1
|
Spirrison AN, Lannigan DA. RSK1 and RSK2 as therapeutic targets: an up-to-date snapshot of emerging data. Expert Opin Ther Targets 2024:1-13. [PMID: 39632509 DOI: 10.1080/14728222.2024.2433123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION The four members of the p90 ribosomal S6 kinase (RSK) family are serine/threonine protein kinases, which are phosphorylated and activated by ERK1/2. RSK1/2/3 are further phosphorylated by PDK1. Receiving inputs from two major signaling pathways places RSK as a key signaling node in numerous pathologies. A plethora of RSK1/2 substrates have been identified, and in the majority of cases the causative roles these RSK substrates play in the pathology are unknown. AREAS COVERED The majority of studies have focused on RSK1/2 and their functions in a diverse group of cancers. However, RSK1/2 are known to have important functions in cardiovascular disease and neurobiological disorders. Based on the literature, we identified substrates that are common in these pathologies with the goal of identifying fundamental physiological responses to RSK1/2. EXPERT OPINION The core group of targets in pathologies driven by RSK1/2 are associated with the immune response. However, there is a paucity of the literature addressing RSK function in inflammation, which is critical to know as the pan RSK inhibitor, PMD-026, is entering phase II clinical trials for metastatic breast cancer. A RSK inhibitor has the potential to be used in numerous diverse diseases and disorders.
Collapse
Affiliation(s)
- Ashley N Spirrison
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deborah A Lannigan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Hayashi Y, Miyoshi S, Watanabe I, Yano N, Nagashio K, Kaneko M, Kaminota T, Sanada T, Hosokawa Y, Kitani T, Mitani S, Choudhury ME, Yano H, Tanaka J, Hato N. Simultaneous disturbance of NHE1 and LOXL2 decreases tumorigenicity of head and neck squamous cell carcinoma. Auris Nasus Larynx 2024; 51:472-480. [PMID: 38520980 DOI: 10.1016/j.anl.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE Although there have been brilliant advancements in the practical application of therapies targeting immune checkpoints, achieving success in targeting the microenvironment remains elusive. In this study, we aimed to address this gap by focusing on Na+ / H+ exchanger 1 (NHE1) and Lysyl Oxidase Like 2 (LOXL2), which are upregulated in head and neck squamous cell carcinoma (HNSCC) cells. METHODS The malignancy of a metastatic human HNSCC cell line was assessed in a mouse tongue cancer xenograft model by knocking down (KD) NHE1, responsible for regulating intracellular pH, and LOXL2, responsible for extracellular matrix (ECM) reorganization via cross-linking of ECM proteins. In addition to assessing changes in PD-L1 levels and collagen accumulation following knockdown, the functional status of the PD-L1 / PD-1 immune checkpoint was examined through co-culture with NK92MI, a PD-1 positive phagocytic human Natural Killer (NK) cell line. RESULTS The tumorigenic potential of each single KD cell line was similar to that of the control cells, whereas the potential was attenuated in cells with simultaneous KD of both factors (double knockdown [dKD]). Additionally, we observed decreased PD-L1 levels in NHE1 KD cells and compromised collagen accumulation in LOXL2 KD and dKD cells. NK92MI cells exhibited phagocytic activity toward HNSCC cells in co-culture, and the number of remaining dKD cells after co-culture was the lowest in comparison to the control and single KD cells. CONCLUSION This study demonstrated the possibility of achieving efficient anti-tumor effects by simultaneously disturbing multiple factors involved in the modification of the tumor microenvironment.
Collapse
Affiliation(s)
- Yuji Hayashi
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Shoko Miyoshi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Itaru Watanabe
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Nagomi Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Kodai Nagashio
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mihiro Kaneko
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Teppei Kaminota
- Department of Otorhinolaryngology, Matsuyama Red Cross Hospital, Matsuyama, Ehime, Japan
| | - Tomoyoshi Sanada
- Department of Otorhinolaryngology, Head and Neck Surgery, Uwajima City Hospital, Uwajima, Ehime, Japan
| | - Yuki Hosokawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takashi Kitani
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Sohei Mitani
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Naohito Hato
- Department of Otorhinolaryngology, Head and Neck Surgery, Ehime University Medical School, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
3
|
Liao S, Wu G, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. pH regulators and their inhibitors in tumor microenvironment. Eur J Med Chem 2024; 267:116170. [PMID: 38308950 DOI: 10.1016/j.ejmech.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As an important characteristic of tumor, acidic tumor microenvironment (TME) is closely related to immune escape, invasion, migration and drug resistance of tumor. The acidity of the TME mainly comes from the acidic products produced by the high level of tumor metabolism, such as lactic acid and carbon dioxide. pH regulators such as monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA IX), and Na+/H+ exchange 1 (NHE1) expel protons directly or indirectly from the tumor to maintain the pH balance of tumor cells and create an acidic TME. We review the functions of several pH regulators involved in the construction of acidic TME, the structure and structure-activity relationship of pH regulator inhibitors, and provide strategies for the development of small-molecule antitumor inhibitors based on these targets.
Collapse
Affiliation(s)
- Senyi Liao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guang Wu
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan, 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Mancini C, Lori G, Pranzini E, Taddei ML. Metabolic challengers selecting tumor-persistent cells. Trends Endocrinol Metab 2024; 35:263-276. [PMID: 38071164 DOI: 10.1016/j.tem.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 03/14/2024]
Abstract
Resistance to anticancer therapy still represents one of the main obstacles to cancer treatment. Numerous components of the tumor microenvironment (TME) contribute significantly to the acquisition of drug resistance. Microenvironmental pressures arising during cancer evolution foster tumor heterogeneity (TH) and facilitate the emergence of drug-resistant clones. In particular, metabolic pressures arising in the TME may favor epigenetic adaptations supporting the acquisition of persistence features in tumor cells. Tumor-persistent cells (TPCs) are characterized by high phenotypic and metabolic plasticity, representing a noticeable advantage in chemo- and radio-resistance. Understanding the crosslink between the evolution of metabolic pressures in the TME, epigenetics, and TPC evolution is significant for developing novel therapeutic strategies specifically targeting TPC vulnerabilities to overcome drug resistance.
Collapse
Affiliation(s)
- Caterina Mancini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
5
|
Kurimoto D, Hue Anh TD, Kasama R, Sato A. Intracellularly delivered human lactoferrin functions as an activator of Na +/H + exchanger 7. Biochem Biophys Res Commun 2024; 695:149480. [PMID: 38215552 DOI: 10.1016/j.bbrc.2024.149480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Here, we report that human lactoferrin (hLF), known for its anticancer properties, induced intracellular activation of the Na+/H+ exchanger (NHE) 7 in human lung cancer PC-9 cells. Compared to non-fused hLF, the fusion of human serum albumin (HSA) with hLF (hLF-HSA) facilitated its internalization into PC-9 cells in a caveolae-mediated manner, thereby exhibiting enhanced anti-proliferative effects. Although hLF alone did not exhibit any discernible effects, hLF-HSA resulted in organelle alkalization as detected using an acidotropic pH indicator. hLF-HSA-induced elevation of organelle pH and inhibition of cancer growth were abolished by NHE7 siRNA. hLF-HSA upregulated NHE7. Thus, upon cellular uptake, hLF-HSA triggers proton leakage through the upregulation of NHE7. This process led to organelle alkalization, probably in the trans-Golgi network (TGN) as suggested by the localization of NHE7 in PC-9 cells, thereby suppressing lung cancer cell growth. Forcing the cellular uptake of hLF alone using a caveolae-mediated endocytosis activator led to an increase in organelle pH. Furthermore, cell entry of hLF also activated proton-loading NHE7, leading to organelle acidification in the pancreatic cancer cell line MIA PaCa-2. Therefore, the intracellularly delivered hLF functions as an activator of NHE7.
Collapse
Affiliation(s)
- Daisuke Kurimoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Truong Dinh Hue Anh
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Ryoya Kasama
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
6
|
El Salamouni NS, Buckley BJ, Lee R, Ranson M, Kelso MJ, Yu H. Ion Transport and Inhibitor Binding by Human NHE1: Insights from Molecular Dynamics Simulations and Free Energy Calculations. J Phys Chem B 2024; 128:440-450. [PMID: 38185879 DOI: 10.1021/acs.jpcb.3c05863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The human Na+/H+ exchanger (NHE1) plays a crucial role in maintaining intracellular pH by regulating the electroneutral exchange of a single intracellular H+ for one extracellular Na+ across the plasma membrane. Understanding the molecular mechanisms governing ion transport and the binding of inhibitors is of importance in the development of anticancer therapeutics targeting NHE1. In this context, we performed molecular dynamics (MD) simulations based on the recent cryo-electron microscopy (cryo-EM) structures of outward- and inward-facing conformations of NHE1. These simulations allowed us to explore the dynamics of the protein, examine the ion-translocation pore, and confirm that Asp267 is the ion-binding residue. Our free energy calculations did not show a significant difference between Na+ and K+ binding at the ion-binding site. Consequently, Na+ over K+ selectivity cannot be solely explained by differences in ion binding. Our MD simulations involving NHE1 inhibitors (cariporide and amiloride analogues) maintained stable interactions with Asp267 and Glu346. Our study highlights the importance of the salt bridge between the positively charged acylguanidine moiety and Asp267, which appears to play a role in the competitive inhibitory mechanism for this class of inhibitors. Our computational study provides a detailed mechanistic interpretation of experimental data and serves the basis of future structure-based inhibitor design.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Richmond Lee
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael J Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence in Quantum Biotechnology, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
7
|
Wu X, Xie D, Zheng Q, Peng S, Liu Y, Ma P, Ye L, Mo X, Feng Z. Downregulation of NHE1 expression attenuates apoptosis of primary hippocampal neurons of an epilepsy model through the calpain-1 pathway. Neurosci Lett 2023; 815:137494. [PMID: 37748674 DOI: 10.1016/j.neulet.2023.137494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Na(+)/H(+) exchanger isoform 1 (NHE1), a membrane protein that regulates intracellular pH, is abundantly expressed in brain tissues. It is associated with pathophysiologies in several brain diseases. The present study aimed to investigate the effects of NHE1 on the apoptosis of primary neurons of an epilepsy model. METHODS Primary hippocampal neurons were cultured in an Mg2+-free medium to establish an epilepsy cell model. Designed shNHE1 lentivirus was used to silence NHE1 level in primary neurons. Nonselective pharmacological inhibitor MDL-28170 (20 μmol/L) was used to inhibit calpain-1 protein in neurons treated with Mg2+-free medium. The expression levels of NHE1 and calpain-1, intracellular Ca2+ (Ca2+i) and H+ (H+i) levels, and the expression levels of apoptosis-related proteins Bcl-2 and Bax were detected in neurons. TUNEL staining was performed to determine apoptosis in different groups. RESULTS NHE1 expression was increased in primary neurons treated with an Mg2+-free medium, and it was correlated with increased expression of calpain-1 and cell apoptosis. Neurons from the in vitro epilepsy model showed significantly decreased Bcl-2 protein expression and significantly increased Bax protein expression. In the presence of LV-shNHE1 and the calpain-1 inhibitor MDL-28170, the changes in the expression of apoptosis-related proteins Bcl-2 and Bax were blocked in the epileptic model, and the percentage of apoptotic neurons among neurons from the in vitro epilepsy model was significantly decreased. The increase in calpain-1 expression was suppressed by LV-shNHE1; however, the inhibition of calpain-1 did not affect NHE1 expression. CONCLUSION These results demonstrate that NHE1 participates in the promotion of neuronal apoptosis of epilepsy model in vitro through the calpain-1 pathway. Downregulation of NHE1 expression could exert a neuroprotective effect on epilepsy.
Collapse
Affiliation(s)
- Xuling Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dongjun Xie
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Zheng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuang Peng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pengfei Ma
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Ye
- The Medical Science Function Laboratory of Experimental Teaching Center of Basic Medicine, School of Basic Medical Science, Guizhou Medical University, Guiyang, China.
| | - Xiangang Mo
- Department of Comprehensive Care Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
8
|
Laubitz D, Gurney MA, Midura-Kiela M, Clutter C, Besselsen DG, Chen H, Ghishan FK, Kiela PR. Decreased NHE3 expression in colon cancer is associated with DNA damage, increased inflammation and tumor growth. Sci Rep 2022; 12:14725. [PMID: 36042372 PMCID: PMC9427942 DOI: 10.1038/s41598-022-19091-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Dysregulation of intra- and extracellular pH in cancer contributes to extracellular matrix remodeling, favors cell migration, proliferation, and metastasis. Although the primary attention has been focused on the role of the ubiquitous Na+/H+ exchanger isoform NHE1, the role of NHE3, the predominant apical isoform in colonic surface epithelium in the pathogenesis of colon cancer has not been investigated. Here, we show that NHE3 mRNA expression is significantly reduced in colorectal cancer patients and that low NHE3 expression is associated with poorer survival. Deletion of NHE3 in ApcMin mice evaluated at 15 weeks of age (significant mortality was observed beyond this time) led to lower body weights, increased mucosal inflammation, increased colonic tumor numbers, evidence of enhanced DNA damage in tumor surface epithelium, and to significant alteration in the gut microbiota. In the absence of the inflammatory and microbial pressors, ca. 70% knockdown of NHE3 expression in SK-CO15 cells led to reduced intracellular pH, elevated apical pH, dramatic differences in their transcriptomic profile, increased susceptibility to DNA damage, increased proliferation, decreased apoptosis and reduced adhesion to extracellular matrix proteins. Our findings suggest that loss of NHE3 in the surface epithelium of colonic tumors has profound consequences for cancer progression and behavior.
Collapse
Affiliation(s)
- Daniel Laubitz
- Department of Pediatrics, Steele Children's Research Center, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ, 85724, USA
| | - Michael A Gurney
- Department of Pediatrics, Steele Children's Research Center, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ, 85724, USA
| | - Monica Midura-Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ, 85724, USA
| | - Christy Clutter
- Department of Pediatrics, Steele Children's Research Center, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ, 85724, USA
| | | | - Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ, 85724, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona College of Medicine, 1501 N. Campbell Ave, Tucson, AZ, 85724, USA.
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
9
|
Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F, Moiseyenko V. Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol 2022; 12:979154. [PMID: 36106097 PMCID: PMC9467452 DOI: 10.3389/fonc.2022.979154] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor acidity is one of the cancer hallmarks and is associated with metabolic reprogramming and the use of glycolysis, which results in a high intracellular lactic acid concentration. Cancer cells avoid acid stress major by the activation and expression of proton and lactate transporters and exchangers and have an inverted pH gradient (extracellular and intracellular pHs are acid and alkaline, respectively). The shift in the tumor acid-base balance promotes proliferation, apoptosis avoidance, invasiveness, metastatic potential, aggressiveness, immune evasion, and treatment resistance. For example, weak-base chemotherapeutic agents may have a substantially reduced cellular uptake capacity due to "ion trapping". Lactic acid negatively affects the functions of activated effector T cells, stimulates regulatory T cells, and promotes them to express programmed cell death receptor 1. On the other hand, the inversion of pH gradient could be a cancer weakness that will allow the development of new promising therapies, such as tumor-targeted pH-sensitive antibodies and pH-responsible nanoparticle conjugates with anticancer drugs. The regulation of tumor pH levels by pharmacological inhibition of pH-responsible proteins (monocarboxylate transporters, H+-ATPase, etc.) and lactate dehydrogenase A is also a promising anticancer strategy. Another idea is the oral or parenteral use of buffer systems, such as sodium bicarbonate, to neutralize tumor acidity. Buffering therapy does not counteract standard treatment methods and can be used in combination to increase effectiveness. However, the mechanisms of the anticancer effect of buffering therapy are still unclear, and more research is needed. We have attempted to summarize the basic knowledge about tumor acidity.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological), Saint Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
10
|
Shen T, Song Y, Wang X, Wang H. Characterizing the molecular heterogeneity of clear cell renal cell carcinoma subgroups classified by miRNA expression profile. Front Mol Biosci 2022; 9:967934. [PMID: 36090028 PMCID: PMC9459094 DOI: 10.3389/fmolb.2022.967934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease that is associated with poor prognosis. Recent works have revealed the significant roles of miRNA in ccRCC initiation and progression. Comprehensive characterization of ccRCC based on the prognostic miRNAs would contribute to clinicians’ early detection and targeted treatment. Here, we performed unsupervised clustering using TCGA-retrieved prognostic miRNAs expression profiles. Two ccRCC subtypes were identified after assessing principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and consensus heatmaps. We found that the two subtypes are associated with distinct clinical features, overall survivals, and molecular characteristics. C1 cluster enriched patients in relatively early stage and have better prognosis while patients in C2 cluster have poor prognosis with relatively advanced state. Mechanistically, we found the differentially expressed genes (DEGs) between the indicated subgroups dominantly enriched in biological processes related to transmembrane transport activity. In addition, we also revealed a miRNA-centered DEGs regulatory network, which severed as essential regulators in both transmembrane transport activity control and ccRCC progression. Together, our work described the molecular heterogeneity among ccRCC cancers, provided potential targets served as effective biomarkers for ccRCC diagnosis and prognosis, and paved avenues to better understand miRNA-directed regulatory network in ccRCC progression.
Collapse
Affiliation(s)
- Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- *Correspondence: Tao Shen, ; Yingdong Song,
| | - Yingdong Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
- *Correspondence: Tao Shen, ; Yingdong Song,
| | - Xiangting Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Haiyang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases, Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
11
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
12
|
Zhao Y, Deng Z, Ma Z, Zhang M, Wang H, Tuo B, Li T, Liu X. Expression alteration and dysfunction of ion channels/transporters in the parietal cells induces gastric diffused mucosal injury. Biomed Pharmacother 2022; 148:112660. [PMID: 35276516 DOI: 10.1016/j.biopha.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
Gastric mucosal injuries include focal and diffused injuries, which do and do not change the cell differentiation pattern. Parietal cells loss is related to the occurrence of gastric mucosal diffused injury, with two phenotypes of spasmolytic polypeptide-expressing metaplasia and neuroendocrine cell hyperplasia, which is the basis of gastric cancer and gastric neuroendocrine tumor respectively. Multiple ion channels and transporters are located and expressed in the parietal cells, which is not only regulate the gastric acid-base homeostasis, but also regulate the growth and development of parietal cells. Therefore, alteration and dysregulation of ion channels and transporters in the parietal cells impairs the morphology and physiological functions of stomach, resulted in gastric diffused mucosal damage. In this review, multiple ion channels and transporters in parietal cells, including K+ channels, aquaporins, Cl- channels, Na+/H+ transporters, and Cl-/HCO3- transporters are described, and their roles in gastric diffused mucosal injury are discussed. We hope to drive researcher's attention to focus on the role of ion channels/transporters loss in the parietal cells induced gastric diffused mucosal injury.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
13
|
Huntington KE, Louie A, Zhou L, Seyhan AA, Maxwell AWP, El-Deiry WS. Colorectal cancer extracellular acidosis decreases immune cell killing and is partially ameliorated by pH-modulating agents that modify tumor cell cytokine profiles. Am J Cancer Res 2022; 12:138-151. [PMID: 35141009 PMCID: PMC8822272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/12/2021] [Indexed: 06/14/2023] Open
Abstract
Tumor cells upregulate myriad proteins that are important for pH regulation, resulting in the acidification of the extracellular tumor microenvironment (TME). Abnormal pH is known to dampen immune function, resulting in a worsened anti-tumor immune response. Understanding how extrinsic alterations in pH modulate the interactions between immune cells and tumors cells will help elucidate opportunities for new therapeutic approaches. We observed that pH impacts the function of immune cells, both natural killer (NK) and T cells, which is relevant in the context of a highly acidic TME. Decreased NK and T cell activity was correlated with decreasing pH in a co-culture immune cell-mediated tumor cell-killing assay. The addition of pH-modulating drugs cariporide, lansoprazole, and acetazolamide to the co-culture assay was able to partially mitigate this dampened immune cell function. Treatment of colorectal cancer (CRC) cells with NHE1 inhibitor cariporide increased CRC cell-secreted cytokines involved in immune cell recruitment and activation and decreased cytokines involved in epithelial-mesenchymal transition (EMT). Cariporide treatment also decreased CRC cell shed TRAIL-R2, TRAIL-R3, and PD-L1 which is relevant in the context of immunotherapy. These experiments can help inform future investigations into how the pH of the tumor microenvironment may be extrinsically modulated to improve anti-tumor immune response in solid tumors such as colorectal cancer.
Collapse
Affiliation(s)
- Kelsey E Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health SystemProvidence, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- Pathobiology Graduate Program, Brown UniversityProvidence, RI 02912, USA
| | - Anna Louie
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health SystemProvidence, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- Department of Surgery, Lifespan Health System and Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health SystemProvidence, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
| | - Attila A Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health SystemProvidence, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
| | - Aaron WP Maxwell
- Department of Diagnostic Imaging, Lifespan Health System and Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- The Joint Program in Cancer Biology, Brown University and Lifespan Health SystemProvidence, RI 02912, USA
- Cancer Center at Brown University, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown UniversityProvidence, RI 02912, USA
- Pathobiology Graduate Program, Brown UniversityProvidence, RI 02912, USA
| |
Collapse
|
14
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|