health and Social Care TrustBelfastUK
| | - Paul J Kelly
- Department of Tissue PathologyRoyal Victoria Hospital, Belfast Health and Social Care TrustBelfastUK
| | - David I Johnston
- Northern Ireland Cancer CentreBelfast Health and Social Care TrustBelfastUK
| | - Mark A Taylor
- Department of Hepatobiliary SurgeryMater Hospital, Belfast Health and Social Care TrustBelfastUK
| | - Richard C Turkington
- The Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
| |
Collapse
|
18
|
FoxP3 + T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett 2020; 490:174-185. [PMID: 32721551 DOI: 10.1016/j.canlet.2020.07.022] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/28/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
T Regulatory cells (Tregs) can have both protective and pathological roles. They maintain immune homeostasis and inhibit immune responses in various diseases, including cancer. Proportions of Tregs in the peripheral blood of some cancer patients increase by approximately two-fold, compared to those in healthy individuals. Tregs contribute to cancer development and progression by suppressing T effector cell functions, thereby compromising tumor killing and promoting tumor growth. Highly immunosuppressive Tregs express upregulated levels of the transcription factor, Forkhead box protein P3 (FoxP3). Elevated levels of FoxP3+ Tregs within the tumor microenvironment (TME) showed a positive correlation with poor prognosis in various cancer patients. Despite the success of immunotherapy, including the use of immune checkpoint inhibitors, a significant proportion of patients show low response rates as a result of primary or acquired resistance against therapy. Some of the mechanisms which underlie the development of therapy resistance are associated with Treg suppressive function. In this review, we describe Treg contribution to cancer development/progression, and the mechanisms of Treg-mediated immunosuppression. We discuss the prognostic significance of FoxP3+ Tregs in different cancers and their potential use as prognostic biomarkers. We also describe potential therapeutic strategies to target Tregs in combination with other types of immunotherapies aiming to overcome tumor resistance and improve clinical outcomes in cancer patients. Overall, understanding the prognostic significance of FoxP3+ Tregs in various cancers and their contribution to therapy resistance could help in the development of more effective targeted therapeutic strategies to enhance the clinical outcomes in cancer patients.
Collapse
|
19
|
Bolm L, Zghurskyi P, Lapshyn H, Petrova E, Zemskov S, Vashist YK, Deichmann S, Honselmann KC, Bronsert P, Keck T, Wellner UF. Alignment of stroma fibers, microvessel density and immune cell populations determine overall survival in pancreatic cancer-An analysis of stromal morphology. PLoS One 2020; 15:e0234568. [PMID: 32658932 PMCID: PMC7357746 DOI: 10.1371/journal.pone.0234568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction The aim of this study was to define histo-morphological stroma characteristics by analyzing stromal components, and to evaluate their impact on local and systemic tumor spread and overall survival in pancreatic ductal adenocarcinoma (PDAC). Methods and materials Patients who underwent oncologic resections with curative intent for PDAC were identified from a prospectively maintained database. Histological specimens were re-evaluated for morphological stroma features as stromal fibers, fibroblast morphology, stroma matrix density, microvessel density and distribution of immune cell populations. Results A total of 108 patients were identified undergoing curative resection for PDAC in the period from 2011–2016. 33 (30.6%) patients showed parallel alignment of stroma fibers while 75 (69.4%) had randomly oriented stroma fibers. As compared to parallel alignment, random orientation of stroma fibers was associated with larger tumor size (median 3.62 cm vs. median 2.87cm, p = 0.037), nodal positive disease (76.0% vs. 54.5%, p = 0.040), higher margin positive resection rates (41.9% vs. 15.2%, p = 0.008) and a trend for higher rates of T3/4 tumors (33.3% vs. 15.2%, p = 0.064). In univariate analysis, patients with parallel alignment of stroma fibers had improved overall survival rates as compared to patients with random orientation of stroma fibers (42 months vs. 22 months, p = 0.046). The combination of random orientation of stroma fibers and low microvessel density was associated with impaired overall survival rates (16 months vs. 36 months, p = 0.019). A high CD4/CD3 ratio (16 months vs. 33 months, p = 0.040) and high stromal density of CD163 positive cells were associated with reduced overall survival (27 months vs. 34 months, p = 0.039). In multivariable analysis, the combination of random orientation of stroma fibers and low microvessel density (HR 1.592, 95%CI 1.098–2.733, p = 0.029), high CD4/CD3 ratio (HR 2.044, 95%CI 1.203–3.508, p = 0.028) and high density of CD163 positive cells (HR 1.596, 95%CI 1.367–1.968, p = 0.036) remained independent prognostic factors. Conclusion Alignment of stroma fibers and microvessel density are simple histomorphological features serving as surrogate markers of local tumor progression dissemination and surgical resectability and determine prognosis in PDAC patients. High CD4/CD3 ratio and CD163 positive cell counts determine poor prognosis.
Collapse
Affiliation(s)
- Louisa Bolm
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Petro Zghurskyi
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Hryhoriy Lapshyn
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Ekaterina Petrova
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Sergiy Zemskov
- Department of General Surgery #1, Bogomolets National Medical University, Kyiv, Ukraine
| | - Yogesh K. Vashist
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Steffen Deichmann
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Kim C. Honselmann
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| | - Peter Bronsert
- Department of Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Keck
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
- * E-mail:
| | - Ulrich F. Wellner
- Department of Surgery, University Medical Center Luebeck, Luebeck, Germany
| |
Collapse
|
20
|
Orhan A, Vogelsang RP, Andersen MB, Madsen MT, Hölmich ER, Raskov H, Gögenur I. The prognostic value of tumour-infiltrating lymphocytes in pancreatic cancer: a systematic review and meta-analysis. Eur J Cancer 2020; 132:71-84. [PMID: 32334338 DOI: 10.1016/j.ejca.2020.03.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Tumour-infiltrating lymphocytes (TILs) have previously been found to influence patient prognosis in other gastrointestinal cancers, for instance in colorectal cancer. An immunosuppressive phenotype often characterizes pancreatic cancer with a low degree of immune cell infiltration. Cytotoxic CD8+ T cell infiltration in tumours is found to be the best predictive variable for response to immune checkpoint inhibitor therapy, emphasizing the importance of investigating TILs in pancreatic cancer, especially focussing on CD8+ T cells. OBJECTIVE Here, we systematically review the literature and perform meta-analyses to examine the prognostic value of TILs in human pancreatic ductal adenocarcinomas (PDAC). Secondarily, we review the literature regarding the histological localization of TILs and the impact on survival in PDAC. EVIDENCE REVIEW A literature search was conducted on PubMed, Embase, The Cochrane Library and Web of Science. Studies examining patients with PDAC and the impact of high vs. low infiltration of immune cells on long-term oncological survival measures were included. Time-to-event meta-analysis and frequency analysis were conducted using a random effects model. The risk of bias was assessed using the Newcastle-Ottowa Scale. Quality of the cumulative evidence was evaluated using the GRADE approach for prognostic studies. FINDINGS In total, 1971 articles were screened, of which 43 studies were included in the systematic review and 39 in the meta-analysis. High infiltration of CD8+ lymphocytes was significantly associated with improved overall survival (OS) [hazard ratio (HR) = 0.58, 95% confidence intervals (CIs): 0.50-0.68], disease-free survival (DFS) [HR = 0.64, 95% CI: 0.52-0.78], progression-free survival [HR = 0.66, 95% CI: 0.51-0.86] and cancer-specific survival [HR = 0.56, 95% CI: 0.32-0.99]. A high infiltration of CD3+ T cells was correlated with increased OS [HR = 0.58, 95% CI: 0.50-0.68] and DFS [HR = 0.74, 95% CI: 0.38-1.43]. Infiltration of CD4+ lymphocytes was associated with improved 12-months OS [risk ratio = 0.59, 95% CI: 0.35-0.99] and DFS [risk ratio = 0.68, 95% CI: 0.53-0.88]. High expression of FoxP3+ lymphocytes was associated with poor OS [HR = 1.48, 95% CI: 1.20-1.83]. The greatest impact on survival was observed in the CD8+ T cell and OS group, when infiltration was located to the tumour centre [HR = 0.53, 95% CI: 0.45-0.63]. However, subgroup analysis on the impact of the histological location of infiltration revealed no significant differences between the subgroups (tumour centre, invasive margin, stroma and all locations) in any of the examined cell types and outcomes. CONCLUSIONS AND RELEVANCE Subsets of TILs, especially CD3+, CD8+ and FoxP3+ T cells are strongly associated with long-term oncological outcomes in patients with PDAC. To our knowledge, this is the first systematic review and meta-analysis on the prognostic value of TILs in pancreatic cancer.
Collapse
Affiliation(s)
- Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus P Vogelsang
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Malene B Andersen
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Michael T Madsen
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Emma R Hölmich
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Koege, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Hwang HK, Lee SH, Kim HI, Kim SH, Choi J, Kang CM, Lee WJ. Yonsei Criteria, a Potential Linkage to Intratumoral Foxp3⁺/CD8⁺ Ratio for the Prediction of Oncologic Outcomes in Resected Left-Sided Pancreatic Cancer. Yonsei Med J 2020; 61:291-300. [PMID: 32233171 PMCID: PMC7105403 DOI: 10.3349/ymj.2020.61.4.291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE This study sought to investigate associations among Yonsei criteria (tumor confined to the pancreas, intact fascia layer between the distal pancreas and the left adrenal gland and kidney, and tumor located more than 1-2 cm from the celiac axis) and tumor infiltrating lymphocytes in pancreatic cancer. MATERIALS AND METHODS Patients who underwent curative distal pancreatectomy due to left-sided pancreatic cancer from January 2000 to December 2011 were enrolled. Follow-up was completed September 30, 2015. RESULTS Fifty patients were enrolled. Having ≥ two metastatic lymph nodes (LNs, p=0.002), intraoperative transfusion (p=0.011), low levels of tumor infiltrating CD8⁺ T-cells (p=0.001), and a high Foxp3⁺/CD8⁺ ratio (p=0.009) were independent risk factors for disease-free survival. Not satisfying the Yonsei criteria (p=0.021), having ≥ two metastatic LNs (p=0.032), low levels of tumor infiltrating CD8⁺ T-cells (p=0.040) and a high Foxp3⁺/CD8⁺ ratio (p=0.032) were associated with unfavorable overall survival. High levels of CA19-9 and not satisfying the Yonsei criteria were significantly associated with a high Foxp3⁺/CD8⁺ ratio [Exp(β)=3.558; 95% confidence inverval: 1.000-12.658; p=0.050]. CONCLUSION Yonsei criteria may be clinically detectable biologic marker with which to predict immunologic status and survival in pancreatic cancer patients.
Collapse
Affiliation(s)
- Ho Kyoung Hwang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| | - Sung Hwan Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hyoung Il Kim
- Department of Gastrointestinal Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Junjeong Choi
- Department of Pharmacy, Yonsei University College of Pharmacy, Seoul, Korea
| | - Chang Moo Kang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea.
| | - Woo Jung Lee
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Pancreatobiliary Cancer Center, Yonsei Cancer Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
22
|
Delayre T, Guilbaud T, Resseguier N, Mamessier E, Rubis M, Moutardier V, Fara R, Berdah SV, Garcia S, Birnbaum DJ. Prognostic impact of tumour-infiltrating lymphocytes and cancer-associated fibroblasts in patients with pancreatic adenocarcinoma of the body and tail undergoing resection. Br J Surg 2020; 107:720-733. [PMID: 31960955 DOI: 10.1002/bjs.11434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The prognosis of patients with pancreatic cancer remains poor and novel therapeutic targets are required urgently. Treatment resistance could be due to the tumour microenvironment, a desmoplastic stroma consisting of cancer-associated fibroblasts and tumour-infiltrating lymphocytes (TILs). The aim of the study was to evaluate the prognostic value of TILs and cancer-associated fibroblasts (CAFs) in pancreatic cancer of the body and tail. METHODS Using tissue microarray from resected left-sided pancreatic cancer specimens, the immunohistochemistry of TILs (cluster of differentiation (CD) 45, CD3, CD4, FoxP3 and CD8), CAFs (vimentin and α-smooth muscle actin (αSMA)) and functional markers (PD-L1 and Ki-67) was examined, and the association with disease-free (DFS) and overall (OS) survival investigated using a computer-assisted quantitative analysis. Patients were classified into two groups, with low or high levels or ratios, using the 75th percentile value as the cut-off. RESULTS Forty-three patients were included in the study. Their median DFS and OS were 9 and 27 months respectively. A high CD4/CD3 lymphocyte ratio was associated with poorer DFS (8 months versus 11 months for a low ratio) (hazard ratio (HR) 2·23, 95 per cent c.i. 1·04 to 4·61; P = 0·041) and OS (13 versus 27 months respectively) (HR 2·62, 1·11 to 5·88; P = 0·028). A low αSMA/vimentin ratio together with a high CD4/CD3 ratio was correlated with poorer outcomes. No significant association was found between Ki-67, PD-L1 and survival. CONCLUSION In patients with resected left-sided pancreatic cancer, a tumour microenvironment characterized by a high CD4/CD3 lymphocyte ratio along with a low αSMA/vimentin ratio is correlated with poorer survival.
Collapse
Affiliation(s)
- T Delayre
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - T Guilbaud
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - N Resseguier
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - E Mamessier
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - M Rubis
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - V Moutardier
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - R Fara
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - S V Berdah
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - S Garcia
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - D J Birnbaum
- Digestive and Oncological Surgery Unit, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille Université, Faculté de Médecine de Marseille, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| |
Collapse
|
23
|
Gao HF, Cheng CS, Tang J, Li Y, Chen H, Meng ZQ, Chen Z, Chen LY. CXCL9 chemokine promotes the progression of human pancreatic adenocarcinoma through STAT3-dependent cytotoxic T lymphocyte suppression. Aging (Albany NY) 2020; 12:502-517. [PMID: 31913856 PMCID: PMC6977695 DOI: 10.18632/aging.102638] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Chemokines play essential roles in the progression of various human cancers; however, the expression and role of CXC chemokines in pancreatic adenocarcinoma (PAAD) have not yet been identified. The aim of this study is to identify the expression patterns, clinical significance and mechanisms of CXC chemokines in regulating tumour microenvironment of PAAD. Three CXC chemokines, including CXCL5, CXCL9, and CXCL10, were significantly overexpressed in PAAD tissues, which were correlated with the poor survival of the patients. CXCL9/10 was associated with change of immune cell pattern in the tumour microenvironment, and supplementation of CXCL9 in the orthotopic murine PAAD model promoted tumour progression. In particular, CXCL9 reduced the CD8+ cytotoxic T lymphocytes in the tumour microenvironment of PAAD, which could be attributed to the reduced CD8+ T cell proliferation, activation, and secretion of anti-tumour cytokines. In vitro treatment of CXCL9 directly led to the suppression of the proliferation, activation, and secretion of anti-tumour cytokines of isolated CD8+ T cells. Inhibition of STAT3 recovered the CXCL9-inhibited proliferation, activation, and secretion of anti-tumour cytokines of CD8+ T cells. Our study indicates CXCL9 as a potential target of immunotherapy in PAAD treatment by regulating the CD8+ T lymphocytes in the tumour microenvironment.
Collapse
Affiliation(s)
- Hui-Feng Gao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chien-Shan Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jian Tang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Ye Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hao Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhi-Qiang Meng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhen Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lian-Yu Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
24
|
Abolarinwa BA, Ibrahim RB, Huang YH. Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. Int J Mol Sci 2019; 20:E4624. [PMID: 31540435 PMCID: PMC6769557 DOI: 10.3390/ijms20184624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide. Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However, the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor immune-microenvironment apparently plays a key role in modulating these molecular-determinant predictive biomarkers. Therefore, an understanding of the development and recent advances in immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic efficacy. The current review focuses on an understanding of how the host-microenvironment interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors. The contribution of environmental pathogens and host immunity to GI cancer is summarized. A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted. An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and facilitate the future development of personalized therapeutic strategies targeting GI cancers.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
25
|
Ito Z, Kan S, Bito T, Horiuchi S, Akasu T, Yoshida S, Kajihara M, Hokari A, Saruta M, Yoshida N, Kobayashi M, Ohkusa T, Shimodaira S, Okamoto M, Sugiyama H, Koido S. Predicted Markers of Overall Survival in Pancreatic Cancer Patients Receiving Dendritic Cell Vaccinations Targeting WT1. Oncology 2019; 97:135-148. [DOI: 10.1159/000500359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 11/19/2022]
|
26
|
Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I. Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg 2019; 3:130-137. [PMID: 30923782 PMCID: PMC6422798 DOI: 10.1002/ags3.12225] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/08/2018] [Accepted: 11/04/2018] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer remains a highly recalcitrant disease despite the development of systemic chemotherapies. New treatment options are thus urgently required. Dense stromal formation, so-called "desmoplastic stroma," plays controversial roles in terms of pancreatic cancer growth, invasion, and metastasis. Cells such as cancer-associated fibroblasts, endothelial cells, and immune cells comprise the tumor microenvironment of pancreatic cancer. Pancreatic cancer is considered an immune-quiescent disease, but activation of immunological response in pancreatic cancer may contribute to favorable outcomes. Herein, we review the role of the tumor microenvironment in pancreatic cancer, with a focus on immunological aspects.
Collapse
Affiliation(s)
- Takashi Murakami
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yukihiko Hiroshima
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Ryusei Matsuyama
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yuki Homma
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Robert M. Hoffman
- AntiCancer, Inc.San DiegoCalifornia
- Department of SurgeryUniversity of CaliforniaSan DiegoCalifornia
| | - Itaru Endo
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
27
|
Foucher ED, Ghigo C, Chouaib S, Galon J, Iovanna J, Olive D. Pancreatic Ductal Adenocarcinoma: A Strong Imbalance of Good and Bad Immunological Cops in the Tumor Microenvironment. Front Immunol 2018; 9:1044. [PMID: 29868007 PMCID: PMC5960705 DOI: 10.3389/fimmu.2018.01044] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers with very few available treatments. For many decades, gemcitabine was the only treatment for patients with PDAC. A recent attempt to improve patient survival by combining this chemotherapy with FOLFIRINOX and nab-paclitaxel failed and instead resulted in increased toxicity. Novel therapies are urgently required to improve PDAC patient survival. New treatments in other cancers such as melanoma, non-small-cell lung cancer, and renal cancer have emerged, based on immunotherapy targeting the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 or programmed death 1 ligand. However, the first clinical trials using such immune checkpoint inhibitors in PDAC have had limited success. Resistance to immunotherapy in PDAC remains unclear but could be due to tissue components (cancer-associated fibroblasts, desmoplasia, hypoxia) and to the imbalance between immunosuppressive and effector immune populations in the tumor microenvironment. In this review, we analyzed the presence of “good and bad immunological cops” in PDAC and discussed the significance of changes in their balance.
Collapse
Affiliation(s)
- Etienne D Foucher
- Team Immunity and Cancer, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Clément Ghigo
- Team Cellular Stress, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Salem Chouaib
- INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par La Ligue Contre Le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France.,Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jérôme Galon
- Laboratory of Integrative Cancer Immunology, INSERM, UMRS1138, Paris, France
| | - Juan Iovanna
- Team Cellular Stress, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, CRCM, Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
28
|
Wang C, Zhu W, Luo Y, Wang BZ. Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1349-1360. [PMID: 29649593 DOI: 10.1016/j.nano.2018.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/09/2018] [Accepted: 03/31/2018] [Indexed: 01/13/2023]
Abstract
The immunogenicity of subunit vaccines can be augmented by formulating them into nanoparticles. We conjugated recombinant trimetric influenza A/Aichi/2/68(H3N2) hemagglutinin (HA) onto functionalized gold nanoparticle (AuNP) surfaces in a repetitive, oriented configuration. To further improve the immunogenicity, we generated Toll-like receptor 5 (TLR5) agonist flagellin (FliC)-coupled AuNPs as particulate adjuvants. Intranasal immunizations with an AuNP-HA and AuNP-FliC particle mixture elicited strong mucosal and systemic immune responses that protected hosts against lethal influenza challenges. Compared with the AuNP-HA alone group, the addition of AuNP-FliC improved mucosal B cell responses as characterized by elevated influenza specific IgA and IgG levels in nasal, tracheal, and lung washes. AuNP-HA/AuNP-FliC also stimulated antigen-specific interferon-γ (IFN-γ)-secreting CD4+ cell proliferation and induced strong effector CD8+ T cell activation. Our results indicate that intranasal co-delivery of antigen and adjuvant-displaying AuNPs enhanced vaccine efficacy by inducing potent cellular immune responses.
Collapse
Affiliation(s)
- Chao Wang
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Yuan Luo
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| |
Collapse
|
29
|
Development of a reliable and accurate algorithm to quantify the tumor immune stroma (QTiS) across tumor types. Oncotarget 2017; 8:114935-114944. [PMID: 29383131 PMCID: PMC5777743 DOI: 10.18632/oncotarget.22932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/05/2017] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment plays an important role in the tumor biology. Overall survival of tumor patients after resection is influenced by tumor-infiltrating lymphocytes (TILs) as a component of the tumor stroma. However, it is not clear how to assess TILs in the tumor stroma due to heterogeneous methods in different cancer types. Therefore, we present a novel Quantification of the Tumor immune Stroma (QTiS) Algorithm to reliably and accurately quantify cells in the tumor stroma. Immunohistochemical staining of CD3 and CD8 cells in sections of metastatic colorectal cancer (mCRC), ovarian cancer (OvCa), hepatocellular carcinoma (HCC), and pancreatic ductal adenocarcinoma (PDAC), alltogether N = 80, was performed. Hot spots of infiltrating immune cells are reported in the literature. Reliability of the hot spot identification of TILs was examined by two blinded observers. Accuracy was tested in 1 and 3 hot spots using computed counting methods (ZEN 2 software counting (ZC), ImageJ software with subjective threshold (ISC) and ImageJ with color deconvolution (IAC)) and compared to manual counting. All tumor types investigated showed an accumulation of TILs in the tumor stroma (peri- and intratumoral). Reliability between observers indicated a high level consistency. Accuracy for CD8+/CD3+ ratio and absolute cell count required 1 and 3 hot spots, respectively. ISC was found to be the best for paraffin sections, whereas IAC was ideal for frozen sections. ImageJ software is cost-effective and yielded the best results. In conclusion, an algorithm for quantification of tumoral stroma could be established. With this QTiS Algorithm counting of tumor stromal cells is reliable, accurate, and cost-effective.
Collapse
|
30
|
Hwang HK, Murakami T, Kiyuna T, Kim SH, Lee SH, Kang CM, Hoffman RM, Bouvet M. Splenectomy is associated with an aggressive tumor growth pattern and altered host immunity in an orthotopic syngeneic murine pancreatic cancer model. Oncotarget 2017; 8:88827-88834. [PMID: 29179479 PMCID: PMC5687649 DOI: 10.18632/oncotarget.21331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/21/2017] [Indexed: 01/17/2023] Open
Abstract
The purpose of this study was to investigate whether splenectomy influences the tumor growth and metastatic pattern in an orthotopic syngeneic murine pancreatic cancer model. Murine pancreatic cancer cells (PAN02) were subcutaneously injected into the flanks of nude mice. A small tumor fragment (3 mm2), harvested from a subcutaneous tumor. was orthotopically implanted in the tail of the pancreas of C57/BL6 mice without splenectomy (control group, n=15) or with simultaneous splenectomy (splenectomy group, n=15). Tumor growth and metastatic patterns were analyzed by laparotomy at 21 days after surgery. No tumor growth was found in 5 mice (33.3%) of the control group and 1 mouse (6.7%) of the splenectomy group (p=0.169). Tumor volume was significantly larger in splenectomy group (p=0.013). Peritoneal seeding was more frequently observed in the splenectomy group (11 (73.3%) vs. 4 (26.7%), p=0.011). There were no differences in the number of liver and kidney metastasis between the two groups. The ratios of tumor-infiltrating CD4+ to FoxP3+ and CD8+ to FoxP3+ were significantly higher in the control group compared to the splenectomy group (8.2 ± 9.3 vs. 2.4 ± 1.5, p=0.046; 2.5 ± 1.4 vs. 1.5 ± 0.4, p=0.031, respectively). Splenectomy enhanced tumor growth and peritoneal seeding in an orthotopic syngeneic murine pancreatic cancer mouse model. The ramification of these results are discussed for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Ho Kyoung Hwang
- Department of Surgery, University of California, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Severance Hospital, The Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Takashi Murakami
- Department of Surgery, University of California, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA.,Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tasuku Kiyuna
- Department of Surgery, University of California, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA.,Department of Orthopedic Surgery, University of the Ryukyus, Okinawa, Japan
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hwan Lee
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Severance Hospital, The Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Moo Kang
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Severance Hospital, The Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, CA, USA.,AntiCancer, Inc., San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| |
Collapse
|
31
|
Buanes TA. Role of surgery in pancreatic cancer. World J Gastroenterol 2017; 23:3765-3770. [PMID: 28638216 PMCID: PMC5467062 DOI: 10.3748/wjg.v23.i21.3765] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/17/2017] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
Treatment of pancreatic cancer is multimodal and surgery is an essential part, mandatory for curative potential. Also chemotherapy is essential, and serious postoperative complications or rapid disease progression may preclude completion of multimodal treatment. The sequence of treatment interventions has therefore become an important concern, and numerous ongoing randomized controlled trials compare clinical outcome after upfront surgery and neoadjuvant treatment with subsequent resection. In previous years, borderline resectable and locally advanced pancreatic cancer was most often considered unresectable. More effective chemotherapy together with the latest improvements in surgical expertise has resulted in extended operations, pushing the borders of resectability. Multivisceral resections with or without resection of major mesenteric vessels are now performed in numerous patients, resulting in better outcome, recorded as overall survival and/or patient reported outcome. But postoperative morbidity increases concurrently, and clinical benefit must be carefully evaluated against risk of potential harm, associated with new comprehensive multimodal treatment sequences. Even though cost/utility analyses are deficient, extended surgery has resulted in significantly longer and better life for many patients with no other treatment alternative. Improved selection of patients to surgery and/or chemotherapy will in the near future be possible, based on better tumor biology insight. Clinically available biomarkers enabling personalized treatment are forthcoming, but these options are still limited. The importance of surgical resection for each patient’s prognosis is presently increasing, justifying sustained expansion of the surgical treatment modality.
Collapse
|