1
|
Yang J, Zhang Z, Liu H, Wang J, Xie S, Li P, Wen J, Wei S, Li R, Ma X, Zhao Y. Network Pharmacology and Experimental Validation of Qingwen Baidu Decoction Therapeutic Potential in COVID-19-related Lung Injury. Comb Chem High Throughput Screen 2024; 27:1286-1302. [PMID: 37957903 DOI: 10.2174/0113862073236899230919062725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND PURPOSE Coronavirus disease 2019 (COVID-19) is a lifethreatening disease worldwide due to its high infection and serious outcomes resulting from acute lung injury. Qingwen Baidu decoction (QBD), a well-known herbal prescription, has shown significant efficacy in patients with Coronavirus disease 2019. Hence, this study aims to uncover the molecular mechanism of QBD in treating COVID-19-related lung injury. METHODS Traditional Chinese Medicine Systems Pharmacology database (TCMSP), DrugBanks database, and Chinese Knowledge Infrastructure Project (CNKI) were used to retrieve the active ingredients of QBD. Drug and disease targets were collected using UniProt and Online Mendelian Inheritance in Man databases (OMIM). The core targets of QBD for pneumonia were analyzed by the Protein-Protein Interaction Network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the underlying molecular mechanisms. The analysis of key targets using molecular docking and animal experiments was also validated. RESULTS A compound-direct-acting target network mainly containing 171 compounds and 110 corresponding direct targets was constructed. The key targets included STAT3, c-JUN, TNF-α, MAPK3, MAPK1, FOS, PPARG, MAPK8, IFNG, NFκB1, etc. Moreover, 117 signaling pathways mainly involved in cytokine storm, inflammatory response, immune stress, oxidative stress and glucose metabolism were found by KEGG. The molecular docking results showed that the quercetin, alanine, and kaempferol in QBD demonstrated the strongest affinity to STAT3, c- JUN, and TNF-α. Experimental results displayed that QBD could effectively reduce the pathological damage to lung tissue by LPS and significantly alleviate the expression levels of the three key targets, thus playing a potential therapeutic role in COVID-19. CONCLUSION QBD might be a promising therapeutic agent for COVID-19 via ameliorating STAT3-related signals.
Collapse
Affiliation(s)
- Ju Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Zhao Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Honghong Liu
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jiawei Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shuying Xie
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Pengyan Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Ruisheng Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| |
Collapse
|
2
|
The lytic phase of Epstein-Barr virus plays an important role in tumorigenesis. Virus Genes 2023; 59:1-12. [PMID: 36242711 DOI: 10.1007/s11262-022-01940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/02/2022] [Indexed: 01/13/2023]
Abstract
Epstein-Barr virus (EBV) is a recognized oncogenic virus that is related to the occurrence of lymphoma, nasopharyngeal carcinoma (NPC), and approximately 10% of gastric cancer (GC). EBV is a herpesvirus, and like other herpesviruses, EBV has a biphasic infection mode made up of latent and lytic infections. It has been established that latent infection promotes tumorigenesis in previous research, but in recent years, there has been new evidence that suggests that the lytic infection mode could also promote tumorigenesis. In this review, we mainly discuss the contribution of the EBV lytic phase to tumorigenesis, and graphically illustrate their relationship in detail. In addition, we described the relationship between the lytic cycle of EBV and autophagy. Finally, we also preliminarily explored the influence of the tumorigenesis effect of the EBV lytic phase on the future treatment of EBV-associated tumors.
Collapse
|
3
|
Nah J, Seong RH. Krüppel-like factor 4 regulates the cytolytic effector function of exhausted CD8 T cells. SCIENCE ADVANCES 2022; 8:eadc9346. [PMID: 36427304 PMCID: PMC9699681 DOI: 10.1126/sciadv.adc9346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Exhausted CD8 T cells during chronic inflammatory responses against viral infections and cancer are phenotypically and functionally heterogeneous. In particular, CD8 T cells with cytolytic effector function have been recently identified among the exhausted CD8 T cell subsets. However, the regulation of their differentiation and function remains largely unknown. Here, we report that Krüppel-like factor 4 (KLF4) is a critical regulator of the exhaustion process, promoting the cytolytic effector function of exhausted CD8 T cells. KLF4-expressing CD8 T cells in exhaustion contexts showed the features of transitory effector CD8 T cells. Enforced KLF4 expression increased CD8 T cell differentiation into transitory effector subsets and enhanced their antitumor immunity. We further demonstrated that KLF4 also showed a capacity of reinvigorating exhausted CD8 T cells. Last, high KLF4 expression was positively correlated with a favorable prognosis in human patients with cancer. Our study highlights the potential impacts of KLF4 on CD8 T cell exhaustion and antitumor immune therapy.
Collapse
|
4
|
Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179943. [PMID: 36077338 PMCID: PMC9456420 DOI: 10.3390/ijms23179943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the great advancements made in cancer treatment, there are still many unsatisfied aspects, such as the wide palette of side effects and the drug resistance. There is an obvious increasing scientific attention towards nature and what it can offer the human race. Natural products can be used to treat many diseases, of which some plant products are currently used to treat cancer. Plants produce secondary metabolites for their signaling mechanisms and natural defense. A variety of plant-derived products have shown promising anticancer properties in vitro and in vivo. Rather than recreating the natural production environment, ongoing studies are currently setting various strategies to significantly manipulate the quantity of anticancer molecules in plants. This review focuses on the recently studied secondary metabolite agents that have shown promising anticancer activity, outlining their potential mechanisms of action and pathways.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Elena Victoria Manea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Oana Stefana Popescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-334-30-25
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| |
Collapse
|
5
|
Ba H, Chen M, Li C. Cross-Species Analysis Reveals Co-Expressed Genes Regulating Antler Development in Cervidae. Front Genet 2022; 13:878078. [PMID: 35664330 PMCID: PMC9157503 DOI: 10.3389/fgene.2022.878078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Antlers constitute an interesting model for basic research in regenerative biology. Despite decades of being studied, much is still unknown about the genes related to antler development. Here, we utilized both the genome and antlerogenic periosteum (AP) transcriptome data of four deer species to reveal antler-related genes through cross-species comparative analysis. The results showed that the global gene expression pattern matches the status of antler phenotypes, supporting the fact that the genes expressed in the AP may be related to antler phenotypes. The upregulated genes of the AP in three-antlered deer showed evidence of co-expression, and their protein sequences were highly conserved. These genes were growth related and likely participated in antler development. In contrast, the upregulated genes in antler-less deer (Chinese water deer) were involved mainly in organismal death and growth failure, possibly related to the loss of antlers during evolution. Overall, this study demonstrates that the co-expressed genes in antlered deer may regulate antler development.
Collapse
Affiliation(s)
- Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China.,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, China
| | - Min Chen
- School of Life Sciences, Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, China.,Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China.,College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, China
| |
Collapse
|
6
|
Liu Y, Chen L, Liu W, Li D, Zeng J, Tang Q, Zhang Y, Luan F, Zeng N. Cepharanthine Suppresses Herpes Simplex Virus Type 1 Replication Through the Downregulation of the PI3K/Akt and p38 MAPK Signaling Pathways. Front Microbiol 2021; 12:795756. [PMID: 34956164 PMCID: PMC8696181 DOI: 10.3389/fmicb.2021.795756] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cepharanthine (CEP) is a naturally occurring isoquinoline alkaloid extracted from Stephania cepharantha Hayata. Although its underlying molecular mechanism is not fully understood, this compound is reported as a promising antiviral drug. In the present study, we explore the anti-HSV-1 effects and the underlying molecular mechanisms of CEP in vitro. Our results show that CEP could significantly inhibit the formation of plaque and the expression of viral proteins and exhibit a general suppression of replication-associated genes. Whereas HSV-1 infection increases the expressions of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38 MAPK) in host cells, CEP was effective indirectly inhibiting phosphorylation levels of the targets in PI3K/Akt and p38 MAPK signaling pathways. Moreover, CEP markedly decreased G0/G1 phase and increased G2/M phase cells and decreased the expression of cyclin-dependent kinase1 (CDK1) and cyclinB1 in a dose-dependent manner. Additionally, CEP increased apoptosis in infected cells, reduced B cell lymphoma-2 (Bcl-2) protein levels, and increased the protein levels of Bcl-associated X protein (Bax), cleaved-caspase3, and nuclear IκB kinaseα (IκBα). Collectively, CEP could arrest the cell cycle in the G2/M phase and induce apoptosis in infected cells by inhibiting the PI3K/Akt and p38 MAPK signaling pathways, hence further reducing HSV-1 infection and subsequent reproduction.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Li Chen
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjun Liu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Dan Li
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Jiuseng Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Tang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuexin Zhang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Fei Luan
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zeng
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Tanshinone IIA Inhibits Osteosarcoma Growth through a Src Kinase-Dependent Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5563691. [PMID: 34422073 PMCID: PMC8376467 DOI: 10.1155/2021/5563691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
Introduction Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.
Collapse
|
8
|
The Effect of a Unique Region of Parvovirus B19 Capsid Protein VP1 on Endothelial Cells. Biomolecules 2021; 11:biom11040606. [PMID: 33921883 PMCID: PMC8073096 DOI: 10.3390/biom11040606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Parvovirus B19 (B19V) is a widespread human pathogen possessing a high tropism for erythroid precursor cells. However, the persistence or active replication of B19V in endothelial cells (EC) has been detected in diverse human pathologies. The VP1 unique region (VP1u) of the viral capsid has been reported to act as a major determinant of viral tropism for erythroid precursor cells. Nevertheless, the interaction of VP1u with EC has not been studied. We demonstrate that recombinant VP1u is efficiently internalized by rats’ pulmonary trunk blood vessel-derived EC in vitro compared to the human umbilical vein EC line. The exposure to VP1u was not acutely cytotoxic to either human- or rat-derived ECs, but led to the upregulation of cellular stress signaling-related pathways. Our data suggest that high levels of circulating B19V during acute infection can cause endothelial damage, even without active replication or direct internalization into the cells.
Collapse
|
9
|
Impact of Adenosine A2 Receptor Ligands on BCL2 Expression in Skeletal Muscle Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Adenosine plays the role of regulating cell differentiation, proliferation, and apoptosis in various kinds of cells through the B-cell lymphoma 2 (BCL2) pathway. Objectives: Since anti-apoptotic (BCL2) expression plays a role in controlling apoptosis in some cell lines, this study was designed to investigate whether adenosine analogue, NECA (non-selective adenosine receptors agonist), selective adenosine A2B receptor antagonist, PSB 603, and a selective adenosine A2A receptor agonist, CG21680, affect BCL2-gene expression in the skeletal muscle cells of rats. The purpose of this investigation was to test the hypothesis that CG21680 treatment would significantly intensify BCL2 gene expression in rat skeletal muscle. Methods: Flasks measuring 25 cm2 were employed in culturing the rat L6 skeletal muscle cells. After treating these differential cells, the relative mRNA expression level for the BCL2 gene, at varying conditions of treatment, was measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: From the qRT-PCR analysis results, it was concluded that BCL2 expression was markedly amplified after selective adenosine A2A receptor agonist, CGS21680 (p < 0.01) treatment. More prospective validation for the adenosine receptors’ contribution in modulating apoptosis by NECA was delivered by the outcomes from the combined pre-treatment of the cells with NECA and PSB 603. These outcomes show that when starved skeletal muscle cells are treated with a combination of NECA and 100 nM PSB 603, there was a substantial decrease in comparison to either treatment used on its own. Conclusions: This study’s results showed, for the first time, an increase in BCL2 gene expression within skeletal muscle after CGS21680 treatment. Hence, the prospective escalation in BCL2 protein expression might have a protective role to play against apoptosis and avert damage to the skeletal muscle.
Collapse
|
10
|
Wyżewski Z, Świtlik W, Mielcarska MB, Gregorczyk-Zboroch KP. The Role of Bcl-xL Protein in Viral Infections. Int J Mol Sci 2021; 22:ijms22041956. [PMID: 33669408 PMCID: PMC7920434 DOI: 10.3390/ijms22041956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Bcl-xL represents a family of proteins responsible for the regulation of the intrinsic apoptosis pathway. Due to its anti-apoptotic activity, Bcl-xL co-determines the viability of various virally infected cells. Their survival may determine the effectiveness of viral replication and spread, dynamics of systemic infection, and viral pathogenesis. In this paper, we have reviewed the role of Bcl-xL in the context of host infection by eight different RNA and DNA viruses: hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), influenza A virus (IAV), Epstein-Barr virus (EBV), human T-lymphotropic virus type-1 (HTLV-1), Maraba virus (MRBV), Schmallenberg virus (SBV) and coronavirus (CoV). We have described an influence of viral infection on the intracellular level of Bcl-xL and discussed the impact of Bcl-xL-dependent cell survival control on infection-accompanying pathogenic events such as tissue damage or oncogenesis. We have also presented anti-viral treatment strategies based on the pharmacological regulation of Bcl-xL expression or activity.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-815 Warsaw, Poland
- Correspondence: ; Tel.: +48 728-208-338
| | - Weronika Świtlik
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | |
Collapse
|
11
|
Núñez-Acurio D, Bravo D, Aguayo F. Epstein-Barr Virus-Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens 2020; 9:E1059. [PMID: 33352891 PMCID: PMC7765927 DOI: 10.3390/pathogens9121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Its development has been associated with diverse factors such as tobacco smoking and alcohol consumption. In addition, it has been suggested that microorganisms are risk factors for oral carcinogenesis. Epstein-Barr virus (EBV), which establishes lifelong persistent infections and is intermittently shed in the saliva, has been associated with several lymphomas and carcinomas that arise in the oral cavity. In particular, it has been detected in a subset of OSCCs. Moreover, its presence in patients with periodontitis has also been described. Porphyromonas gingivalis (P. gingivalis) is an oral bacterium in the development of periodontal diseases. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues but also to evade the host immune system and eventually affect systemic health. Persistent exposure to P. gingivalis promotes tumorigenic properties of oral epithelial cells, suggesting that chronic P. gingivalis infection is a potential risk factor for OSCC. Given that the oral cavity serves as the main site where EBV and P. gingivalis are harbored, and because of their oncogenic potential, we review here the current information about the participation of these microorganisms in oral carcinogenesis, describe the mechanisms by which EBV and P. gingivalis independently or synergistically can collaborate, and propose a model of interaction between both microorganisms.
Collapse
Affiliation(s)
- Daniela Núñez-Acurio
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
| | - Denisse Bravo
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Francisco Aguayo
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
12
|
Blanco R, Aguayo F. Role of BamHI-A Rightward Frame 1 in Epstein-Barr Virus-Associated Epithelial Malignancies. BIOLOGY 2020; 9:biology9120461. [PMID: 33322292 PMCID: PMC7763232 DOI: 10.3390/biology9120461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Simple Summary Epstein–Barr virus is a ubiquitous persistent virus, which is involved in the development of some human cancers. A licensed vaccine to prevent Epstein–Barr virus infection is lacking. BamHI-A rightward frame 1 is a viral protein specifically detected in both nasopharyngeal and Epstein–Barr virus-positive gastric cancers. It has been proposed that this viral protein confers cancer properties to infected epithelial cells and is involved in the escape of cancer cells from immune recognition. In this review, we summarize the properties of BamHI-A rightward frame 1 which confers cancer characteristics to infected epithelial cells. Thus, BamHI-A rightward frame 1 is a potential therapeutic target for the treatment of either Epstein–Barr virus (EBV)-positive nasopharyngeal or gastric cancers. Abstract Epstein–Barr virus (EBV) infection is associated with a subset of both lymphoid and epithelial malignancies. During the EBV latency program, some viral products involved in the malignant transformation of infected cells are expressed. Among them, the BamHI-A rightward frame 1 (BARF1) is consistently detected in nasopharyngeal carcinomas (NPC) and EBV-associated gastric carcinomas (EBVaGCs) but is practically undetectable in B-cells and lymphomas. Although BARF1 is an early lytic gene, it is expressed during epithelial EBV latency, mainly as a secreted protein (sBARF1). The capacity of sBARF1 to disrupt both innate and adaptive host antiviral immune responses contributes to the immune escape of infected cells. Additionally, BARF1 increases cell proliferation, shows anti-apoptotic effects, and promotes an increased hTERT activity and tumor formation in nude mice cooperating with other host proteins such as c-Myc and H-ras. These facts allow for the consideration of BARF1 as a key protein for promoting EBV-associated epithelial tumors. In this review, we focus on structural and functional aspects of BARF1, such as mechanisms involved in epithelial carcinogenesis and its capacity to modulate the host immune response.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Francisco Aguayo
- Universidad de Tarapacá, Arica 1000000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
13
|
Re VD, Brisotto G, Repetto O, De Zorzi M, Caggiari L, Zanussi S, Alessandrini L, Canzonieri V, Miolo G, Puglisi F, Belluco C, Steffan A, Cannizzaro R. Overview of Epstein-Barr-Virus-Associated Gastric Cancer Correlated with Prognostic Classification and Development of Therapeutic Options. Int J Mol Sci 2020; 21:E9400. [PMID: 33321820 PMCID: PMC7764600 DOI: 10.3390/ijms21249400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is a deadly disease with poor prognosis that is characterized by heterogeneity. New classifications based on histologic features, genotypes, and molecular phenotypes, for example, the Cancer Genome Atlas subtypes and those by the Asian Cancer Research Group, help understand the carcinogenic differences in GC and have led to the identification of an Epstein-Barr virus (EBV)-related GC subtype (EBVaGC), providing new indications for tailored treatment and prognostic factors. This article provides a review of the features of EBVaGC and an update on the latest insights from EBV-related research with a particular focus on the strict interaction between EBV infection and the gastric tumor environment, including the host immune response. This information may help increase our knowledge of EBVaGC pathogenesis and the mechanisms that sustain the immune response of patients since this mechanism has been demonstrated to offer a survival advantage in a proportion of patients with GC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Ombretta Repetto
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Mariangela De Zorzi
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Laura Caggiari
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Stefania Zanussi
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Lara Alessandrini
- Pathology, Department of Medicine DIMED, University of Padova, 61-35121 Padova, Italy;
| | - Vincenzo Canzonieri
- Surgical and Health Sciences, Department of Medical, University of Trieste Medical School, 34100 Trieste, Italy;
- Pathology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (G.M.); (F.P.)
| | - Fabio Puglisi
- Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (G.M.); (F.P.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Claudio Belluco
- Surgical Oncology, Department of Surgery, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Renato Cannizzaro
- Gastroenterology, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
14
|
Role of Epstein-Barr Virus and Human Papillomavirus Coinfection in Cervical Cancer: Epidemiology, Mechanisms and Perspectives. Pathogens 2020; 9:pathogens9090685. [PMID: 32839399 PMCID: PMC7557835 DOI: 10.3390/pathogens9090685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
High-risk human papillomavirus (HR-HPV) is etiologically associated with the development and progression of cervical cancer, although other factors are involved. Epstein-Barr virus (EBV) detection in premalignant and malignant tissues from uterine cervix has been widely reported; however, its contribution to cervical cancer development is still unclear. Here, a comprehensive analysis regarding EBV presence and its potential role in cervical cancer, the frequency of EBV/HR-HPV coinfection in uterine cervix and EBV infection in tissue-infiltrating lymphocytes were revised. Overall, reports suggest a potential link of EBV to the development of cervical carcinomas in two possible pathways: (1) Infecting epithelial cells, thus synergizing with HR-HPV (direct pathway), and/or (2) infecting tissue-infiltrating lymphocytes that could generate local immunosuppression (indirect pathway). In situ hybridization (ISH) and/or immunohistochemical methods are mandatory for discriminating the cell type infected by EBV. However, further studies are needed for a better understanding of the EBV/HR-HPV coinfection role in cervical carcinogenesis.
Collapse
|
15
|
Common and Unique microRNAs in Multiple Carcinomas Regulate Similar Network of Pathways to Mediate Cancer Progression. Sci Rep 2020; 10:2331. [PMID: 32047181 PMCID: PMC7012856 DOI: 10.1038/s41598-020-59142-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex disease with a fatal outcome. Early detection of cancer, by monitoring appropriate molecular markers is very important for its therapeutic management. In this regard, the short non-coding RNA molecules, microRNAs (miRNAs) have shown great promise due to their availability in circulating fluids facilitating non-invasive detection of cancer. In this study, an in silico comparative analysis was performed to identify specific signature miRNAs dysregulated across multiple carcinomas and simultaneously identify unique miRNAs for each cancer type as well. The miRNA-seq data of cancer patient was obtained from GDC portal and their differential expressions along with the pathways regulated by both common and unique miRNAs were analyzed. Our studies show twelve miRNAs commonly dysregulated across seven different cancer types. Interestingly, four of those miRNAs (hsa-mir-210, hsa-mir-19a, hsa-mir-7 and hsa-mir-3662) are already reported as circulatory miRNAs (circRNAs); while, the miR-183 cluster along with hsa-mir-93 have been found to be incorporated in exosomes signifying the importance of the identified miRNAs for their use as prospective, non-invasive biomarkers. Further, the target mRNAs and pathways regulated by both common and unique miRNAs were analyzed, which interestingly had significant commonality. This suggests that miRNAs that are commonly de-regulated and specifically altered in multiple cancers might regulate similar pathways to promote cancer. Our data is of significance because we not only identify a set of common and unique miRNAs for multiple cancers but also highlight the pathways regulated by them, which might facilitate the development of future non-invasive biomarkers conducive for early detection of cancers.
Collapse
|
16
|
Chilewski SD, Bhosale D, Dees S, Hutchinson I, Trimble R, Pontiggia L, Mercier I, Jasmin JF. Development of CAPER peptides for the treatment of triple negative breast cancer. Cell Cycle 2020; 19:432-447. [PMID: 31931653 PMCID: PMC7100886 DOI: 10.1080/15384101.2020.1711579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 10/26/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous disease, which lacks expression of the estrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth factor 2 receptor (HER2). This subtype of breast cancer has the poorest prognosis with limited therapies currently available, and hence additional options are needed. CAPER is a coactivator of the activator protein-1 (AP-1) (interacting specifically with the c-Jun component) and the ER and is known to be involved in human breast cancer pathogenesis. Recent published data have demonstrated a role for CAPER in TNBC and, as such, disrupting the function of CAPER with c-Jun could be a novel approach to treat TNBC patients. The data presented here shows the development and in vitro testing of CAPER-derived peptides that inhibit the coactivator activity of CAPER with c-Jun. These CAPER peptides result in a decrease in cell number and an increase in apoptosis in two TNBC cell lines, MDA-MB-231 and BT-549, while having no effect on the non-tumorigenic cell line MCF 10A. Additionally, two modes of action were demonstrated which appear to be cell line dependent: 1) a modulation of phosphorylated c-Jun leading to a decrease in Bcl-2 in MDA-MB-231 cells and a decrease in p21 in BT-549 cells and 2) a decrease in DNA repair proteins, leading to impaired DNA repair function in MDA-MB-231 cells. The data presented here supports further development of CAPER-derived peptides for the treatment of TNBC.
Collapse
Affiliation(s)
- Shannon D. Chilewski
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Devyani Bhosale
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Sundee Dees
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Isaac Hutchinson
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Rachel Trimble
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Laura Pontiggia
- Department of Mathematics, Physics and Statistics, Misher College of Arts and Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Isabelle Mercier
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|
17
|
Liu T, Han Y, Zhou T, Zhang R, Chen H, Chen S, Zhao H. Mechanisms of ROS-induced mitochondria-dependent apoptosis underlying liquid storage of goat spermatozoa. Aging (Albany NY) 2019; 11:7880-7898. [PMID: 31548434 PMCID: PMC6782006 DOI: 10.18632/aging.102295] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/14/2019] [Indexed: 11/25/2022]
Abstract
Liquid storage of spermatozoa is important for artificial insemination and herd genetic breeding. However, the extended time of storage inducing the rapid decline in spermatozoa quality limits the development of this technology. The molecular mechanisms underlying liquid storage of spermatozoa remain largely unexplored. In this study, the effects of liquid storage on functional quality of spermatozoa were assessed in goat (Capra hircus). The time-dependent decline in spermatozoa motility showed a strong correlation with the significant increase in apoptosis. Moreover, apoptosis-related ultrastructural changes were observed, especially the defects in mitochondria. A significant decrease in mitochondrial membrane potential and changes in the expression of mitochondrial apoptosis-related proteins indicated mitochondrial dysfunction and mitochondrial apoptotic pathway activation. Notably, the abnormally high level of reactive oxygen species (ROS) caused by liquid storage resulted in oxidative damage to mitochondria and accelerated mitochondria-dependent apoptosis, as demonstrated by the addition of ROS scavenger N-acetylcysteine. Furthermore, critical differentially expressed proteins involved in mitochondria-dependent apoptosis and antioxidant defense were identified and profiled by quantitative proteomic analysis, facilitating the understanding of molecular regulation of ROS-induced mitochondria-dependent apoptosis. These outcomes provide insights into the mechanisms underlying liquid storage of goat spermatozoa and enhance the progress of semen storage technology.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Yawen Han
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Ruihang Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Hong Chen
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| | - Huiying Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
18
|
Al-Hassan JM, Fang Liu Y, Khan MA, Yang P, Guan R, Wen XY, Afzal M, Oommen S, Paul BM, Nair D, Palaniyar N, Pace-Asciak C. Furanoic Lipid F-6, A Novel Anti-Cancer Compound that Kills Cancer Cells by Suppressing Proliferation and Inducing Apoptosis. Cancers (Basel) 2019; 11:E960. [PMID: 31323958 PMCID: PMC6678287 DOI: 10.3390/cancers11070960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 01/17/2023] Open
Abstract
Identifying novel anti-cancer drugs is important for devising better cancer treatment options. In a series of studies designed to identify novel therapeutic compounds, we recently showed that a C-20 fatty acid (12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic acid, a furanoic acid or F-6) present in the lipid fraction of the secretions of the Arabian Gulf catfish skin (Arius bilineatus Val.; AGCS) robustly induces neutrophil extracellular trap formation. Here, we demonstrate that a lipid mix (Ft-3) extracted from AGCS and F-6, a component of Ft-3, dose dependently kill two cancer cell lines (leukemic K-562 and breast MDA MB-231). Pure F-6 is approximately 3.5 to 16 times more effective than Ft-3 in killing these cancer cells, respectively. Multiplex assays and network analyses show that F-6 promotes the activation of MAPKs such as Erk, JNK, and p38, and specifically suppresses JNK-mediated c-Jun activation necessary for AP-1-mediated cell survival pathways. In both cell lines, F-6 suppresses PI3K-Akt-mTOR pathway specific proteins, indicating that cell proliferation and Akt-mediated protection of mitochondrial stability are compromised by this treatment. Western blot analyses of cleaved caspase 3 (cCasp3) and poly ADP ribose polymerase (PARP) confirmed that F-6 dose-dependently induced apoptosis in both of these cell lines. In 14-day cell recovery experiments, cells treated with increasing doses of F-6 and Ft-3 fail to recover after subsequent drug washout. In summary, this study demonstrates that C-20 furanoic acid F-6, suppresses cancer cell proliferation and promotes apoptotic cell death in leukemic and breast cancer cells, and prevents cell recovery. Therefore, F-6 is a potential anti-cancer drug candidate.
Collapse
Affiliation(s)
- Jassim M Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait
| | - Yuan Fang Liu
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Meraj A Khan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Guan
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery & Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Departments of Lab Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Mohammad Afzal
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait
| | - Sosamma Oommen
- Department of Zoology, CMS College, Kottayam 686001, India
| | - Bincy M Paul
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait
| | - Divya Nair
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Departments of Lab Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Cecil Pace-Asciak
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning (PGCRL), The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Department of Pharmacology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Wu Y, Xie Z, Chen J, Chen J, Ni W, Ma Y, Huang K, Wang G, Wang J, Ma J, Shen S, Fan S. Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Mol Cancer 2019; 18:73. [PMID: 30940151 PMCID: PMC6444890 DOI: 10.1186/s12943-019-1007-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND As a subclass of noncoding RNAs, circular RNAs (circRNAs) have been demonstrated to play a critical role in regulating gene expression in eukaryotes. Recent studies have revealed the pivotal functions of circRNAs in cancer progression. However, little is known about the role of circTADA2A, also named hsa_circ_0043278, in osteosarcoma (OS). METHODS CircTADA2A was selected from a previously reported circRNA microarray comparing OS cell lines and normal bone cells. QRT-PCR was used to detect the expression of circTADA2A in OS tissue and cell lines. Luciferase reporter, RNA immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization (FISH) assays were performed to confirm the binding of circTADA2A with miR-203a-3p. OS cells were stably transfected with lentiviruses, and Transwell migration, Matrigel invasion, colony formation, proliferation, apoptosis, Western blotting, and in vivo tumorigenesis and metastasis assays were employed to evaluate the roles of circTADA2A, miR-203a-3p and CREB3. RESULTS Our findings demonstrated that circTADA2A was highly expressed in both OS tissue and cell lines, and circTADA2A inhibition attenuated the migration, invasion and proliferation of OS cells in vitro as well as tumorigenesis and metastasis in vivo. A mechanistic study revealed that circTADA2A could readily sponge miR-203a-3p to upregulate the expression of CREB3, which was identified as a driver gene in OS. Furthermore, miR-203a-3p inhibition or CREB3 overexpression could reverse the circTADA2A silencing-induced impairment of malignant tumor behavior. CONCLUSIONS CircTADA2A functions as a tumor promoter in OS to increase malignant tumor behavior through the miR-203a-3p/CREB3 axis, which could be a novel target for OS therapy.
Collapse
Affiliation(s)
- Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Jiaxin Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Gangliang Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang province, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
20
|
Pei L, He X, Li S, Sun R, Xiang Q, Ren G, Xiang T. KRAB zinc-finger protein 382 regulates epithelial-mesenchymal transition and functions as a tumor suppressor, but is silenced by CpG methylation in gastric cancer. Int J Oncol 2018; 53:961-972. [PMID: 29956735 PMCID: PMC6065451 DOI: 10.3892/ijo.2018.4446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/07/2018] [Indexed: 02/01/2023] Open
Abstract
Several studies have recently reported that KRAB zinc finger protein 382 (ZNF382) is downregulated in multiple carcinoma types due to promoter methylation. The exact role of ZNF382 in gastric carcinogenesis, however, remains elusive. In this study, we investigated the alterations and functions of ZNF382 in the pathogenesis of gastric cancer (GC). Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), quantitative (real-time) PCR (qPCR) and immunohistochemistry were carried out to detect the expression patterns of ZNF382 in GC cell lines and gastric tissue samples. Furthermore, its methylation status in GC cell lines, tumor tissues and adjacent non-tumor tissues was detected by methylation-specific PCR (MSP). We observed that ZNF382 was silenced due to promoter methylation in MKN45 and SGC7901 cell lines, and that its silencing could be reversed with 5-aza-2'-deoxycytidine, indicating that its downregulation in GC is due to promoter methylation. In addition, the ectopic expression of ZNF382 significantly inhibited gastric tumor cell clonogenicity, proliferation, migration and epithelial-mesenchymal transition (EMT) through the induction of apoptosis. ZNF382 expression downregulated the expression of SNAIL, Vimentin, Twist, NOTCH1, NOTCH2, NOTCH3, NOTCH4, HES-1, JAG1, matrix metalloproteinase (MMP)2 and MMP11, as well as that of the stem cell markers, NANOG, octamer-binding transcription factor 4 (OCT4) and SOX2. ZNF382 also upregulated the expression of E-cadherin. On the whole, the findings of this study suggest that ZNF382 functions as a tumor suppressor in GC cells, but is frequently methylated in both GC cell lines and primary gastric tumors. ZNF382 can reverse the EMT process in GC cells through NOTCH signaling. Our findings further illustrate the molecular pathogenesis of GC and establish potential biomarkers for this type of cancer.
Collapse
Affiliation(s)
- Lijiao Pei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Τhe First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Τhe First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shuman Li
- Department of Oncology, Τhe Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ran Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Τhe First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Τhe First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Τhe First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Τhe First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|