1
|
Liu Y, Sun Y, Xiao M, Li S, Shi S. Comprehensive pan-cancer analysis reveals the versatile role of GALNT7 in epigenetic alterations and immune modulation in cancer. Heliyon 2024; 10:e31515. [PMID: 38845941 PMCID: PMC11153094 DOI: 10.1016/j.heliyon.2024.e31515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Cancer is a leading cause of mortality globally, characterized by intricate molecular alterations, including epigenetic changes such as glycosylation. This study presents a comprehensive pan-cancer analysis of Polypeptide N-Acetylgalactosaminyltransferase 7 (GALNT7), an enzyme involved in mucin-type O-linked protein glycosylation. GALNT7 has previously been linked to various cancers, but a unified analysis across cancer types is lacking. Leveraging data from TCGA, GTEx, and other sources, we scrutinized GALNT7's expression, prognostic relevance, links to immune-related genes, immune cell infiltration, and its involvement in tumor genetic heterogeneity across 33 cancer types. GALNT7 exhibited diverse expression patterns across cancer types, showcasing its potential as an oncogenic factor, with its expression levels linked to both positive and negative prognoses, highlighting the context-specific nature of its role in cancer progression. We delved into the intricate interplay between GALNT7 and immune genes, unveiling positive and negative correlations, underscoring complex interactions in the tumor microenvironment. GALNT7 was found to impact immune cell infiltration, which could have implications for treatment strategies. Additionally, GALNT7 displayed associations with genetic tumor aspects, encompassing genomic instability, DNA repair issues, and genetic mutations, hinting at its pivotal role in shaping the genetic landscape of diverse cancers. Enrichment analysis uncovered potential functions of GALNT7 beyond glycosylation, such as its participation in signaling pathways and its association with various diseases, notably cancer. This comprehensive analysis elucidates the multifaceted role of GALNT7 in cancer biology, underlining its potential as a therapeutic target and biomarker across various cancer types. These findings provide valuable insights for future research and the development of personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Yan Liu
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Yue Sun
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Meixia Xiao
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Shuang Li
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Shengming Shi
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| |
Collapse
|
2
|
Berkel C, Cacan E. The expression of O-linked glycosyltransferase GALNT7 in breast cancer is dependent on estrogen-, progesterone-, and HER2-receptor status, with prognostic implications. Glycoconj J 2023; 40:631-644. [PMID: 37947928 DOI: 10.1007/s10719-023-10137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
GALNT7 is a glycosyltransferase enzyme transferring N-acetylgalactosamine to initiate O-linked glycosylation in the Golgi apparatus. Breast cancer is the most common cancer in women globally. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2; ERBB2) are important biomarkers in the prognosis and molecular subtyping of breast cancer. Here, we showed that ER-positive, PR-positive or HER2-positive breast tumors have higher expression of GALNT7 compared to ER-negative, PR-negative or HER2-negative breast tumors, respectively. We found that CpG-aggregated methylation of GALNT7 gene is decreased, and in parallel, its transcript levels are increased in breast cancer compared to healthy breast tissue. We observed that the difference in the expression of GALNT7 between negative and positive status of the receptors is the highest for HER2, followed by ER and PR, pointing that HER2 might be relatively more influential than ER and PR on the expression of GALNT7 in breast cancer. We reported that basal-like breast tumors have decreased expression of GALNT7 compared to non-basal-like tumors, and that high GALNT7 expression is associated with favorable relapse-free and distant metastasis-free survival in HER2 status-dependent manner in breast cancer patients. Moreover, we showed that GALNT7 expression in breast cancer is cell type- (epithelial vs stromal cells), tumor grade- and ethnicity-dependent. Combined, we propose that GALNT7 might contribute to different clinical outcomes depending on the receptor status in breast cancer, and that a better understanding of GALNT7 and its function in the context of breast cancer is needed.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
3
|
Puppo M, Valluru MK, Croset M, Ceresa D, Iuliani M, Khan A, Wicinski J, Charafe-Jauffret E, Ginestier C, Pantano F, Ottewell PD, Clézardin P. MiR-662 is associated with metastatic relapse in early-stage breast cancer and promotes metastasis by stimulating cancer cell stemness. Br J Cancer 2023; 129:754-771. [PMID: 37443350 PMCID: PMC10449914 DOI: 10.1038/s41416-023-02340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Breast cancer (BC) metastasis, which often occurs in bone, contributes substantially to mortality. MicroRNAs play a fundamental role in BC metastasis, although microRNA-regulated mechanisms driving metastasis progression remain poorly understood. METHODS MiRome analysis in serum from BC patients was performed by TaqMan™ low-density array. MiR-662 was overexpressed following MIMIC-transfection or lentivirus transduction. Animal models were used to investigate the role of miR-662 in BC (bone) metastasis. The effect of miR-662-overexpressing BC cell conditioned medium on osteoclastogenesis was investigated. ALDEFLUOR assays were performed to study BC stemness. RNA-sequencing transcriptomic analysis of miR-662-overexpressing BC cells was performed to evaluate gene expression changes. RESULTS High levels of hsa-miR-662 (miR-662) in serum from BC patients, at baseline (time of surgery), were associated with future recurrence in bone. At an early-stage of the metastatic disease, miR-662 could mask the presence of BC metastases in bone by inhibiting the differentiation of bone-resorbing osteoclasts. Nonetheless, metastatic miR-662-overexpressing BC cells then progressed as overt osteolytic metastases thanks to increased stem cell-like traits. CONCLUSIONS MiR-662 is involved in BC metastasis progression, suggesting it may be used as a prognostic marker to identify BC patients at high risk of metastasis.
Collapse
Affiliation(s)
- Margherita Puppo
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, Lyon, France.
- Univ Lyon, Université Claude Bernard Lyon 1, F-69008, Lyon, France.
| | - Manoj Kumar Valluru
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular, Medical School, University of Sheffield, Sheffield, UK
| | - Martine Croset
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, F-69008, Lyon, France
- INSERM U1052, CNRS UMR_5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Davide Ceresa
- IRCCS AOU San Martino, Università degli studi di Genova, Genova, Italy
| | - Michele Iuliani
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Ashrin Khan
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Julien Wicinski
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Christophe Ginestier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Francesco Pantano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Penelope Dawn Ottewell
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Philippe Clézardin
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, Lyon, France.
- Univ Lyon, Université Claude Bernard Lyon 1, F-69008, Lyon, France.
| |
Collapse
|
4
|
MiR-30c facilitates natural killer cell cytotoxicity to lung cancer through targeting GALNT7. Genes Genomics 2023; 45:247-260. [PMID: 36040682 DOI: 10.1007/s13258-022-01306-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/11/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported to play important roles in regulating natural killer (NK) cell cytotoxicity to cancer cells. OBJECTIVE This study aimed to investigate the effects and potential mechanism of miR-30c in regulating NK cell cytotoxicity to lung cancer cells. METHODS Primary NK cells were derived from the peripheral blood of lung cancer and normal participants. Exosomes were isolated and validated via transmission electron microscopy and nanoparticle tracking analysis. The levels of miR-30c, polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7) and proteins in PI3K/AKT pathway were determined using quantitative real-time polymerase chain reaction or western blot. Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) levels and the cytotoxicity of effector NK cells to target lung cancer cells were measured via enzyme linked immunosorbent assay, cell apoptosis or xenograft experiments. The relationship between miR-30c and GALNT7 was analyzed by luciferase activity, RNA pull-down and RNA immunoprecipitation assays. And a xenograft mice model was established to verify the effect of miR-30c in regulating NK cell cytotoxicity to lung cancer cells in vivo. RESULTS NK cell-derived exosomes carrying miR-30c, and miR-30c level was significantly downregulated in primary NK cells of lung cancer patients. MiR-30c overexpression promoted TNF-α and IFN-γ secretion and enhanced the cytotoxicity of interleukin 2 (IL-2)-treated NK cells to lung cancer cells, while knockdown of miR-30c played an opposite effect in regulating the cytotoxicity of NK cells to lung cancer cells. GALNT7 was a target of miR-30c and was negatively regulated by miR-30c. Besides, miR-30c targeted GALNT7 to exert its function in regulating NK cell cytotoxicity. Furthermore, GALNT7 prompted the activation of PI3K/AKT pathway in NK cells. Additionally, miR-30c overexpression enhanced NK cell cytotoxicity to lung cancer cells and inhibited tumor growth in vivo. CONCLUSION miR-30c enhanced NK cell cytotoxicity to lung cancer cells via decreasing GALNT7 and inactivating the PI3K/AKT pathway, suggesting that regulating miR-30c expression maybe a promising approach for enhancing NK cell-based antitumor therapies.
Collapse
|
5
|
McCall JL, Varney ME, Rice E, Dziadowicz SA, Hall C, Blethen KE, Hu G, Barnett JB, Martinez I. Prenatal Cadmium Exposure Alters Proliferation in Mouse CD4 + T Cells via LncRNA Snhg7. Front Immunol 2022; 12:720635. [PMID: 35087510 PMCID: PMC8786704 DOI: 10.3389/fimmu.2021.720635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Prenatal cadmium (Cd) exposure leads to immunotoxic phenotypes in the offspring affecting coding and non-coding genes. Recent studies have shown that long non-coding RNAs (lncRNAs) are integral to T cell regulation. Here, we investigated the role of long non-coding RNA small nucleolar RNA host gene 7 (lncSnhg7) in T cell proliferation. Methods RNA sequencing was used to analyze the expression of lncRNAs in splenic CD4+ T cells with and without CD3/CD28 stimulation. Next, T cells isolated from offspring exposed to control or Cd water throughout mating and gestation were analyzed with and without stimulation with anti-CD3/CD28 beads. Quantitative qPCR and western blotting were used to detect RNA and protein levels of specific genes. Overexpression of a miR-34a mimic was achieved using nucleofection. Apoptosis was measured using flow cytometry and luminescence assays. Flow cytometry was also used to measure T cell proliferation in culture. Finally, lncSnhg7 was knocked down in splenic CD4+ T cells with lentivirus to assess its effect on proliferation. Results We identified 23 lncRNAs that were differentially expressed in stimulated versus unstimulated T cells, including lncSnhg7. LncSnhg7 and a downstream protein, GALNT7, are upregulated in T cells from offspring exposed to Cd during gestation. Overexpression of miR-34a, a regulator of lncSnhg7 and GALNT7, suppresses GALNT7 protein levels in primary T cells, but not in a mouse T lymphocyte cell line. The T cells isolated from Cd-exposed offspring exhibit increased proliferation after activation in vitro, but Treg suppression and CD4+ T cell apoptosis are not affected by prenatal Cd exposure. Knockdown on lncSnhg7 inhibits proliferation of CD4+ T cells. Conclusion Prenatal Cd exposure alters the expression of lncRNAs during T cell activation. The induction of lncSnhg7 is enhanced in splenic T cells from Cd offspring resulting in the upregulation of GALNT7 protein and increased proliferation following activation. miR-34a overexpression decreased GALNT7 expression and knockdown of lncSnhg7 inhibited proliferation suggesting that the lncSnhg7/miR-34a/GALNT7 is an important pathway in primary CD4+ T cells. These data highlight the need to understand the consequences of environmental exposures on lncRNA functions in non-cancerous cells as well as the effects in utero.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Melinda E. Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Emily Rice
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Casey Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Kathryn E. Blethen
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University, Morgantown, WV, United States
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
6
|
Wang Y, Wang C, Fu Z, Zhang S, Chen J. miR-30b-5p inhibits proliferation, invasion, and migration of papillary thyroid cancer by targeting GALNT7 via the EGFR/PI3K/AKT pathway. Cancer Cell Int 2021; 21:618. [PMID: 34819077 PMCID: PMC8611849 DOI: 10.1186/s12935-021-02323-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC) is a common endocrine tumor. Increasing evidence has shown that microRNA dysfunction is involved in the occurrence and development of cancer. The expression of MicroRNA-30b-5p (miR-30b-5p) was down-regulated in PTC; however, its role in the development of PTC is not clear. Hence, this study aimed to explore the role and mechanism of miR-30b-5p in the occurrence and development of PTC. Methods The qRT-PCR assay was used to detect the expression of miR-30b-5p in 60 cases of papillary thyroid carcinoma along with their matched non-cancerous tissues. This study explored the biological function of miR-30b-5p by the functional gain and loss experiments in vitro and vivo. The direct target gene of miR-30b-5p and its signaling pathway was identified through bioinformatics analysis, qRT-PCR, western blot, rescue experiments, and double luciferase 3'-UTR report analysis. Results This study demonstrated that the low expression of miR-30b-5p is related to poor clinicopathological features. Functionally, the overexpression of miR-30b-5p inhibited the proliferation, invasion, and migration of PTC cells. Bioinformatics and luciferase analysis showed that GALNT7 is the direct and functional target of miR-30b-5p. Moreover, miR-30b-5p inhibited the proliferation of PTC in vivo by inhibiting the expression of GALNT7. The studies on the mechanism have shown that GALNT7 promotes cell proliferation and invasion by activating EGFR/PI3K/AKT kinase pathway, which can be attenuated by the kinase inhibitors. Conclusions Overall, miR-30b-5p inhibited the progression of papillary thyroid carcinoma by targeting GALNT7 and inhibiting the EGFR/PI3K/AKT pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02323-x.
Collapse
Affiliation(s)
- Ye Wang
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China.,Guangxi Medical University, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
| | - Congjun Wang
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China.,Guangxi Medical University, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
| | - Zhao Fu
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China.,Guangxi Medical University, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
| | - Siwen Zhang
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China.,Guangxi Medical University, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
| | - Junqiang Chen
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China. .,Guangxi Medical University, Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Cao Q, Wang N, Ren L, Tian J, Yang S, Cheng H. miR-125a-5p post-transcriptionally suppresses GALNT7 to inhibit proliferation and invasion in cervical cancer cells via the EGFR/PI3K/AKT pathway. Cancer Cell Int 2020; 20:117. [PMID: 32308562 PMCID: PMC7147043 DOI: 10.1186/s12935-020-01209-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Background The carcinogenesis and progression of cervical cancer is a complex process in which numerous microRNAs are involved. The purpose of this study is to investigate the role of miR-125a-5p in progression of cervical cancer. Methods RT-qPCR was used to detect the expression of miR-125a-5p and GALNT7 in cervical cancer tissues and cell lines. Then, the miR-125a-5p mimic, miR-125a-5p inhibitor, GALNT7 siRNA, or/and pcDNA-GALNT7 were respectively transfected into HeLa and Caski cervical cancer cells, and Cell Counting kit-8 assay, Transwell assay and flow cytometry analysis were respectively used to observe cell proliferation, invasion and apoptosis. Subsequently, luciferase reporter gene assay was employed in confirming the target relationship between miR-125a-5p and GALNT7. MiR-125a-5p mimic or/and pcDNA-GALNT7 were transfected into the cervical cancer cells at the absence of epidermal growth factor (EGF) or not, and the pcDNA-GALNT7 was transfected into the cervical cancer cells at the absence of inhibitors of multiple kinases or not. Furthermore, the effect of miR-125a-5p on tumor growth was also studied using a xenograft model of nude mice. Results MiR-125a-5p was down-regulated in both cervical cancer tissues and cell lines and it inhibited cell proliferation and invasion of cervical cancer cells. MiR-125a-5p directly targeted and post-transcriptionally downregulated GALNT7 that was strongly upregulated in cervical cancer tissues and cell lines. Similar to the effect of miR-125a-5p mimic, silencing GALNT7 inhibited proliferation and invasion of cervical cancer cells. In addition, miR-125a-5p overexpression could counteract both GALNT7- and EGF-induced cell proliferation and invasion. GALNT7 promoted cell proliferation and invasion by activating the EGFR/PI3K/AKT kinase pathway, which could be abated by the inhibitors of the kinases. Moreover, the role of miR-125a-5p inhibited tumor formation in cervical cancer by suppressing the expression of GALNT7 in vivo. Conclusion In conclusion, miR-125a-5p suppressed cervical cancer progression by post-transcriptionally downregulating GALNT7 and inactivating the EGFR/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qinxue Cao
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Ning Wang
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Lu Ren
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Jun Tian
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Shaoqin Yang
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| | - Hailing Cheng
- Department Gynecology, Huaihe Hospital of Henan University, No.8 Baobei Road, Kaifeng, 475000 Henan Province China
| |
Collapse
|
8
|
Perenthaler E, Nikoncuk A, Yousefi S, Berdowski WM, Alsagob M, Capo I, van der Linde HC, van den Berg P, Jacobs EH, Putar D, Ghazvini M, Aronica E, van IJcken WFJ, de Valk WG, Medici-van den Herik E, van Slegtenhorst M, Brick L, Kozenko M, Kohler JN, Bernstein JA, Monaghan KG, Begtrup A, Torene R, Al Futaisi A, Al Murshedi F, Mani R, Al Azri F, Kamsteeg EJ, Mojarrad M, Eslahi A, Khazaei Z, Darmiyan FM, Doosti M, Karimiani EG, Vandrovcova J, Zafar F, Rana N, Kandaswamy KK, Hertecant J, Bauer P, AlMuhaizea MA, Salih MA, Aldosary M, Almass R, Al-Quait L, Qubbaj W, Coskun S, Alahmadi KO, Hamad MHA, Alwadaee S, Awartani K, Dababo AM, Almohanna F, Colak D, Dehghani M, Mehrjardi MYV, Gunel M, Ercan-Sencicek AG, Passi GR, Cheema HA, Efthymiou S, Houlden H, Bertoli-Avella AM, Brooks AS, Retterer K, Maroofian R, Kaya N, van Ham TJ, Barakat TS. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol 2020; 139:415-442. [PMID: 31820119 PMCID: PMC7035241 DOI: 10.1007/s00401-019-02109-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
Collapse
Affiliation(s)
- Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Woutje M Berdowski
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Ivan Capo
- Department for Histology and Embryology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Paul van den Berg
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Darija Putar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mehrnaz Ghazvini
- iPS Cell Core Facility, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Walter G de Valk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lauren Brick
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Mariya Kozenko
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | - Jonathan A Bernstein
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | | | | | | | - Amna Al Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Renjith Mani
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Faisal Al Azri
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mohammad Doosti
- Department Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jana Vandrovcova
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | | | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, and College of Medicine and Health Sciences, UAE University, Al-Ain, UAE
| | | | - Mohammed A AlMuhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mustafa A Salih
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Laila Al-Quait
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Wafa Qubbaj
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khaled O Alahmadi
- Radiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Muddathir H A Hamad
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Salem Alwadaee
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khalid Awartani
- Obstetrics/Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Anas M Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Futwan Almohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Murat Gunel
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Gouri Rao Passi
- Department of Pediatrics, Pediatric Neurology Clinic, Choithram Hospital and Research Centre, Indore, Madhya Pradesh, India
| | - Huma Arshad Cheema
- Pediatric Gastroenterology Department, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Alice S Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Wang W, Mu S, Zhao Q, Xue L, Wang S. Identification of differentially expressed microRNAs and the potential of microRNA-455-3p as a novel prognostic biomarker in glioma. Oncol Lett 2019; 18:6150-6156. [PMID: 31788089 PMCID: PMC6865136 DOI: 10.3892/ol.2019.10927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Glioma is an aggressive central nervous system malignancy. MicroRNAs (miRNAs/miRs) have been reported to be involved in the tumorigenesis of numerous types of cancer, including glioma. The present study aimed to identify the differentially expressed miRNAs in glioma, and further explore the clinical value of miR-455-3p in patients with glioma. GEO2R was used for the identification of the differentially expressed miRNAs according to the miRNA expression profiles obtained from the Gene Expression Omnibus database. OncomiR was used to analyze the relationship of miRNAs with the survival outcomes of the patients with glioma. A total of 108 patients with glioma were recruited to examine the expression levels of miR-455-3p and further explore its clinical value. The bioinformatics analysis results suggested that a total of 64 and 48 differentially expressed miRNAs were identified in the GSE90603 and GSE103229 datasets, respectively. There were 12 miRNAs in the overlap of the two datasets, of which three were able to accurately predict overall cancer survival, namely hsa-miR-7-5p, hsa-miR-21-3p and hsa-miR-455-3p. In patients with glioma, miR-455-3p was determined to be significantly upregulated (P<0.001). Additionally, patients with high miR-455-3p expression had significantly lower 5-year overall survival than those with low miR-455-3p expression (log-rank test, P=0.001). Cox regression analysis further determined that miR-455-3p was an independent prognostic indicator for overall survival in patients with glioma (hazard ratio=2.136; 95% CI=1.177–3.877; P=0.013). In conclusion, the present study revealed a series of miRNAs with potential functional roles in the pathogenesis of glioma, and provides findings that indicate miR-455-3p as a promising biomarker for the prognosis of glioma.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Shuwen Mu
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Qingshuang Zhao
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Liang Xue
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Shousen Wang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|