1
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Cholich L, Pistán M, Torres A, Hernández D, Moro R, Gómez T, Gardner D, Bustillo S. Ipomoea carnea alkaloid extract vs swainsonine: A comparative study on cytotoxic activity against glial cells. Toxicon 2023; 235:107325. [PMID: 37838004 DOI: 10.1016/j.toxicon.2023.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The consumption of Ipomoea carnea produces a neurological syndrome in animals. The toxic principles of I. carnea are the alkaloids swainsonine (SW) and calystegines B1, B2, B3 and C1. In this study, we investigated the cytotoxicity of an alkaloid extract of Ipomoea carnea (AEE) and natural swainsonine (SW) isolated from Astragalus lentiginosus (25-1000 μM of SW) for 48 h in a glioma cell line. Although the natural SW did not induce any changes in cell viability, the AEE exhibited a dose dependent cytotoxic effect and release of lactate dehydrogenase (LDH) indicative of cytolysis. In order to evaluate the morphological changes involved, cells were examined using phase contrast and fluorescence microscopy with acridine orange-ethidium bromide staining. The AEE caused a cell death compatible with necrosis, whereas exposure to 1000 μM of SW resulted in cytoplasmic vacuolation. Immunocytochemical studies revealed that astrocytes treated with 150 μM of AEE from I. carnea or 1000 μM of SW exhibited morphological characteristics of cell activation. These findings suggest that swainsonine would not be the only component present in the AEE of I. carnea responsible for in vitro cytotoxicity. Calystegines might also play a role in acting synergistically and triggering cell death through necrosis.
Collapse
Affiliation(s)
- Luciana Cholich
- Faculty of Veterinary Science, National University of the Northeast, Corrientes, Argentina; The National Scientific and Technical Research Council (CONICET), Corrientes, Argentina.
| | - María Pistán
- Faculty of Veterinary Science, National University of the Northeast, Corrientes, Argentina; The National Scientific and Technical Research Council (CONICET), Corrientes, Argentina
| | - Ana Torres
- Natural Products Laboratory, IQUIBA-NEA CONICET, National University of the Northeast, Corrientes, Argentina
| | - David Hernández
- Faculty of Veterinary Science, National University of the Northeast, Corrientes, Argentina
| | - Ramiro Moro
- Biological and Molecular Investigations Group (GIBYM), IQUIBA-NEA CONICET, National University of the Northeast, Corrientes, Argentina
| | - Tamara Gómez
- Faculty of Veterinary Science, National University of the Northeast, Corrientes, Argentina
| | - Dale Gardner
- USDA-ARS Poisonous Plant Research Laboratory, Logan, UT, USA
| | - Soledad Bustillo
- Biological and Molecular Investigations Group (GIBYM), IQUIBA-NEA CONICET, National University of the Northeast, Corrientes, Argentina
| |
Collapse
|
3
|
Fraňová P, Marchalín Š. Recent developments in the synthesis of polyhydroxylated indolizidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paula Fraňová
- Slovak University of Technology in Bratislava: Slovenska technicka univerzita v Bratislave Organic Chemistry Radlinského 2101/9 81237 Bratislava SLOVAKIA
| | - Štefan Marchalín
- Slovak University of Technology Faculty of Chemical and Food Technology: Slovenska Technicka Univerzita v Bratislave Fakulta chemickej a potravinarskej technologie Organic Chemistry Radlinského 2101/9 81237 Bratislava SLOVAKIA
| |
Collapse
|
4
|
Almahayni K, Spiekermann M, Fiore A, Yu G, Pedram K, Möckl L. Small molecule inhibitors of mammalian glycosylation. Matrix Biol Plus 2022; 16:100108. [PMID: 36467541 PMCID: PMC9713294 DOI: 10.1016/j.mbplus.2022.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023] Open
Abstract
Glycans are one of the fundamental biopolymers encountered in living systems. Compared to polynucleotide and polypeptide biosynthesis, polysaccharide biosynthesis is a uniquely combinatorial process to which interdependent enzymes with seemingly broad specificities contribute. The resulting intracellular cell surface, and secreted glycans play key roles in health and disease, from embryogenesis to cancer progression. The study and modulation of glycans in cell and organismal biology is aided by small molecule inhibitors of the enzymes involved in glycan biosynthesis. In this review, we survey the arsenal of currently available inhibitors, focusing on agents which have been independently validated in diverse systems. We highlight the utility of these inhibitors and drawbacks to their use, emphasizing the need for innovation for basic research as well as for therapeutic applications.
Collapse
Affiliation(s)
- Karim Almahayni
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Malte Spiekermann
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA,Corresponding authors.
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany,Corresponding authors.
| |
Collapse
|
5
|
Liu Z, Ma H, Lai Z. Revealing the potential mechanism of Astragalus membranaceus improving prognosis of hepatocellular carcinoma by combining transcriptomics and network pharmacology. BMC Complement Med Ther 2021; 21:263. [PMID: 34663301 PMCID: PMC8522094 DOI: 10.1186/s12906-021-03425-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death. Traditional Chinese medicine (TCM) has special advantages in relieving HCC, while Astragalus membranaceus is commonly used in TCM treatment. However, its underlying mechanisms for treatment of HCC are unclear. Methods Differentially expressed genes (DEGs) of Astragalus membranaceus treatment in HepG2 cells were identified, and Astragalus membranaceus-gene network was constructed. The hub genes were then obtained via protein-protein interaction (PPI) analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were subsequently performed. Furthermore, prognosis genes related to HCC from The Cancer Genome Atlas Program (TCGA) was identified to explore the correlation between Astragalus membranaceus treatment and prognosis of HCC. Finally, Astragalus membranaceus-component-target network was established through SymMap. Results Twenty five DEGs (15 up-regulated and 10 down-regulated) of Astragalus membranaceus treatment in HepG2 cells were identified. Among the 25 genes, MT1F, MT1G, MT1X and HMOX1 may play essential roles. Astragalus membranaceus mainly affects the Mineral absorption pathway in HCC. A total of 256 genes (p < 0.01) related to prognosis of HCC were identified, and MT1G is a common gene between prognosis genes and DEGs. Furthermore, Astragalus membranaceus may directly down-regulate MT1G through daidzein to promote ferroptosis of HCC cells and improve prognosis for HCC. Conclusion Our study provided new understandings of the pharmacological mechanisms by which Astragalus membranaceus improves the prognosis of HCC, and showed that the combination of transcriptomics and network pharmacology is helpful to explore mechanisms of TCM and traditional medicines from other nations. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03425-9.
Collapse
Affiliation(s)
- Zhili Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| | - Huihan Ma
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Zelin Lai
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
6
|
Lee ZY, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Targeting cancer via Golgi α-mannosidase II inhibition: How far have we come in developing effective inhibitors? Carbohydr Res 2021; 508:108395. [PMID: 34280804 DOI: 10.1016/j.carres.2021.108395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Dysregulation of glycosylation pathways has been well documented in several types of cancer, where it often participates in cancer development and progression, especially cancer metastasis. Hence, inhibition of glycosidases such as mannosidases can disrupt the biosynthesis of glycans on cell surface glycoproteins and modify their role in carcinogenesis and metastasis. Several reviews have delineated the role of N-glycosylation in cancer, but the data regarding effective inhibitors remains sparse. Golgi α-mannosidase has been an attractive therapeutic target for preventing the formation of ß1,6-branched complex type N-glycans. However, due to its high structural similarity to the broadly specific lysosomal α-mannosidase, undesired co-inhibition occurs and this leads to serious side effects that complicates its potential role as a therapeutic agent. Even though extensive efforts have been geared towards the discovery of effective inhibitors, no breakthrough has been achieved thus far which could allow for their use in clinical settings. Improving the specificity of current inhibitors towards Golgi α-mannosidase is requisite in progressing this class of compounds in cancer chemotherapy. In this review, we highlight a few potent and selective inhibitors discovered up to the present to guide researchers for rational design of further effective inhibitors to overcome the issue of specificity.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
7
|
Zhang J, Morris-Natschke SL, Ma D, Shang XF, Yang CJ, Liu YQ, Lee KH. Biologically active indolizidine alkaloids. Med Res Rev 2020; 41:928-960. [PMID: 33128409 DOI: 10.1002/med.21747] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
Abstract
Indolizidine alkaloids are chemical constituents isolated from various marine and terrestrial plants and animals, including but not limited to trees, fungi, ants, and frogs, with a myriad of important biological activities. In this review, we discuss the biological activity and pharmacological effects of indolizidine alkaloids and offer new avenues toward the discovery of new and better drugs based on these naturally occurring compounds.
Collapse
Affiliation(s)
- Junmin Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Chen-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Shi S, Gu S, Han T, Zhang W, Huang L, Li Z, Pan D, Fu J, Ge J, Brown M, Zhang P, Jiang P, Wucherpfennig KW, Liu XS. Inhibition of MAN2A1 Enhances the Immune Response to Anti-PD-L1 in Human Tumors. Clin Cancer Res 2020; 26:5990-6002. [PMID: 32723834 DOI: 10.1158/1078-0432.ccr-20-0778] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/30/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune checkpoint blockade has shown remarkable efficacy, but in only a minority of patients with cancer, suggesting the need to develop additional treatment strategies. Aberrant glycosylation in tumors, resulting from the dysregulated expression of key enzymes in glycan biosynthesis, modulates the immune response. However, the role of glycan biosynthesis enzymes in antitumor immunity is poorly understood. We aimed to study the immunomodulatory effects of these enzymes. EXPERIMENTAL DESIGN We integrated transcriptional profiles of treatment-naïve human tumors and functional CRISPR screens to identify glycometabolism genes with immunomodulatory effects. We further validated our findings using in vitro coculture and in vivo syngeneic tumor growth assays. RESULTS We identified MAN2A1, encoding an enzyme in N-glycan maturation, as a key immunomodulatory gene. Analyses of public immune checkpoint blockade trial data also suggested a synergy between MAN2A1 inhibition and anti-PD-L1 treatment. Loss of Man2a1 in cancer cells increased their sensitivity to T-cell-mediated killing. Man2a1 knockout enhanced response to anti-PD-L1 treatment and facilitated higher cytotoxic T-cell infiltration in tumors under anti-PD-L1 treatment. Furthermore, a pharmacologic inhibitor of MAN2A1, swainsonine, synergized with anti-PD-L1 in syngeneic melanoma and lung cancer models, whereas each treatment alone had little effect. CONCLUSIONS Man2a1 loss renders cancer cells more susceptible to T-cell-mediated killing. Swainsonine synergizes with anti-PD-L1 in suppressing tumor growth. In light of the limited efficacy of anti-PD-L1 and failed phase II clinical trial on swainsonine, our study reveals a potential therapy combining the two to overcome tumor immune evasion.See related commentary by Bhat and Kabelitz, p. 5778.
Collapse
Affiliation(s)
- Sailing Shi
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shengqing Gu
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Tong Han
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wubing Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lei Huang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ziyi Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Deng Pan
- Department of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jingxin Fu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jun Ge
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Peng Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Peng Jiang
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
9
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
10
|
Knockdown of N-Acetylglucosaminyltransferase-II Reduces Matrix Metalloproteinase 2 Activity and Suppresses Tumorigenicity in Neuroblastoma Cell Line. BIOLOGY 2020; 9:biology9040071. [PMID: 32260356 PMCID: PMC7236022 DOI: 10.3390/biology9040071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Neuroblastoma (NB) development and progression are accompanied by changes in N-glycans attached to proteins. Here, we investigated the role of N-acetylglucosaminyltransferase-II (GnTII, MGAT2) protein substrates in neuroblastoma (NB) cells. MGAT2 was silenced in human BE(2)-C NB (HuNB) cells to generate a novel cell line, HuNB(-MGAT2), lacking complex type N-glycans, as in rat B35 NB cells. Changes in N-glycan types were confirmed by lectin binding assays in both cell lines, and the rescued cell line, HuNB(-/+MGAT2). Western blotting of cells heterologously expressing a voltage-gated K+ channel (Kv3.1b) showed that some hybrid N-glycans of Kv3.1b could be processed to complex type in HuNB(-/+MGAT2) cells. In comparing HuNB and HuNB(-MGAT2) cells, decreased complex N-glycans reduced anchorage-independent cell growth, cell proliferation, and cell invasiveness, while they enhanced cell-cell interactions. Cell proliferation, invasiveness and adhesion of the HuNB(-/+MGAT2) cells were more like the HuNB than HuNB(-MGAT2). Western blotting revealed lower protein levels of MMP-2, EGFR and Gab2 in glycosylation mutant cells relative to parental cells. Gelatin zymography demonstrated that decreased MMP-2 protein activity was related to lowered MMP-2 protein levels. Thus, our results support that decreased complex type N-glycans suppress cell proliferation and cell invasiveness in both NB cell lines via remodeling ECM.
Collapse
|
11
|
Franconetti A, López Ó, Fernandez-Bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. Curr Med Chem 2020; 27:1206-1242. [DOI: 10.2174/0929867325666180719114150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 04/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
:Cancer, one of the most devastating degenerative diseases nowadays, is one of the main targets in Medicinal Chemistry and Pharmaceutical industry. Due to the significant increase in the incidence of cancer within world population, together with the complexity of such disease, featured with a multifactorial nature, access to new drugs targeting different biological targets connected to cancer is highly necessary.:Among the vast arsenal of compounds exhibiting antitumor activities, this review will cover the use of carbohydrate derivatives as privileged scaffolds. Their hydrophilic nature, together with their capacity of establishing selective interactions with biological receptors located on cell surface, involved in cell-to-cell communication processes, has allowed the development of an ample number of new templates useful in cancer treatment.:Their intrinsic water solubility has allowed their use as of pro-drug carriers for accessing more efficiently the pharmaceutical targets. The preparation of glycoconjugates in which the carbohydrate is tethered to a pharmacophore has also allowed a better permeation of the drug through cellular membranes, in which selective interactions with the carbohydrate motifs are involved. In this context, the design of multivalent structures (e.g. gold nanoparticles) has been demonstrated to enhance crucial interactions with biological receptors like lectins, glycoproteins that can be involved in cancer progression.:Moreover, the modification of the carbohydrate structural motif, by incorporation of metal complexes, or by replacing their endocyclic oxygen, or carbon atoms with heteroatoms has led to new antitumor agents.:Such diversity of sugar-based templates with relevant antitumor activity will be covered in this review.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | - Óscar López
- Departamento de Quimica Organica, Facultad de Quimica, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
12
|
Tang Q, Zhang M, Hong Z, Chen Y, Wang P, Wang J, Wang Z, Fang R, Jin M. Effects of astragalus injection on different stages of early hepatocarcinogenesis in a two-stage hepatocarcinogenesis model using rats. J Toxicol Pathol 2019; 32:155-164. [PMID: 31402807 PMCID: PMC6682553 DOI: 10.1293/tox.2019-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
To clarify the suppressive effects of astragalus injection (AI) on different stages of
early hepatocarcinogenesis induced by weak promotion, SD rats initiated with a single
intraperitoneal (i.p.) injection of N-diethylnitrosamine (DEN) at 200
mg/kg body weight and promoted with 0.5% piperonyl butoxide (PBO) in diet were repeatedly
administered AI at 5 ml/kg body weight/day in the early postinitiation (EPI) or late
postinitiation (LPI) period for 2 or 8 weeks, respectively. The number and area of
glutathione S-transferase placental form (GST-P)-immunoreactive
(+) foci tended to increase in the DEN+PBO group compared with the DEN-alone
group. Among the PBO-promoted groups, number and area of GST-P+ foci did not
visibly change in the DEN+PBO+AI-EPI group compared with the DEN+PBO group. In contrast,
number and area of GST-P+ foci tended to decrease in the DEN+PBO+AI-LPI group
compared with the DEN+PBO group. Number of Ki67+ cells was increased in the
DEN+PBO group compared with the DEN-alone group and was decreased in both AI-administered
groups compared with the DEN+PBO group. Gene expression analysis revealed that the
DEN+PBO+AI-LPI group showed increased transcript levels of Ccne1,
Cdkn1b, Rb1, Bax,
Bcl2, Casp3, and Casp9 compared with
the DEN+PBO group; however, the DEN+PBO+AI-EPI group did not show changes in the
transcript levels of any genes examined compared with the DEN+PBO. These results suggest
that AI administration during the LPI period caused weak suppression of
hepatocarcinogenesis under weak promotion with a low PBO dose by the mechanism involving
facilitation of cell cycle suppression causing G1/S arrest and apoptosis via the
mitochondrial pathway. In addition, the results suggest that AI administration during the
EPI period has no effect on weakly promoted hepatocarcinogenesis.
Collapse
Affiliation(s)
- Qian Tang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Mei Zhang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Zexuan Hong
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Yao Chen
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Pan Wang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Jian Wang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Zili Wang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Rendong Fang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Meilan Jin
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| |
Collapse
|
13
|
Silveira CRF, Cipelli M, Manzine C, Rabelo-Santos SH, Zeferino LC, Rodríguez Rodríguez G, de Assis JB, Hebster S, Bernadinelli I, Laginha F, Boccardo E, Villa LL, Termini L, Lepique AP. Swainsonine, an alpha-mannosidase inhibitor, may worsen cervical cancer progression through the increase in myeloid derived suppressor cells population. PLoS One 2019; 14:e0213184. [PMID: 30840689 PMCID: PMC6402676 DOI: 10.1371/journal.pone.0213184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer, caused by high oncogenic risk Human Papillomavirus (HPV) infection, continues to be a public health problem, mainly in developing countries. Using peptide phage display as a tool to identify potential molecular targets in HPV associated tumors, we identified α-mannosidase, among other enriched sequences. This enzyme is expressed in both tumor and inflammatory compartment of the tumor microenvironment. Several studies in experimental models have shown that its inhibition by swainsonine (SW) led to inhibition of tumor growth and metastasis directly and indirectly, through activation of macrophages and NK cells, promoting anti-tumor activity. Therefore, the aim of this work was to test if swainsonine treatment could modulate anti-tumor immune responses and therefore interfere in HPV associated tumor growth. Validation of our biopanning results showed that cervical tumors, both tumor cells and leukocytes, expressed α-mannosidase. Ex vivo experiments with tumor associated macrophages showed that SW could partially modulate macrophage phenotype, decreasing CCL2 secretion and impairing IL-10 and IL-6 upregulation, which prompted us to proceed to in vivo tests. However, in vivo, SW treatment increased tumor growth. Investigation of the mechanisms leading to this result showed that SW treatment significantly induced the accumulation of myeloid derived suppressor cells in the spleen of tumor bearing mice, which inhibited T cell activation. Our results suggested that SW contributes to cervical cancer progression by favoring proliferation and accumulation of myeloid cells in the spleen, thus exacerbating these tumors systemic effects on the immune system, therefore facilitating tumor growth.
Collapse
Affiliation(s)
- Caio Raony Farina Silveira
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Marcella Cipelli
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Carolina Manzine
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Silvia Helena Rabelo-Santos
- Faculdade de Farmácia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiás, Brazil
| | - Luiz Carlos Zeferino
- Universidade Estadual de Campinas, Departamento de Ginecologia e Obstetrícia, Campinas, Brazil
| | - Gretel Rodríguez Rodríguez
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Josiane Betim de Assis
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Suellen Hebster
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Microbiologia, São Paulo, Brazil
| | | | | | - Enrique Boccardo
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Microbiologia, São Paulo, Brazil
| | - Luisa Lina Villa
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Lara Termini
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
14
|
Song R, Wang J, Sun L, Zhang Y, Ren Z, Zhao B, Lu H. The study of metabolites from fermentation culture of Alternaria oxytropis. BMC Microbiol 2019; 19:35. [PMID: 30744547 PMCID: PMC6369557 DOI: 10.1186/s12866-019-1408-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/31/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The indolizidine alkaloid-swainsonine is produced by an endophytic fungus Alternaria oxytropis, which was isolated from locoweeds. Swainsonine has many biological activities such as anti-tumorigenic, anti-viral and bacteriostatic. However, the full complement of metabolites produced by Alternaria oxytropis is not known. This study is a chemical analysis of Alternaria oxytropis metabolites, which not only unravels the potential compounds from the fermentation broth but also in which solvent are they extracted, facilitating industrial application. RESULTS Alternaria oxytropis isolated from Oxytropis gansuensis was cultured in Czapek's medium for 30d to collect the fermentation broth. The fermentation broth is treated with methanol and then evaporated to dryness to obtain a concentrate of the fermentation broth. The concentrate is added with water for the subsequent fractional extraction with petroleum ether, chloroform, ethyl acetate and n-butanol. Different fractions of the extract were eluted by wet packing and dry loading. The obtained eluate was combined by TLC to detect the same fraction, and then characterized by GC-MS and LC-MS. The results of GC-MS showed that 105 different compounds existed in the petroleum ether, chloroform, and ethyl acetate phases of Alternaria oxytropis fermentation broth. Moreover, the results of LC-MS indicated that the fermentation broth of Alternaria oxytropis contained five alkaloids, 2-hydroxy-indolizidine, retronecine, lentiginosine, swainsonine and swainsonine N-oxide. CONCLUSIONS In addition to swainsonine and swainsonine N-oxide, 2-hydroxy-indolizidine, retronecine and lentiginosine were identified as the secondary metabolites of Alternaria oxytropis. Other compounds were also detected including 5,6-dihydroergosterol, eburicol, lanosterol, and L-phenylalanyl-L-proline lactam, which have potential applications as drugs.
Collapse
Affiliation(s)
- Runjie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinglong Wang
- Institute of Pratacultural Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, Tibet, China
| | - Lu Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yajing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhenghui Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Oyenihi AB, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:54-72. [PMID: 30287197 DOI: 10.1016/j.jep.2018.09.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Given the severe side effects associated with most of the conventional cancer medications, as well as the expanding body of evidence indicating secondary toxicity of these drugs, individuals with cancer are increasingly turning to natural alternatives. Similarly, the pharmaceutical industry is in search of natural products to treat cancer. An understanding of the specific active components in plant products with which anti-cancer efficacy is achieved is required for this research to move forward. AIM OF THE STUDY To integrate data from cancer-relatestudies on plant-derived products or extracts, to elucidate whether these products may have similar active ingredients and/or mechanisms of action, that can explain their efficacy. This review also includes a discussion of the methodological complexities and important considerations involved in accurate isolation and characterisation of active substances from plant material. CONCLUSIONS From the literature reviewed, most plant products with consistently reported anti-cancer efficacy contains high levels of polyphenols or other potent antioxidants and their mechanisms of action correlate to that reported for isolated antioxidants in the context of cancer. This suggests that natural products may indeed become the panacea against this chronic disease - either as therapeutic medicine strategy or to serve as templates for the design of novel synthetic drugs. The recommendation is made that antioxidant activity of plant actives and especially polyphenols, should be the focus of anti-cancer drug discovery initiatives. Lastly, researchers are advised to exploit current techniques of chemical compound characterisation when investigating polyphenol-rich plants to enable the easy consolidation of research findings from different laboratories.
Collapse
Affiliation(s)
- A B Oyenihi
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - C Smith
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|
16
|
Zhang G, Isaji T, Zhiwei X, Xu L, Fukuda T, Gu J. N
‐acetylglucosaminyltransferase‐I as a novel regulator of epithelial‐mesenchymal transition. FASEB J 2018; 33:2823-2835. [DOI: 10.1096/fj.201801478r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guowei Zhang
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Tomoya Isaji
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Xu Zhiwei
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Lu Xu
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Tomohiko Fukuda
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| | - Jianguo Gu
- Division of Regulatory GlycobiologyInstitute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiJapan
| |
Collapse
|
17
|
Hall MK, Weidner DA, Whitman AA, Schwalbe RA. Lack of complex type N-glycans lessens aberrant neuronal properties. PLoS One 2018; 13:e0199202. [PMID: 29902282 PMCID: PMC6002081 DOI: 10.1371/journal.pone.0199202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/25/2018] [Indexed: 01/26/2023] Open
Abstract
Modifications in surface glycans attached to proteins via N-acetylglucosamine-β1-N-asparagine linkage have been linked to tumor development and progression. These modifications include complex N-glycans with high levels of branching, fucose and sialic acid residues. Previously, we silenced Mgat2 in neuroblastoma (NB) cells, which halted the conversion of hybrid type N-glycans to complex type, to generate a novel cell line, NB_1(-Mgat2). By comparing the aberrant cell properties of the NB_1(-Mgat2) cell line to the parental cell line (NB_1), we investigated the impact of eliminating complex type N-glycans on NB cell behavior. Further, the N-glycosylation pathway in the NB_1(-Mgat2) cell line was rescued by transiently transfecting cells with Mgat2, thus creating the NB_1(-/+Mgat2) cell line. Changes in the N-glycosylation pathway were verified by enhanced binding of E-PHA and L-PHA to proteins in the rescued cell line relative to those of the NB_1(-Mgat2) cell line. Also, western blotting of total membranes from the rescued cell line ectopically expressing a voltage-gated K+ channel (Kv3.1b) revealed that N-glycans of Kv3.1b were processed to complex type. By employment of various cell lines, we demonstrated that reduction of the complex type N-glycans diminished anchorage-independent cell growth, and enhanced cell-cell interactions. Two independent cell invasion assays showed that cell invasiveness was markedly lessened by lowering the levels of complex type N-glycans while cell mobility was only slightly modified. Neurites of NB cells were shortened by the absence of complex type N-glycans. Cell proliferation was reduced in NB cells with lowered levels of complex type N-glycans which resulted from hindered progression through G1+Go phases of the cell cycle. Overall, our results illustrate that reducing the ratio of complex to hybrid types of N-glycans diminishes aberrant NB cell behavior and thereby has a suppressive effect in cell proliferation, and cell dissociation and invasion phases of NB.
Collapse
Affiliation(s)
- M. Kristen Hall
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Douglas A. Weidner
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Austin A. Whitman
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Ruth A. Schwalbe
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
18
|
Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf B Biointerfaces 2017; 150:121-130. [DOI: 10.1016/j.colsurfb.2016.11.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 11/19/2022]
|
19
|
Huang Y, Tan H, Guo Z, Wu X, Zhang Q, Zhang L, Diao Y. The biosynthesis and genetic engineering of bioactive indole alkaloids in plants. JOURNAL OF PLANT BIOLOGY 2016. [PMID: 0 DOI: 10.1007/s12374-016-0032-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
20
|
Abstract
This review of simple indolizidine and quinolizidine alkaloids (i.e., those in which the parent bicyclic systems are in general not embedded in polycyclic arrays) is an update of the previous coverage in Volume 55 of this series (2001). The present survey covers the literature from mid-1999 to the end of 2013; and in addition to aspects of the isolation, characterization, and biological activity of the alkaloids, much emphasis is placed on their total synthesis. A brief introduction to the topic is followed by an overview of relevant alkaloids from fungal and microbial sources, among them slaframine, cyclizidine, Steptomyces metabolites, and the pantocins. The important iminosugar alkaloids lentiginosine, steviamine, swainsonine, castanospermine, and related hydroxyindolizidines are dealt with in the subsequent section. The fourth and fifth sections cover metabolites from terrestrial plants. Pertinent plant alkaloids bearing alkyl, functionalized alkyl or alkenyl substituents include dendroprimine, anibamine, simple alkaloids belonging to the genera Prosopis, Elaeocarpus, Lycopodium, and Poranthera, and bicyclic alkaloids of the lupin family. Plant alkaloids bearing aryl or heteroaryl substituents include ipalbidine and analogs, secophenanthroindolizidine and secophenanthroquinolizidine alkaloids (among them septicine, julandine, and analogs), ficuseptine, lasubines, and other simple quinolizidines of the Lythraceae, the simple furyl-substituted Nuphar alkaloids, and a mixed quinolizidine-quinazoline alkaloid. The penultimate section of the review deals with the sizable group of simple indolizidine and quinolizidine alkaloids isolated from, or detected in, ants, mites, and terrestrial amphibians, and includes an overview of the "dietary hypothesis" for the origin of the amphibian metabolites. The final section surveys relevant alkaloids from marine sources, and includes clathryimines and analogs, stellettamides, the clavepictines and pictamine, and bis(quinolizidine) alkaloids.
Collapse
|
21
|
Fan YH, Ding J, Nguyen S, Liu XJ, Xu G, Zhou HY, Duan NN, Yang SM, Zern MA, Wu J. Aberrant hedgehog signaling is responsible for the highly invasive behavior of a subpopulation of hepatoma cells. Oncogene 2015; 35:116-24. [DOI: 10.1038/onc.2015.67] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 02/07/2023]
|
22
|
Hu X, Rui W, Wu C, He S, Jiang J, Zhang X, Yang Y. Compound Astragalus and Salvia miltiorrhiza extracts suppress hepatocarcinogenesis by modulating transforming growth factor-β/Smad signaling. J Gastroenterol Hepatol 2014; 29:1284-91. [PMID: 24329763 DOI: 10.1111/jgh.12490] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM Previous studies showed Compound Astragalus and Salvia miltiorrhiza extract (CASE), extract from Astragalus membranaceus and Salvia miltiorhiza, significantly suppresses hepatocellular carcinoma (HCC) in rats induced by diethylinitrosamine (DEN), and in vitro experiments further demonstrated that CASE's anti-HepG2 cell invasion is associated with transforming growth factor-β (TGF-β). We hypothesized that CASE's suppression of HCC is modulated by TGF-β/Smad signaling, and we conducted this in vivo study to test this hypothesis. METHODS Rats were divided into the normal control, the DEN group, and three CASE (60, 120, and 240 mg/kg) treatment groups. The expression of phosphorylation(p) Smad both at C-terminal and linker region, plasminogen activator inhibitor 1, and Smad4 and Smad7 of liver tissues were measured and compared across the five groups. RESULTS The positive staining of pSmad2L and pSmad3L increased both in hepatoma nodule areas and adjacent relatively normal liver tissues in rats treated with DEN, while the positive staining of pSmad2C and pSmad3C increased only in relatively normal liver tissues adjacent to hepatoma tissues. The elevated expression of pSmad2C, pSmad2L, pSmad3L, Smad4, and plasminogen activator inhibitor 1 proteins were suppressed by CASE in a dose-dependent manner. CASE treatment also significantly reduced the intranuclear amounts of pSmad2L and pSmad3L, and upregulated the elevation of pSmad3C positive cells and protein expression in a dose-dependent manner. CONCLUSION The results suggest that CASE significantly suppresses HCC progression by mediating TGF-β/Smad signaling, especially by modulating Smad3 phosphorylation both at the C-terminal and linker region.
Collapse
Affiliation(s)
- Xiangpeng Hu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei, China; The Second Hospital of Anhui Medical University, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Expression and prognostic value of Ars2 in hepatocellular carcinoma. Int J Clin Oncol 2013; 19:880-8. [DOI: 10.1007/s10147-013-0642-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 11/06/2013] [Indexed: 12/26/2022]
|
24
|
Rui W, Xie L, Liu X, He S, Wu C, Zhang X, Zhang L, Yang Y. Compound Astragalus and Salvia miltiorrhiza extract suppresses hepatocellular carcinoma progression by inhibiting fibrosis and PAI-1 mRNA transcription. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:198-209. [PMID: 24247078 DOI: 10.1016/j.jep.2013.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 09/26/2013] [Accepted: 10/05/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus and Salvia miltiorrhiza have been used for centuries in China to treat liver diseases. Previous studies have shown that these herbs and their extracts inhibit the development of liver fibrosis and the proliferation and invasion of human hepatoma HepG2 cells. Further study of their pharmacological effects on hepatocellular carcinoma (HCC) is needed. To investigate the effects of Compound Astragalus and Salvia miltiorrhiza Extract (CASE) on diethylinitrosamine (DEN)-induced hepatocarcinogenesis in rats. MATERIALS AND METHODS Male rats were divided into five groups, with the first group serving as normal control, the second group receiving 0.2% DEN solution five times a week for 14 weeks, and the third to fifth group receiving the same DEN as in the second group together with CASE at the doses of 60, 120, and 240 mg/kg per day for 16 weeks, respectively. Hepatoma incidence, serum enzymes levels, degree of fibrosis and hydroxyproline content were evaluated and compared across the five groups to determine CASE's suppression of fibrosis and HCC progression. In addition, an in vitro experiment using HepG2 cells was conduct to verify CASE's effect on the transcription of plasminogen activator inhibitor-1 (PAI-1) mRNA. RESULTS CASE treatment significantly reduced the incidence and multiplicity of DEN-induced HCC development in a dose-dependent manner. It significantly suppressed the elevation of alanine transaminase, aspartate aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, hyaluronic acid, direct bilirubin and total bilirubin, and significantly lessened the depression of serum total protein in DEN-induced HCC rats. CASE treatment also significantly suppressed the elevated expression of GST-P and α-SMA. The in vitro experiment confirmed that CASE inhibits the transcription of PAI-1 mRNA in HepG2 cells induced by TGF-β1 in a dose-dependent manner. CONCLUSIONS CASE suppresses DEN-induced hepatocarcinogenesis by inhibiting fibrosis and PAI-1 mRNA transcription, suggesting its potential clinical application in preventing and treating human HCC.
Collapse
Affiliation(s)
- Wenjuan Rui
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Lei Xie
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China; Department of Anesthesiology, Maternal and Child Care Hospital of Anhui Province, Hefei 230001, China
| | - Xin Liu
- Therapeutics Research Centre, University of Queensland, Princess Alexandra Hospital, Brisbane, Qld 4102, Australia
| | - Shufang He
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Chao Wu
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaoxiang Zhang
- Department of Pharmaceutical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Linjie Zhang
- Department of immunology, Anhui Medical University, Hefei 230032, China.
| | - Yan Yang
- Department of Pharmacology and Institute of Natural Medicine, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
25
|
Wu JJ, Sun WY, Hu SS, Zhang S, Wei W. A standardized extract from Paeonia lactiflora and Astragalus membranaceus induces apoptosis and inhibits the proliferation, migration and invasion of human hepatoma cell lines. Int J Oncol 2013; 43:1643-51. [PMID: 24002667 DOI: 10.3892/ijo.2013.2085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/09/2013] [Indexed: 11/05/2022] Open
Abstract
Paeonia lactiflora and Astragalus membranaceus are two traditional Chinese medicines, which are commonly used in Chinese herb prescription to treat liver diseases. The protective effects of the extract prepared from the roots of Paeonia lactiflora and Astragalus membranaceus (PAE) on liver fibrosis have been demonstrated in previous studies. However, its effect on hepatocellular carcinoma (HCC) has not been investigated to date. In this study, the effects of PAE on the apoptosis, proliferation, migration and invasion of the human hepatoma cell lines HepG2 and SMMC-7721 were investigated. Our data demonstrated that treatment with PAE (50-200 mg/l) caused an inhibitory effect on the proliferation of the hepatoma cell lines HepG2 and SMMC-7721. Furthermore, PAE induced apoptosis of HepG2 cells and SMMC-7721 cells, which was demonstrated by PI staining. In addition, immunocytochemistry and western blotting showed that PAE significantly decreased the expression of Bcl-2, while the expression of Bax and cleaved caspase-3 in HepG2 cells and SMMC-7721 cells was significantly increased after treatment with PAE. These results clearly demonstrated that PAE induced hepatoma cell apoptosis through increasing the Bax-to-Bcl-2 ratio and upregulating the activation of caspase-3. In addition, the results of wound healing assay and Matrigel invasion assay showed that PAE displayed inhibitory activity on the migration and invasion of HCC cells. Taken together, the present data provides evidence that PAE is a potent antineoplastic drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Jing-Jing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Engineering Technology Research Center of Anti-inflammatory and Immunodrugs in Anhui Province, Hefei, Anhui 230032, P.R. China
| | | | | | | | | |
Collapse
|
26
|
Yang X, Ye Z, Yuan Y, Zheng Z, Shi J, Ying Y, Huang P. Insights into the binding of paclitaxel to human serum albumin: multispectroscopic studies. LUMINESCENCE 2013; 28:427-34. [PMID: 23674486 DOI: 10.1002/bio.2522] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/22/2013] [Accepted: 03/15/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Xiuli Yang
- Tong De Hospital of Zhejiang Province; Zhejiang; Hangzhou; 310058; China
| | - Zuowu Ye
- Tong De Hospital of Zhejiang Province; Zhejiang; Hangzhou; 310058; China
| | - Yong Yuan
- Tong De Hospital of Zhejiang Province; Zhejiang; Hangzhou; 310058; China
| | - Zaoqian Zheng
- Tong De Hospital of Zhejiang Province; Zhejiang; Hangzhou; 310058; China
| | - Jiana Shi
- Tong De Hospital of Zhejiang Province; Zhejiang; Hangzhou; 310058; China
| | - Yin Ying
- Tong De Hospital of Zhejiang Province; Zhejiang; Hangzhou; 310058; China
| | - Ping Huang
- Tong De Hospital of Zhejiang Province; Zhejiang; Hangzhou; 310058; China
| |
Collapse
|