1
|
Xu P, Westhoff MA, Hadzalic A, Debatin KM, Winiarski L, Oleksyszyn J, Wirtz CR, Knippschild U, Burster T. Diisothiocyanate-Derived Mercapturic Acids Are a Promising Partner for Combination Therapies in Glioblastoma. ACS OMEGA 2022; 7:5929-5936. [PMID: 35224353 PMCID: PMC8867792 DOI: 10.1021/acsomega.1c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Glioblastoma represents the most aggressive tumor of the central nervous system. Due to invasion of glioblastoma stem cells into the healthy tissue, chemoresistance, and recurrence of the tumor, it is difficult to successfully treat glioblastoma patients, which is demonstrated by the low life expectancy of patients after standard therapy treatment. Recently, we found that diisothiocyanate-derived mercapturic acids, which are isothiocyanate derivatives from plants of the Cruciferae family, provoked a decrease in glioblastoma cell viability. These findings were extended by combining diisothiocyanate-derived mercapturic acids with dinaciclib (a small-molecule inhibitor of cyclin-dependent kinases with anti-proliferative capacity) or temozolomide (TMZ, standard chemotherapeutic agent) to test whether the components have a cytotoxic effect on glioblastoma cells when the dosage is low. Here, we demonstrate that the combination of diisothiocyanate-derived mercapturic acids with dinaciclib or TMZ had an additive or even synergistic effect in the restriction of cell growth dependent on the combination of the components and the glioblastoma cell source. This strategy could be applied to inhibit glioblastoma cell growth as a therapeutic interference of glioblastoma.
Collapse
Affiliation(s)
- Pengfei Xu
- Department
of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Amina Hadzalic
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Lukasz Winiarski
- Faculty
of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Jozef Oleksyszyn
- Faculty
of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Christian Rainer Wirtz
- Department
of Neurosurgery, Ulm University Medical
Center, Albert-Einstein-Allee
7, 89081 Ulm, Germany
| | - Uwe Knippschild
- Department
of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, 89081 Ulm, Germany
| | - Timo Burster
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, 010000 Nur-Sultan, Kazakhstan Republic
| |
Collapse
|
2
|
Current Perspectives on Therapies, Including Drug Delivery Systems, for Managing Glioblastoma Multiforme. ACS Chem Neurosci 2020; 11:2962-2977. [PMID: 32945654 DOI: 10.1021/acschemneuro.0c00555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), a standout among the most dangerous class of central nervous system (CNS) cancer, is most common and is an aggressive malignant brain tumor in adults. In spite of developments in modality therapy, it remains mostly incurable. Consequently, the need for novel systems, strategies, or therapeutic approaches for enhancing the assortment of active agents meant for GBM becomes an important criterion. Currently, cancer research focuses mainly on improving the treatment of GBM via diverse novel drug delivery systems. The treatment options at diagnosis are multimodal and include radiation therapy. Moreover, significant advances in understanding the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies. Innovative treatment such as immunotherapy also gives hope for enhanced survival. The objective of this work was to collect and report the recent research findings to manage GBM. The present review includes existing novel drug delivery systems and therapies intended for managing GBM. Reported novel drug delivery systems and diverse therapies seem to be precise, secure, and relatively effective, which could lead to a new track for the obliteration of GBM.
Collapse
|