1
|
Babu SSN, Singla S, Jena G. Role of Combination Treatment of Aspirin and Zinc in DMH-DSS-induced Colon Inflammation, Oxidative Stress and Tumour Progression in Male BALB/c Mice. Biol Trace Elem Res 2023; 201:1327-1343. [PMID: 35438409 DOI: 10.1007/s12011-022-03241-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
Colitis-associated colorectal cancer serves as a prototype of inflammation-associated cancers which is linked with repeated cycles of inflammation and DNA repair deficits. Several preclinical and clinical data reported that aspirin has a chemo-preventive effect in colorectal cancer and is associated with dose-dependent side effects. Furthermore, it has been reported that zinc supplementation improves the quality of life in patients undergoing chemotherapy by alteration of colonic cancer cell gene expression. However, explication of the detailed molecular mechanisms involved in the combined administration of aspirin and zinc-mediated protection against colitis-associated colorectal cancer deserves further investigation. For the induction of colitis-associated colorectal cancer, male BALB/c mice were administered 1,2-dimethylhydrazine dihydrochloride (DMH) 20 mg/kg/bw thrice before the initiation of every DSS cycle (3%w/v in drinking water). One week after the initiation of DSS treatment, aspirin (40 mg/kg; p.o.) and zinc in the form of zinc sulphate (3 mg/kg; p.o.) were administered for 8 weeks. Combination of aspirin and zinc as intervention significantly ameliorated DAI score, myeloperoxidase activity, histological score, apoptotic cells and protein expression of various inflammatory markers including nuclear factor kappa light chain enhancer of activated B cells (NFκBp65), cycloxygenase-2 (COX-2) and interleukin-6 (IL-6); proliferation markers such as proliferating cell nuclear antigen (PCNA), signal transducer and activator of transcription 3 (STAT3) expression significantly decreased, and antioxidant enzymes nuclear factor erythroid 2-related factor 2 (Nrf-2), metallothionein, catalase and superoxide dismutase (SOD) significantly increased as evaluated by immunohistochemistry and western blot analysis.
Collapse
Affiliation(s)
- Singothu Siva Nagendra Babu
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India, 160062
| | - Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India, 160062
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India, 160062.
| |
Collapse
|
2
|
Akhtar N, Wani AK, Jan M, Sinha S, Devkota HP, Li Z, Amin-ul Mannan M, Prakash A. Lactoferrin and Activated Protein C: Potential Role in Prevention of Cancer Progression and Recurrence. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:86-99. [PMID: 37942258 PMCID: PMC10629726 DOI: 10.22088/ijmcm.bums.12.1.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Existing therapeutic interventions for controlling cancer are limited and associated with side effects. Furthermore, the recurrence of cancer poses a significant challenge to the cure of cancer. Therefore, avenues are wanted to find novel therapies for cancer treatment and cancer recurrence. In this review, we have highlighted that lactoferrin (LF) and activated protein C (APC) carry enormous potential in cancer treatment. Studies have shown that the decreased level of APC and impaired function of APC are associated with cancer progression and cancer-related mortality. Moreover, APC plays an important role in preventing prothrombotic state-mediated cancer progression and deaths. LF can also inhibit the progression of cancer by controlling the generation of reactive oxygen species, triggering the apoptosis of cancer cells, arresting the cell cycle and hindering the angiogenesis process. Additionally, APC and LF could have the potential to inhibit neutrophil extracellular traps (NETs) formations which are involved in cancer progression and the reawakening of dormant cancer cells. Hence, in this review, the anticancer potential and mechanism of APC and LF along with their potential to mitigate inflammation and NETs-mediated cancer progression and recurrence has been discussed. Additionally, possible future strategies to develop effective and safe anticancer treatment using LF and APC have also been discussed in this review.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Musamey Jan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Shruti Sinha
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States of America.
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Ku-mamoto 860-8555, Japan.
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal.
| | - Zijian Li
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States of America.
| | - Mohammad Amin-ul Mannan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab-144411, India.
- Division of Infectious Disease, The Lundquist Institute, UCLA Harbor Medical Center, Los Angeles, California 90502, USA.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States of America.
| |
Collapse
|
3
|
Guo X, Wang H, Zheng W, Guo C, Song Q. Chemoprotective Effect of Ginsenoside Against the 1,2-Dimethylhydrazine (DMH) Induced Colorectal Cancer in Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1004.1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Ramírez-Rico G, Drago-Serrano ME, León-Sicairos N, de la Garza M. Lactoferrin: A Nutraceutical with Activity against Colorectal Cancer. Front Pharmacol 2022; 13:855852. [PMID: 35264972 PMCID: PMC8899398 DOI: 10.3389/fphar.2022.855852] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Homeostasis in the human body results from the tight regulation of several events, since too little inflammation disrupts the process of tissue repair and remodeling, whereas too much exerts a collateral effect by causing tissue damage with life-threatening consequences. In some clinical conditions, such as inflammatory bowel disease (IBD), inflammation functions as a double-edged sword by either enabling or inhibiting cancer development and progression. Generally, cancer develops through evasion mechanisms that regulate cell growth, causing a high rate of uncontrolled proliferation, and mechanisms for evading cell death, such as apoptosis. Moreover, chronic inflammation is a factor that contributes to colorectal cancer (CRC), as observed in individuals with IBD; all these conditions favor an increased rate of angiogenesis and eventual metastasis. Lactoferrin (Lf) is a mammalian iron-binding multifunctional glycoprotein regarded as a natural compound that up- and downregulates both humoral and cellular components of immunity involved in regulating the inflammatory response and maintaining gut homeostasis. Human and bovine Lf share high sequence homology and have very similar antimicrobial, anti-inflammatory, and immunomodulatory activities. Bovine Lf from milk is considered a safe molecule and is commercially available in large quantities. This review mainly focuses on the regulatory effects of orally administered bovine Lf on the inflammatory response associated with CRC; this approach indicates that CRC is one of the most frequently diagnosed cancers and affects the intestinal tract with high clinical and epidemiologic relevance. Thus, this review may provide foundations for the potential use of bovine Lf alone or as a natural adjunct agent to increase the effectiveness and reduce the side effects of anticancer chemotherapy.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City, Mexico
| | - Nidia León-Sicairos
- Centro de Investigación Aplicada a La Salud Pública (CIASaP), Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
- Hospital Pediátrico de Sinaloa, Culiacán, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional (CINVESTAV-IPN), México City, Mexico
- *Correspondence: Mireya de la Garza,
| |
Collapse
|
5
|
Leischner C, Egert S, Burkard M, Venturelli S. Potential Protective Protein Components of Cow's Milk against Certain Tumor Entities. Nutrients 2021; 13:1974. [PMID: 34201342 PMCID: PMC8228601 DOI: 10.3390/nu13061974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Milk and dairy products, especially from cow's milk, play a major role in the daily human diet. It is therefore hardly surprising that the subject of milk is being extensively researched and that many effects of individual milk components have been characterized as a result. With the wealth of results available today, the influence of milk on the development of various types of cancer and, in particular, its often protective effects have been shown both in vitro and in vivo and in the evaluation of large-scale cohort and case-control studies. Various caseins, diverse whey proteins such as α-lactalbumin (α-LA), bovine α-lactalbumin made lethal to tumor cells (BAMLET), β-lactoglobulin (β-LG), or bovine serum albumin (BSA), and numerous milk fat components, such as conjugated linoleic acid (CLA), milk fat globule membrane (MFGM), or butyrate, as well as calcium and other protein components such as lactoferrin (Lf), lactoferricin (Lfcin), and casomorphines, show antitumor or cytotoxic effects on cells from different tumor entities. With regard to a balanced and health-promoting diet, milk consumption plays a major role in a global context. This work provides an overview of what is known about the antitumoral properties of proteins derived from cow's milk and their modes of action.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sarah Egert
- Institute of Nutritional Medicine, Nutritional Science/Dietetics 180c, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany;
| | - Markus Burkard
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sascha Venturelli
- Institute of Nutritional Sciences 140, Nutritional Biochemistry 140c, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tuebingen, Wilhelmstr. 56, 72074 Tuebingen, Germany
| |
Collapse
|
6
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
7
|
Ramírez-Sánchez DA, Arredondo-Beltrán IG, Canizalez-Roman A, Flores-Villaseñor H, Nazmi K, Bolscher JGM, León-Sicairos N. Bovine lactoferrin and lactoferrin peptides affect endometrial and cervical cancer cell lines. Biochem Cell Biol 2020; 99:149-158. [PMID: 33307991 DOI: 10.1139/bcb-2020-0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cervical, uterine, and ovarian cancers are the most common malignancies of the female genital tract worldwide. Despite advances in prevention, early diagnosis, effective screening, and treatment programs, mortality remains high. Consequently, it is important to search for new treatments. The activity of bovine lactoferrin (bLF) and LF peptides against several types of cancer has been studied; however, only a few studies report the effect of bLF and LF peptides against cervical and endometrial cancers. In this study, we explored the effect of bLF as well as LF chimera and its constituent peptides LFcin17-30 and LFampin265-284 on the viability of cervical (HeLa, SiHa) and endometrial (KLE, HEC-1A) cancer cell lines. Cell proliferation was quantified with an MTT assay, cell morphological changes and damage were determined by Giemsa and phalloidin-TRITC and DAPI staining, and apoptotic and necrotic cells were identified by Alexa Fluor® 488 Annexin V and propidium iodide staining. Additionally, the effect of combinations of bLF and LF peptides with cisplatin was assessed. bLF and LF peptides inhibited the proliferation of uterine cancer cells and caused cellular morphological changes and damage to cell monolayers. bLF induced apoptosis, LFcin17-30 and LFampin265-284 induced apoptosis and necrosis, and LF chimera induced necrosis. Additionally, bLF and LF chimera showed an additive interaction with cisplatin against uterine cancer cells.
Collapse
Affiliation(s)
- Diana A Ramírez-Sánchez
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México
| | - Izamar G Arredondo-Beltrán
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México
| | - Adrián Canizalez-Roman
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Hospital de la Mujer, Servicios de Salud de Sinaloa, Culiacán Sinaloa, México
| | | | - Kamran Nazmi
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Nidia León-Sicairos
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Departamento de Investigación del Hospital Pediátrico, Servicios de Salud de Sinaloa, Culiacán Sinaloa, México
| |
Collapse
|
8
|
Bagwe-Parab S, Yadav P, Kaur G, Tuli HS, Buttar HS. Therapeutic Applications of Human and Bovine Colostrum in the Treatment of Gastrointestinal Diseases and Distinctive Cancer Types: The Current Evidence. Front Pharmacol 2020; 11:01100. [PMID: 33071773 PMCID: PMC7533576 DOI: 10.3389/fphar.2020.01100] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of gastrointestinal disorders (GID) and cancers is escalating all over the world. Limited consumption of colostrum by newborns not only weakens the immune system but also predisposes infants to microbial infections. Colostrum is nature's perfect food, sometimes referred to as the 'elixir of life'. Breast-fed infants have a lower incidence of GI tract infections than infants fed formula or cow's milk. As per WHO statistics, cancer is the most prevalent disease globally and causes 9.6 million deaths worldwide. The current strategies for treating cancer include chemotherapy, radiation, and surgery. However, chemotherapy and radiation exposure are usually associated with serious long-term side effects and deterioration in the quality of life (QOL) of patients. Furthermore, the hospitalization and medication costs for treating cancers are exorbitant and impose high economic burden on healthcare systems. People are desperately looking for cost-effective and affordable alternative therapies for treating GID and cancers. Therefore, there is an urgent need for clinically evaluating the anticancer compounds isolated from plants and animals. Such therapies would not only be economical and have fewer side effects, but also help to improve the QOL of cancer patients. Recently, bovine colostrum (BC) has caught the attention of many investigators to explore its anticancer potential in humans. BC impregnated dressings are highly effective in treating chronic wounds and diabetic foot ulcer. BC is rich in lactoferrin, a glycoprotein with strong antioxidant, anti-inflammatory, anti-cancer, and anti-microbial properties. Intravaginal application of BC tablets is effective in causing the regression of low-grade cervical intraepithelial neoplasia. The underlying mechanisms of BC at cellular, genetic, and molecular levels remain to be ascertained. Oral BC supplement is well-tolerated, but some people may experience problems such as flatulence and nausea. Well-designed, randomized, placebo-controlled, clinical trials are needed to access the therapeutic potential, long-term safety, and optimal doses of BC products. This review is aimed to highlight the anticancer potential of BC and its components, and the therapeutic applications of BC supplements in treating gastrointestinal diseases in children and adults. We also discuss the health promotion benefits and therapeutic potential of BC nutraceuticals in reducing the incidence of non-communicable diseases.
Collapse
Affiliation(s)
- Siddhi Bagwe-Parab
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandals Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Pratik Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandals Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandals Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Tanaka H, Gunasekaran S, Saleh DM, Alexander WT, Alexander DB, Ohara H, Tsuda H. Effects of oral bovine lactoferrin on a mouse model of inflammation associated colon cancer. Biochem Cell Biol 2020; 99:159-165. [PMID: 32905707 DOI: 10.1139/bcb-2020-0087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients with ulcerative colitis or colonic Crohn's disease have a significantly increased risk of developing colorectal cancer. Bovine lactoferrin (bLF) reportedly inhibited the development of colon cancer in rats and mice, and in a placebo controlled trial, ingestion of bLF inhibited the growth of intestinal polyps. In addition, in a case study, a patient with Crohn's disease was reported to have remained in remission for over 7 years while ingesting 1 g of bLF daily. Thus, bLF has an inhibitory effect on colon carcinogenesis, and it may also promote remission of Crohn's disease. The purpose of this study was to investigate the effects of bLF in a mouse model of colorectal cancer related to irritable bowel disease (IBD). The mice were divided into 4 groups: (i) no treatment; (ii) treated with bLF only; (iii) treated with azoxymethane plus dextran sulfate sodium (AOM + DSS); and (iv) treated with AOM + DSS + bLF. AOM was used to initiate intestinal cancer, and DSS was used to induce IBD-like inflammation in the intestine of the C57BL/6 mice. At the end of the study, the mice treated with AOM + DSS + bLF had a better fecal score, fewer lesions in the colon, and less weight loss than the mice treated with AOM + DSS without bLF. However, there were no statistically significant differences between the two groups with respect to tumor burden.
Collapse
Affiliation(s)
- Hajime Tanaka
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sivagami Gunasekaran
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Dina Mourad Saleh
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | | | | | - Hirotaka Ohara
- Department of Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| |
Collapse
|
10
|
Osorio M, Martinez E, Naranjo T, Castro C. Recent Advances in Polymer Nanomaterials for Drug Delivery of Adjuvants in Colorectal Cancer Treatment: A Scientific-Technological Analysis and Review. Molecules 2020; 25:E2270. [PMID: 32408538 PMCID: PMC7288015 DOI: 10.3390/molecules25102270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the type with the second highest morbidity. Recently, a great number of bioactive compounds and encapsulation techniques have been developed. Thus, this paper aims to review the drug delivery strategies for chemotherapy adjuvant treatments for CRC, including an initial scientific-technological analysis of the papers and patents related to cancer, CRC, and adjuvant treatments. For 2018, a total of 167,366 cancer-related papers and 306,240 patents were found. Adjuvant treatments represented 39.3% of the total CRC patents, indicating the importance of adjuvants in the prognosis of patients. Chemotherapy adjuvants can be divided into two groups, natural and synthetic (5-fluorouracil and derivatives). Both groups can be encapsulated using polymers. Polymer-based drug delivery systems can be classified according to polymer nature. From those, anionic polymers have garnered the most attention, because they are pH responsive. The use of polymers tailors the desorption profile, improving drug bioavailability and enhancing the local treatment of CRC via oral administration. Finally, it can be concluded that antioxidants are emerging compounds that can complement today's chemotherapy treatments. In the long term, encapsulated antioxidants will replace synthetic drugs and will play an important role in curing CRC.
Collapse
Affiliation(s)
- Marlon Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Estefanía Martinez
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Tonny Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín 050034, Colombia;
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín 050034, Colombia
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| |
Collapse
|
11
|
Meng S, Li Y, Zang X, Jiang Z, Ning H, Li J. Effect of TLR2 on the proliferation of inflammation-related colorectal cancer and sporadic colorectal cancer. Cancer Cell Int 2020; 20:95. [PMID: 32256204 PMCID: PMC7104506 DOI: 10.1186/s12935-020-01184-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Colitis-associated cancer (CAC) is a complication of inflammatory bowel disease (IBD) with a poor prognosis because it is often diagnosed in advanced stages with local progression or metastasis. Compared with the more common polyp-induced sporadic colorectal cancer (sCRC), CAC has different molecular mechanisms. Toll-like receptor 2 (TLR2) expression is not limited to cells related to inflammation and immune function. High levels of TLR2 expression in tumor tissues of colorectal cancer (CRC) patients have been reported. This report is to investigate the effects of knockout and knockdown of the TLR2 gene on the proliferation of CAC and sCRC. Methods Twelve C57BL/6 J wild-type mice (WT) and 12 TLR2 knockout mice (TLR2-/-) were used to rapidly establish a colitis-associated cancer (CAC) model via the 1,2-dimethylhydrazine-dextran sodium sulfate (DMH-DSS) method and were divided into the normal WT control group (NC), TLR2 knockout control group (KC), normal wild-type tumor modeling group (NT), and TLR2 knockout tumor modeling group (KT), with 6 mice in each group. The general performance of the mice during modeling, the gross changes of the colon and the rectum, and the pathological score of HE staining were used to observe tumor growth. The expression of TLR2 was detected by immunohistochemistry, and tumor proliferation was detected by Ki67 labeling. Lentivirus carrying TLR2-RNAi was used to stably infect colorectal cancer cells (HCT116 and HT29) to knock down TLR2 gene expression. The experimental groups included the uninfected control group, negative control group, and gene knockdown group. After infection, the expression of TLR2 protein was detected by Western blot, and cell proliferation and the cell cycle were detected by the CCK-8 method and fluorescence-activated cell sorting. Western blot was used to detect the expression levels of p- NF-κβ, cyclin D1 and cyclin D3 protein in each group of cells. Results TLR2 knockout in the CAC model resulted in greater changes in body weight and more severe diarrhea and colorectal hemorrhage. However, knocking out the TLR2 gene reduced the shortening of colorectal length, the number of tumors, and the total tumor volume and inhibited the growth of CAC. Knocking out the TLR2 gene also reduced the pathological score and tumor severity. TLR2 was localized in the cell membrane of the colorectal epithelium of the NC group and of the colorectal tumors of the NT group and was highly expressed in the NT group, while antigen Ki67 was localized in the nucleus of the colorectal tumor cells of the NT group and the KT group, and its expression was reduced in the KT group. In an in vitro sporadic colorectal cancer cell experiment, TLR2 protein in the TLR2 knockdown group was significantly downregulated, and TLR2 knockdown significantly inhibited the proliferation of HCT116 and HT29 colorectal cancer cells, resulting in G1 phase arrest. The expression levels of p-NF-κβ, cyclin D1 and cyclin D3 proteins in TLR2 gene knockdown group cells were significantly reduced. Conclusion Knockout and knockdown of TLR2 can inhibit the proliferation of inflammation-related colorectal cancer and sporadic colorectal cancer.
Collapse
Affiliation(s)
- Shuang Meng
- 1Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5 Renmin Street, Guta District, Jinzhou City, 121001 Liaoning Province China.,2Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou City, 121001 Liaoning Province China
| | - Yingjie Li
- 1Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5 Renmin Street, Guta District, Jinzhou City, 121001 Liaoning Province China
| | - Xiaozhen Zang
- 1Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5 Renmin Street, Guta District, Jinzhou City, 121001 Liaoning Province China
| | - Zheng Jiang
- Jinzhou No. 2 Hospital, No. 2, Section 6, Nanjing Road, Linghe District, Jinzhou City, 121001 Liaoning Province China
| | - Huahan Ning
- 1Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5 Renmin Street, Guta District, Jinzhou City, 121001 Liaoning Province China
| | - Jing Li
- 1Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5 Renmin Street, Guta District, Jinzhou City, 121001 Liaoning Province China
| |
Collapse
|
12
|
Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P, Musci G. Lactoferrin's Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules 2020; 10:biom10030456. [PMID: 32183434 PMCID: PMC7175311 DOI: 10.3390/biom10030456] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in cancer therapy, current treatments, including radiotherapy, chemotherapy, and immunotherapy, although beneficial, present attendant side effects and long-term sequelae, usually more or less affecting quality of life of the patients. Indeed, except for most of the immunotherapeutic agents, the complete lack of selectivity between normal and cancer cells for radio- and chemotherapy can make them potential antagonists of the host anti-cancer self-defense over time. Recently, the use of nutraceuticals as natural compounds corroborating anti-cancer standard therapy is emerging as a promising tool for their relative abundance, bioavailability, safety, low-cost effectiveness, and immuno-compatibility with the host. In this review, we outlined the anti-cancer properties of Lactoferrin (Lf), an iron-binding glycoprotein of the innate immune defense. Lf shows high bioavailability after oral administration, high selectivity toward cancer cells, and a wide range of molecular targets controlling tumor proliferation, survival, migration, invasion, and metastasization. Of note, Lf is able to promote or inhibit cell proliferation and migration depending on whether it acts upon normal or cancerous cells, respectively. Importantly, Lf administration is highly tolerated and does not present significant adverse effects. Moreover, Lf can prevent development or inhibit cancer growth by boosting adaptive immune response. Finally, Lf was recently found to be an ideal carrier for chemotherapeutics, even for the treatment of brain tumors due to its ability to cross the blood-brain barrier, thus globally appearing as a promising tool for cancer prevention and treatment, especially in combination therapies.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (M.S.L.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (A.C.); (G.M.)
| |
Collapse
|
13
|
Li HY, Yang HG, Li P, Wang YZ, Huang GX, Xing L, Wang JQ, Zheng N. Effect of Heat Treatment on the Antitumor Activity of Lactoferrin in Human Colon Tumor (HT29) Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:140-147. [PMID: 30418775 DOI: 10.1021/acs.jafc.8b05131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To investigate the effect of heat treatment on the antitumor activity of lactoferrin in colon cancer cells and colon tumors, the HT-29 (human intestinal epithelial tumor cell) cell line was exposed to lactoferrin and various heat treatments. The impacts on cell proliferation, invasion, and migration were observed in vitro, and nude mice bearing HT29 tumors were administered lactoferrin and underwent various heat treatments in vivo. In the HT29 cell proliferation test using transwell and scratch analyses, lactoferrin (20 mg/mL) without or with heat treatment (50 and 70 °C) significantly inhibited cell proliferation, migration, and invasion (compared with the control, p < 0.05), while lactoferrin with heat treatment (100 °C) did not affect these parameters. In vivo, HT29 tumor weight was significantly reduced in the lactoferrin (without heat treatment and with 50 and 70 °C treatment) groups (1.59 ± 0.20, 1.67 ± 0.25, and 2.41 ± 0.42 g, compared with the control, p < 0.05), and there was no significant difference between the control (3.73 ± 0.33 g) and the 100 °C treatment group (3.58 ± 0.29 g). Moreover, 100 °C heat treatment reduced inhibition of the VEGFR2/VEGFA/PI3K/Akt/Erk1/2 angiogenesis pathway by lactoferrin. In summary, HT29 tumors were effectively suppressed by lactoferrin via inhibition of VEGFR2/VEGFA/PI3K/Akt/Erk1/2 pathway, and heat treatment affected the antitumor activity of lactoferrin in a temperature-dependent manner.
Collapse
Affiliation(s)
- Hui-Ying Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Huai-Gu Yang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Peng Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Yi-Zhen Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Guo-Xin Huang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Lei Xing
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Jia-Qi Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Nan Zheng
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| |
Collapse
|