1
|
Seck I, Soumboundou M, Ndoye SF, Sall C, Diop A, Lafrasse CR, Biteye D, Ndao M, Seck M. Phytochemical screening, antimicrobial, antioxidant, anticancer activities on cervical cancer cell lines and aero-digestive extract of Moringa oleifera. Nat Prod Res 2024:1-8. [PMID: 39257089 DOI: 10.1080/14786419.2024.2400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/23/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The phytochemical screening showed that the Moringa oleifera (MO) extract contained many compounds such as polyphenols, polyterpenes, sterols, reducing sugars, and hydrolysates tannins. The MICs of MO extract for microbial strains is 0.73 mg/ml for Escherichia coli, Pseudomonas aeruginosa, 7.5 mg/ml for Enterococcus faecalis, Staphylococcus aureus and 0.5 mg/ml for Candida albicans. The MO extract has an IC50 of 3.403 mg/ml has an antioxidant activity by DPPH radical scavenging. The cytotoxic activity of MO extract was evaluated by determining the content of lactate dehydrogenase released by the lysed cells. MO extract exhibited cytotoxic activity against HeLa and FaDu cell lines with an identical IC50 value of 25 µg/ml. We did not observe any remarkable decrease cytotoxic activity when these lines were exposed to the MO extract after 48 h. Our findings help to support the promising role of MO as anticancer agent and open a new challenge for studying DNA fragmentation.
Collapse
Affiliation(s)
- Insa Seck
- Laboratoire de Chimie de Coordination Organique (LCCO), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, Dakar-Fann, BP, Sénégal
| | - Mamadou Soumboundou
- UMRED, Health Training and Research Unit, University of Iba Der Thiam of Thies, Thies, BP, Sénégal
| | - Samba Fama Ndoye
- Laboratoire de Chimie de Coordination Organique (LCCO), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, Dakar-Fann, BP, Sénégal
| | - Cheikh Sall
- UMRED, Health Training and Research Unit, University of Iba Der Thiam of Thies, Thies, BP, Sénégal
| | - Abdoulaye Diop
- Laboratoire de Bactéréologie et Virologie, Hôpital Aristide Le Dantec, Dakar, Sénégal
| | - Claire Rodriguez Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire IPNL, Université de Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Dakhou Biteye
- Laboratoire de Chimie de Coordination Organique (LCCO), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, Dakar-Fann, BP, Sénégal
| | - Moussa Ndao
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, Dakar-Fann, BP, Sénégal
| | - Matar Seck
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, Dakar-Fann, BP, Sénégal
| |
Collapse
|
2
|
Mello GHD, D'Ávila CMDS, Viana AR, Krause LMF, Cadoná FC. Cocoa presents cytotoxicity against melanoma cancer cell lines (A-375 e B16-F10) and improves chemotherapy activity by increasing oxidative stress. J Food Biochem 2022; 46:e14512. [PMID: 36332189 DOI: 10.1111/jfbc.14512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Melanoma frequently presents a poor chemotherapy response. In this scenario, investigations for new therapies are essential. Thus, cocoa is highlighted in this area since it presents many biological properties. This study investigated the anticarcinogenic activity of cocoa in melanoma cell lines (A-375 and B16-F10). Melanoma and fibroblast (HFF-1) cell lines were exposed to different concentrations of cocoa seeds (30 to 2000 ug/ml) at 24 and 72 h. Cocoa was also associated with paclitaxel IC50. We conducted viability, proliferation, and oxidative stress analyses. Our findings suggested that cocoa isolated, at almost all concentrations tested, was able to reduce viability and proliferation of B16-F10 cells and proliferation of A-375 cells via oxidative stress increasing. Also, cocoa caused no damage in fibroblast cells. Moreover, cocoa increased paclitaxel activity on A-375 by reducing cell proliferation and increasing oxidative stress. Therefore, the results highlight cocoa as a potent selective adjuvant anticancer agent against melanoma. PRACTICAL APPLICATIONS: In conclusion, more studies should be performed to deeply explore this remarkable action of cocoa as a an promising adjuvant to enhance chemotherapy.
Collapse
Affiliation(s)
- Gabriela Haas de Mello
- Post-Graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, Brazil
| | | | | | | | - Francine Carla Cadoná
- Post-Graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, Brazil
| |
Collapse
|
3
|
Singh J, Gautam DNS, Sourav S, Sharma R. Role of
Moringa oleifera
Lam. in cancer: Phytochemistry and pharmacological insights. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jyoti Singh
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Simant Sourav
- Department of Sharira Kriya, Government Ayurvedic College and Hospital Patna India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University Varanasi India
| |
Collapse
|
4
|
Green Biosynthesis of Silver Nanoparticles from Moringa oleifera Leaves and Its Antimicrobial and Cytotoxicity Activities. Int J Biomater 2022; 2022:4136641. [PMID: 36193175 PMCID: PMC9526645 DOI: 10.1155/2022/4136641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The plant occupied the largest area in the biosynthesis of silver nanoparticles, especially the medicinal plants, and it has shown great potential in biotechnology applications. In this study, green synthesis of silver nanoparticles from Moringa oleifera leaves extract and its antifungal and antitumor activities were investigated. The formation of silver nanoparticles was observed after 1 hour of preparation color changing. The ultraviolet and visible spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques were used to characterize synthesis particles. Ultraviolet and visible spectroscopy showed a silver surface plasmon resonance band at 434 nm. Fourier transform infrared analysis shows the possible interactions between silver and bioactive molecules in Moringa oleifera leaves extracts, which may be responsible for the synthesis and stabilization of silver nanoparticles. X-ray diffraction showed that the particles were a semicubic crystal structure and with a size of 38.495 nm. Scanning electron microscopy imaging shows that the atoms are spherical in shape and the average size is 17 nm. The transmission electron microscopy image demonstrated that AgNPs were spherical and semispherical particles with an average of (50–60) nm. The nanoparticles also showed potent antimicrobial activity against pathogenic bacteria and fungi using the well diffusion method. Candida glabrata found that the concentration of 1000 μg/mL exhibited the highest inhibition. As for bacteria, the concentration of 1000 μg/mL appeared to be the inhibition against Staphylococcus aureus. Moringa oleifera AgNPs inhibited human melanoma cells A375 line significant concentration-dependent cytotoxic effects. The powerful bioactivity of the green synthesized silver nanoparticles from medical plants recommends their biomedical use as antimicrobial as well as cytotoxic agents.
Collapse
|
5
|
Soares JPM, Gonçalves DA, de Sousa RX, Mouro MG, Higa EMS, Sperandio LP, Vitoriano CM, Rosa EBS, dos Santos FO, de Queiroz GN, Yamaguchi RSS, Pereira G, Icimoto MY, de Melo FHM. Disruption of Redox Homeostasis by Alterations in Nitric Oxide Synthase Activity and Tetrahydrobiopterin along with Melanoma Progression. Int J Mol Sci 2022; 23:5979. [PMID: 35682659 PMCID: PMC9181279 DOI: 10.3390/ijms23115979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cutaneous melanoma emerges from the malignant transformation of melanocytes and is the most aggressive type of skin cancer. The progression can occur in different stages: radial growth phase (RGP), vertical growth phase (VGP), and metastasis. Reactive oxygen species contribute to all phases of melanomagenesis through the modulation of oncogenic signaling pathways. Tetrahydrobiopterin (BH4) is an important cofactor for NOS coupling, and an uncoupled enzyme is a source of superoxide anion (O2•-) rather than nitric oxide (NO), altering the redox homeostasis and contributing to melanoma progression. In the present work, we showed that the BH4 amount varies between different cell lines corresponding to distinct stages of melanoma progression; however, they all presented higher O2•- levels and lower NO levels compared to melanocytes. Our results showed increased NOS expression in melanoma cells, contributing to NOS uncoupling. BH4 supplementation of RGP cells, and the DAHP treatment of metastatic melanoma cells reduced cell growth. Finally, Western blot analysis indicated that both treatments act on the PI3K/AKT and MAPK pathways of these melanoma cells in different ways. Disruption of cellular redox homeostasis by the altered BH4 concentration can be explored as a therapeutic strategy according to the stage of melanoma.
Collapse
Affiliation(s)
- Jaqueline Pereira Moura Soares
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01224-001, Brazil; (J.P.M.S.); (R.X.d.S.); (R.S.S.Y.)
| | - Diego Assis Gonçalves
- Department of Parasitology, Microbiology and Immunology, Juiz de Fora Federal University, Juiz de Fora 36036-900, Brazil;
- Micro-Imuno-Parasitology Department, Federal University of Sao Paulo, São Paulo 05508-090, Brazil
| | - Ricardo Xisto de Sousa
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01224-001, Brazil; (J.P.M.S.); (R.X.d.S.); (R.S.S.Y.)
| | - Margareth Gori Mouro
- Nefrology Discipline, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (M.G.M.); (E.M.S.H.)
| | - Elisa M. S. Higa
- Nefrology Discipline, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (M.G.M.); (E.M.S.H.)
| | - Letícia Paulino Sperandio
- Department of Pharmacology, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (L.P.S.); (G.P.)
| | - Carolina Moraes Vitoriano
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Elisa Bachir Santa Rosa
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Fernanda Oliveira dos Santos
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Gustavo Nery de Queiroz
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
| | - Roberta Sessa Stilhano Yamaguchi
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01224-001, Brazil; (J.P.M.S.); (R.X.d.S.); (R.S.S.Y.)
| | - Gustavo Pereira
- Department of Pharmacology, Federal University of Sao Paulo, São Paulo 05508-090, Brazil; (L.P.S.); (G.P.)
| | - Marcelo Yudi Icimoto
- Biophysics Department, Federal University of Sao Paulo, São Paulo 05508-090, Brazil;
| | - Fabiana Henriques Machado de Melo
- Department of Pharmacology, Institute of Biomedical Science, Universidade de São Paulo, São Paulo 05505-000, Brazil; (C.M.V.); (E.B.S.R.); (F.O.d.S.); (G.N.d.Q.)
- Institute of Medical Assistance to Public Servants of the State (IAMSPE), São Paulo 04039-000, Brazil
| |
Collapse
|
6
|
Protective Effects of Ferulic Acid on Deoxynivalenol-Induced Toxicity in IPEC-J2 Cells. Toxins (Basel) 2022; 14:toxins14040275. [PMID: 35448884 PMCID: PMC9027710 DOI: 10.3390/toxins14040275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Deoxynivalenol (DON), a mycotoxin that contaminates crops such as wheat and corn, can cause severe acute or chronic injury when ingested by animals or humans. This study investigated the protective effect of ferulic acid (FA), a polyphenolic substance, on alleviating the toxicity induced by DON (40 μM) in IPEC-J2 cells. The experiments results showed that FA not only alleviated the decrease in cell viability caused by DON (p < 0.05), but increased the level of superoxide dismutase (SOD) (p < 0.01), glutathione peroxidase (GSH-Px), (catalase) CAT and glutathione (GSH) (p < 0.05) through the nuclear factor erythroid 2-related factor 2 (Nrf2)-epoxy chloropropane Kelch sample related protein-1 (keap1) pathway, and then decreased the levels of intracellular oxidative stress. Additionally, FA could alleviate DON-induced inflammation through mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-κB) pathways, down-regulated the secretion of interleukin-6 (IL-6) (p < 0.0001), interleukin-8 (IL-8) (p < 0.05), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and further attenuated the DON-induced intracellular apoptosis (10.7% to 6.84%) by regulating the expression of Bcl2-associated X protein (Bax) (p < 0.0001), B-cell lymphoma-2 (Bcl-2) (p < 0.0001), and caspase-3 (p < 0.0001). All these results indicate that FA exhibits a significantly protective effect against DON-induced toxicity.
Collapse
|
7
|
The effect of Moringa oleifera polysaccharides on the regulation of glucocorticoid-induced femoral head necrosis: In vitro and in vivo. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Onasanwo SA, Adamaigbo VO, Adebayo OG, Eleazer SE. Moringa oleifera-supplemented diet protect against cortico-hippocampal neuronal degeneration in scopolamine-induced spatial memory deficit in mice: role of oxido-inflammatory and cholinergic neurotransmission pathway. Metab Brain Dis 2021; 36:2445-2460. [PMID: 34669098 DOI: 10.1007/s11011-021-00855-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
The therapeutic and pharmacological management of Alzheimer's disease (AD) is generally considered a major concern in ethnomedicine. Moreover, plant-based foods containing flavonoids were previously reported to show neuroprotective effects by modulating self-aggregation of amyloid-β (Aβ)/or tau peptide into oligomers and fibrils, associated with the pathogenesis of AD. This study investigated the impact of Moringa oleifera-supplemented diet (MO-SD) in scopolamine-induced spatial memory deficit in mice. Mice were partitioned into two phases with five groups each (n=6) and pretreated intraperitoneally with scopolamine (1 mg/kg) prior the daily oral administration of MO-SD (1 %, 5 % and 10 %) for 7 and 14 days. Spatial memory function was assessed using the Morris water maze (MWM) test. Thereafter, markers of cholinergic system inhibition (Acetylcholinesterase; AChE) and oxido-inflammatory stress (Malonaldehyde, MDA; Nitrite; Superoxide Dismutase, SOD; Tumor necrosis factor-alpha, TNF-α) and histo-morphology of the cortico-hippocampal neuron were measured. The scopolamine treatment led to loss of spatial memory function in mice spatial exploration of the escape platform in the MWM test. Meanwhile, treatment with MO-SD attenuated loss of spatial memory function via significant decrease in escape latency, significant increase in the frequency of cross with time spent in the platform quadrant. Furthermore, scopolamine treatment altered the endogenous antioxidants and pro-inflammatory mediators, elevated acetylcholinesterase activity and promoted chromatolysis of the cortico-hippocampal neuron. However, MO-SD significantly ameliorated oxido-inflammatory stress, restored cholinergic transmission via acetylcholinesterase inhibition and maintains neuronal integrity in the mice brain at both phases. These results suggest that Moringa oleifera-supplemented diet may serve a potential therapeutic and possible pharmacological macromolecule for preventing loss of neuronal cells and management of Alzheimer's disease.
Collapse
Affiliation(s)
- Samuel Adetunji Onasanwo
- Neurosciences and Oral Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Vanessa O Adamaigbo
- Neurosciences and Oral Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Adebayo
- Neurosciences and Oral Physiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Spiff E Eleazer
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| |
Collapse
|
9
|
Ghosh A, Roychowdhury T, Nandi R, Maiti R, Ghosh NN, Molla SA, Mukhopadhyay S, Prodhan C, Chaudhury K, Das P, Sarkar NK, Chattopadhyay S, Bhattacharya R, Bose CK, Maiti DK. Inhibitory role of a smart nano-trifattyglyceride of Moringa oleifera root in epithelial ovarian cancer, through attenuation of FSHR - c-Myc axis. J Tradit Complement Med 2021; 11:481-492. [PMID: 34765512 PMCID: PMC8572721 DOI: 10.1016/j.jtcme.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023] Open
Abstract
Background and aim Epithelial ovarian cancer has the deadliest prognosis amongst gynaecological cancers, warranting an unmet need for newer drug targets. Based on its anticancer as well as abortifacient potential, Moringa oleifera Lam. root was hypothesized to have some implications in follicle stimulating hormone receptor (FSHR) dependent cancers like epithelial ovarian cancer. Experimental procedure Effect of Moringa oleifera Lam. root extract (MRE) was studied in epithelial ovarian cancer cell line through in vitro studies viz. MTT assay, clonogenic assay, cell cycle analysis, flow cytometry, western blot analysis, immunocytochemical analysis of FSHRand c-Myc expression and in vivo studies viz. effect of MRE in mice model of ovarian carcinoma. The structure of the active compound of MRE was elucidated following solvent extraction, purification through column chromatography, preparative TLC and bioactivity guided structural identification through 1H-NMR, 13C-NMR, DEPT-135, ESIMS,FT-IR spectrophotometry, UV–vis–NIR spectrophotometry and DFT study. Results and conclusion Crude MRE displayed cytotoxic activity, induced apoptosis, and attenuated expression of FSHR and c-Myc in ovarian cancer cell line OAW42. MRE also attenuated expression of CD31, FSHR, and c-Myc in tumour xenograft mouse model. Finally, the active compound purified from ethyl acetate-n-hexane subfraction ofMRE, that attenuated viability of ovarian carcinoma cell lines and reduced FSHR and c-Myc expression, was identified as a naturally hydrated-trifattyglyceride, showing aDFT-optimized folded amphipathic structure for easy transportation through hydrophilic and hydrophobic regions in a biological system, indicating its immense therapeutic relevance in epithelial ovarian carcinoma. Moringa oleifera Lam. Root: suggested anticancer role for epithelial ovarian cancer. Moringa root extract: potent antiproliferative effect in vitro and in vivo. Reduced expression of FSHR, c-Myc expression in vitro and in vivo. Active compound identification: solvent extraction, purification and activity validation. The active compound: A novel naturally hydrated-trifattyglyceride.
Collapse
Affiliation(s)
- Arijit Ghosh
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Rituparna Maiti
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Narendra N Ghosh
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Sabir A Molla
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Soma Mukhopadhyay
- Department of Molecular Biology and Gynaecological Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata, 700094, India
| | - Chandraday Prodhan
- Department of Molecular and Human Genetics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Keya Chaudhury
- Department of Molecular and Human Genetics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Priyabrata Das
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Nirmal K Sarkar
- Department of Biological Sciences, Presidency University, 86/1, College Street Road, Kolkata, 700073, India
| | | | - Rittwika Bhattacharya
- Department of Molecular Biology and Gynaecological Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata, 700094, India
| | - Chinmoy K Bose
- Department of Molecular Biology and Gynaecological Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, 3081 Nayabad, Kolkata, 700094, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| |
Collapse
|
10
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Mehwish HM, Riaz Rajoka MS, Xiong Y, Zheng K, Xiao H, Anjin T, Liu Z, Zhu Q, He Z. Moringa oleifera – A Functional Food and Its Potential Immunomodulatory Effects. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1825479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hafiza Mahreen Mehwish
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yongai Xiong
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Tao Anjin
- Department of Pharmacy, Hybio Pharmaceutical Co., Ltd., Shenzhen, 518057, PR China
| | - Zhigang Liu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhendan He
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen Technology University., Shenzhen, 518060, PR China
| |
Collapse
|
12
|
Shah KH, Oza MJ. Comprehensive Review of Bioactive and Molecular Aspects of Moringa Oleifera Lam. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1813755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kaushal H. Shah
- Department of Pharmacognosy, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manisha J. Oza
- Department of Pharmacognosy, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
13
|
Khor KZ, Joseph J, Shamsuddin F, Lim V, Moses EJ, Abdul Samad N. The Cytotoxic Effects of Moringa oleifera Leaf Extract and Silver Nanoparticles on Human Kasumi-1 Cells . Int J Nanomedicine 2020; 15:5661-5670. [PMID: 36213446 PMCID: PMC9536200 DOI: 10.2147/ijn.s244834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Background Moringa oleifera, commonly known as “moringa”, is widely cultivated in tropical and subtropical regions across the globe. Extensive studies have shown that various parts of the moringa tree exhibit anti-cancer properties. This study determined the effects of sequential moringa leaf extracts and silver nanoparticles synthesized from moringa leaf extract on Kasumi-1 leukemia cells. Methods and Results Dried moringa leaf powder was sequentially extracted with the assistance of ultrasound starting with absolute ethanol, followed by 50% ethanol, and finally, deionized water. The aqueous extract was utilized to synthesize silver nanoparticles. The optimum conditions to generate moringa silver nanoparticles (MO-AgNPs) were eight hours of incubation at 60°C with 1 mM silver nitrate and 1% moringa aqueous extract from sequential extraction. The three extracts and MO-AgNPs were used to treat Kasumi-1 cells for 24, 48, 72 hours with concentrations ranging from 400 to 12.5 µg/mL, while cell viability was determined with 3(4, 5-dimethythiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. After 72 hours of treatment, the moringa leaf absolute ethanol extract displayed the strongest inhibitory effects on Kasumi-1 cells with IC50 of 10 µg/mL, in comparison to moringa leaf 50% ethanol extract (25 µg/mL) and aqueous extract (>400 µg/mL). Interestingly, MO-AgNPs exhibited the strongest cytotoxic effects on Kasumi-1 cells with an IC50 of 7.5 µg/mL. Cytotoxic study on normal CD34+ cells treated with up to 50ug/mL of either MO-AgNPs or ethanol extract still had more than 80% cell viability indicating that the treatments have selective cytotoxicity against the cancer cells. Morphological studies of Kasumi-1 cells treated with IC50 of moringa leaf ethanolic extract and MO-AgNPs show a lot of shrinking, dying cells and cell debris. Cell cycle studies displayed an increase in cells at the G1 phase for ethanol leaf extract, while MO-AgNPs caused cell cycle arrest at the S phase after treatment with IC50 dose for 24 hours. Moringa leaf ethanol extract and the nanoparticles induced apoptosis in Kasumi-1 cells as shown by annexin V – FITC assays. Gene expression analysis by qPCR verified these outcomes, as the moringa leaf ethanol extract led to significant upregulation of proapoptotic gene caspase 8, whereas the MO-AgNPs caused a significant increase of proapoptotic protein BID. Conclusion This study reveals that moringa ethanolic leaf extract and MO-AgNPs induced potent antiproliferative effects in Kasumi-1 cells by apoptosis.
Collapse
Affiliation(s)
- Kang Zi Khor
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Julia Joseph
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Farah Shamsuddin
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Emmanuel J Moses
- Regenerative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Correspondence: Nozlena Abdul Samad Integrative Medicine Cluster, Institut Perubatan dan Pergigian Termaju (IPPT), Sains@BERTAM, Universiti Sains Malaysia,13200 Kepala Batas, Pulau Pinang, MalaysiaTel +604 - 562 2051Fax +604 - 562 2349 Email
| |
Collapse
|
14
|
Do BH, Hoang NS, Nguyen TPT, Ho NQC, Le TL, Doan CC. Phenolic Extraction of Moringa Oleifera Leaves Induces Caspase-Dependent and Caspase-Independent Apoptosis through the Generation of Reactive Oxygen Species and the Activation of Intrinsic Mitochondrial Pathway in Human Melanoma Cells. Nutr Cancer 2020; 73:869-888. [PMID: 32530312 DOI: 10.1080/01635581.2020.1776885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Moringa oleifera Lam. has long been used to treat many diseases, including diabetes, aging, inflammatory, and cancer. Many studies have revealed that the crude extract of Moringa oleifera Lam. leaves possesses anticancer property. Therefore, in this study, the extract of Moringa oleifera leaves was fractionated using different solvents to figure out the most effective fraction for anti-proliferative effect on melanoma cells. Methanol extract (MO-ME), hexane fraction (MO-HE), chloroform fraction (MO-CH), ethyl acetate fraction (MO-EA), and water-soluble fraction (MO-WA) of Moringa oleifera leaves were prepared. Total phenolic and flavonoid contents were determined. The anti-proliferative activity on melanoma cells and normal cells was investigated using WST-1 assay. The apoptotic activity was assessed by testing DNA condensation, DNA fragmentation, and phosphatidylserine (PS) externalization. The expression of apoptosis-related genes, the mitochondrial depolarization, and reactive oxygen species (ROS) were then examined to clarify the underlying molecular mechanisms. In this regard, MO-ME, MO-EA, and MO-CH inhibited the proliferation of both A375 human melanoma cells and A2058 human melanoma cells, but had little effect on WS1 normal human skin fibroblasts and primary normal human dermal fibroblasts (NHDF). Among fractions, the phenolic-rich MO-EA markedly inhibited the growth of A375 cells in a dose- and time-dependent manner. The anti-proliferation was supposed to be mediated via apoptosis, which was demonstrated by the significant increase of condensed chromatin, DNA fragmentation, and PS externalization. The apoptosis was stimulated by enhanced ROS production and reduction of mitochondrial membrane potential. MO-EA activated Bax while reducing Bcl-2 expression, leading to an increase in Bax/Bcl-2 ratio. The mechanisms of cell death involved in activation of Caspase-3/7 and Caspase-9 (Caspase-dependent pathway), activation, and translocation of apoptosis-inducing factor (AIF) into the nucleus (Caspase-independent pathway). Our study indicated that the phenolic-rich fraction exerted significant anticancer effects on melanoma cells in vitro which involved in Caspase-dependent and Caspase-independent apoptosis pathways mediated by mitochondrial ROS. These results provided a fundament for the using of phenolic-rich fraction of Moringa oleifera leaves to treat skin cancer effectively.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nghia Son Hoang
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Phuong Thao Nguyen
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thanh Long Le
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Chinh Chung Doan
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Do BH, Nguyen TPT, Ho NQC, Le TL, Hoang NS, Doan CC. Mitochondria-mediated Caspase-dependent and Caspase-independent apoptosis induced by aqueous extract from Moringa oleifera leaves in human melanoma cells. Mol Biol Rep 2020; 47:3675-3689. [PMID: 32372172 DOI: 10.1007/s11033-020-05462-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
Malignant melanoma is a very aggressive and serious type of cutaneous cancer. Previous studies indicated the anti-cancer activity of aqueous extract of Moringa oleifera Lam. leaves (MOE) against a variety of cell lines. However, there has not been much research about the effect of MOE on melanoma. Therefore, this study was about to investigate the anti-proliferation mediated by apoptosis of MOE on human melanoma cell lines. Furthermore, the related molecular mechanisms of the apoptosis were also examined. An aqueous extract of Moringa oleifera leaves was prepared and the anti-proliferative activity on melanoma cells and normal cells was tested using WST-1 assay. The apoptotic hallmarks including DNA condensation and phosphatidylserine (PS) externalization were assessed. The expression of apoptosis-related genes and the depolarization of mitochondrial membrane potential were then examined to clarify the underlying molecular mechanisms. MOE inhibited cell growth of A375 cells and A2058 cells in a dose-dependent manner but had little effect on human normal fibroblasts. The cell growth inhibition was induced by apoptosis which was expressed via chromatin condensation and PS externalization. MOE decreased mitochondrial membrane potential. Additionally, MOE increased Bax/Bcl-2 ratio, activated Caspase-3/7, Caspase-9, PARP and AIF translocation, leading to apoptotic cell death. Our study indicated that MOE exerted significant anti-cancer effects on melanoma cells in vitro which involved mitochondria-mediated Caspase-dependent and Caspase-independent apoptosis pathways. These results provided a scientific approach for using Moringa oleifera leaves as an alternative therapy to treat skin cancer.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thi Phuong Thao Nguyen
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Quynh Chi Ho
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thanh Long Le
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nghia Son Hoang
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Chinh Chung Doan
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| |
Collapse
|
16
|
Rahimi S, Naserzadeh P, Mousavi Z, Ashtari K, Seydi E, Pourahmad J. Nickel oxide nanoparticles exert selective toxicity on skin mitochondria and lysosomes isolated from the mouse model of melanoma. J Biochem Mol Toxicol 2019; 33:e22376. [DOI: 10.1002/jbt.22376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Shabnam Rahimi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences BranchIslamic Azad University (IAUPS) Tehran Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of PharmacyShahid Beheshti University of Medical Sciences Tehran Iran
- Students Research Committee, School of PharmacyShahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Mousavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences BranchIslamic Azad University (IAUPS) Tehran Iran
| | - Khadijeh Ashtari
- Radiation Biology Research CenterIran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in MedicineIran University of Medical Sciences Tehran Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of HealthAlborz University of Medical Sciences Karaj Iran
- Research Center for Health, Safety and EnvironmentAlborz University of Medical Sciences Karaj Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of PharmacyShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
17
|
Tiloke C, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomed Pharmacother 2018; 108:457-466. [DOI: 10.1016/j.biopha.2018.09.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
|
18
|
Nontoxic Glucomoringin-Isothiocyanate (GMG-ITC) Rich Soluble Extract Induces Apoptosis and Inhibits Proliferation of Human Prostate Adenocarcinoma Cells (PC-3). Nutrients 2018; 10:nu10091174. [PMID: 30150582 PMCID: PMC6163982 DOI: 10.3390/nu10091174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
The incidence of prostate cancer malignancy along with other cancer types is increasing worldwide, resulting in high mortality rate due to lack of effective medications. Moringa oleifera has been used for the treatment of communicable and non-communicable ailments across tropical countries, yet, little has been documented regarding its effect on prostate cancer. We evaluated the acute toxicity and apoptosis inducing effect of glucomoringin-isothiocyanate rich soluble extracts (GMG-ITC-RSE) from M. oleifera in vivo and in vitro, respectively. Glucomoringin was isolated, identified, and characterized using fundamental analytical chemistry tools where Sprague-Dawley (SD) rats, murine fibroblast (3T3), and human prostate adenocarcinoma cells (PC-3) were used for acute toxicity and bioassays experiments. GMG-ITC-RSE did not instigate adverse toxic reactions to the animals even at high doses (2000 mg/kg body weight) and affected none of the vital organs in the rats. The extract exhibited high levels of safety in 3T3 cells, where more than 90% of the cells appeared viable when treated with the extract in a time-dependent manner even at high dose (250 µg/mL). GMG-ITC-RSE significantly triggered morphological aberrations distinctive to apoptosis observed under microscope. These findings obviously revealed the putative safety of GMG-ITC-RSE in vivo and in vitro, in addition to its anti-proliferative effect on PC-3 cells.
Collapse
|
19
|
Lin M, Zhang J, Chen X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Kou X, Li B, Olayanju JB, Drake JM, Chen N. Nutraceutical or Pharmacological Potential of Moringa oleifera Lam. Nutrients 2018; 10:E343. [PMID: 29534518 PMCID: PMC5872761 DOI: 10.3390/nu10030343] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023] Open
Abstract
Moringa oleifera Lam. (M. oleifera), which belongs to the Moringaceae family, is a perennial deciduous tropical tree, and native to the south of the Himalayan Mountains in northern India. M. oleifera is rich in proteins, vitamin A, minerals, essential amino acids, antioxidants, and flavonoids, as well as isothiocyanates. The extracts from M. oleifera exhibit multiple nutraceutical or pharmacological functions including anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, neuroprotective, hypoglycemic, and blood lipid-reducing functions. The beneficial functions of M. oleifera are strongly associated with its phytochemicals such as flavonoids or isothiocyanates with bioactivity. In this review, we summarize the research progress related to the bioactivity and pharmacological mechanisms of M. oleifera in the prevention and treatment of a series of chronic diseases-including inflammatory diseases, neuro-dysfunctional diseases, diabetes, and cancers-which will provide a reference for its potential application in the prevention and treatment of chronic diseases or health promotion.
Collapse
Affiliation(s)
- Xianjuan Kou
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| | - Biao Li
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| | - Julia B Olayanju
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
| | - Justin M Drake
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA.
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
21
|
Tangchirakhaphan S, Innajak S, Nilwarangkoon S, Tanjapatkul N, Mahabusrakum W, Watanapokasin R. Mechanism of apoptosis induction associated with ERK1/2 upregulation via goniothalamin in melanoma cells. Exp Ther Med 2018; 15:3052-3058. [PMID: 29456710 DOI: 10.3892/etm.2018.5762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/11/2018] [Indexed: 01/28/2023] Open
Abstract
The present study aimed to investigate the effect of goniothalamin on apoptosis induction in the A375 melanoma cell line. Melanoma is a type of skin cancer with increased prevalence and no potential standard treatment. Goniothalamin is a plant, bioactive styrly-lactone, which has various bioactivities including anti-microbial, anti-inflammatory and anti-cancer. Apoptosis induction by goniothalamin has been studied in numerous cancer cell lines, however not in the melanoma cell line A375. The results of the MTT assay demonstrated that goniothalamin induced anti-proliferation in a dose dependent manner. Hoechst staining assay demonstrated that goniothalamin induced chromatin condensation and apoptotic bodies in A375 treated cells, and JC-1 staining revealed that goniothalamin induced mitochondrial membrane dysfunction in A375 cells. In addition, goniothalamin decreased the level of anti-apoptotic proteins myeloid cell leukemia 1, B cell lymphoma (Bcl)-2 and Bcl-extra large, whereas it increased the level of pro-apoptotic proteins, Bcl-2 Associated X, apoptosis regulator, t-BID and Bim in A375 treated cells. In addition, goniothalamin also increased active caspase-9, -7 and cleaved-poly (ADP-ribose) polymerase expression in A375 treated cells. Furthermore, phosphorylated (p)-pyruvate dehydrogenase kinase (PDK) 1 (Ser241) and p-RAC-alpha serine/threonine-protein kinase (Akt; Ser473) were decreased, however c-Jun and p-extracellular signal-regulated kinase (ERK)1/2 were increased upon goniothalamin treatment. These results suggest that goniothalamin has an effect, as anti-proliferation and apoptosis induction in A375 cells were associated with upregulated p-ERK1/2, c-Jun and downregulated p-PDK1 (Ser241), p-Akt (Ser473) in A375 cells. Therefore, goniothalamin may be a potential candidate for anti-cancer drug development for melanoma treatment.
Collapse
Affiliation(s)
| | - Sukanda Innajak
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sirinun Nilwarangkoon
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Nudjaree Tanjapatkul
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wilawan Mahabusrakum
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|