1
|
Pawłowski W, Caban M, Lewandowska U. Cancer Prevention and Treatment with Polyphenols: Type IV Collagenase-Mediated Mechanisms. Cancers (Basel) 2024; 16:3193. [PMID: 39335164 PMCID: PMC11430265 DOI: 10.3390/cancers16183193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Polyphenols are natural compounds found in many plants and their products. Their high structural diversity bestows upon them a range of anti-inflammatory, anti-oxidant, proapoptotic, anti-angiogenic, and anti-metastatic properties, and a growing body of research indicates that a polyphenol-rich diet can inhibit cancer development in humans. Polyphenolic compounds may modulate the expression, secretion, or activity of compounds that play a significant role in carcinogenesis, including type IV collagenases, such as matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), by suppressing cellular signaling pathways such as nuclear factor-kappa B. These enzymes are responsible for the degradation of the extracellular matrix, thus promoting the progression of cancer. This review discusses the current state of knowledge concerning the anti-cancer activity of polyphenols, particularly curcumin, resveratrol, epigallocatechin-3-gallate, genistein, and quercetin, with a specific focus on their anti-invasive and anti-metastatic potential, based on the most recent in vitro and in vivo studies. It appears that polyphenols may be valuable options for the chemoprevention and treatment of cancer via the inhibition of MMP-2 and MMP-9 and the suppression of signaling pathways regulating their expression and activity.
Collapse
Affiliation(s)
| | | | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.P.); (M.C.)
| |
Collapse
|
2
|
Yin H, Liu Y, Yue H, Tian Y, Dong P, Xue C, Zhao YT, Zhao Z, Wang J. DHA- and EPA-Enriched Phosphatidylcholine Suppress Human Lung Carcinoma 95D Cells Metastasis via Activating the Peroxisome Proliferator-Activated Receptor γ. Nutrients 2022; 14:nu14214675. [PMID: 36364935 PMCID: PMC9654432 DOI: 10.3390/nu14214675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The antineoplastic effects of docosahexaenoic acid-containing phosphatidylcholine (DHA-PC) and eicosapentaenoic acid-containing phosphatidylcholine (EPA-PC) were explored, and their underlying mechanisms in the human lung carcinoma 95D cells (95D cells) were investigated. After treatment of 95D cells with DHA-PC or EPA-PC, cell biological behaviors such as growth, adhesion, migration, and invasion were studied. Immunofluorescence and western blotting were carried out to assess underlying molecular mechanisms. Results showed that 95D cells proliferation and adherence in the DHA-PC or EPA-PC group were drastically inhibited than the control group. DHA-PC and EPA-PC suppressed the migration and invasion of 95D cells by disrupting intracellular F-actin, which drives cell movement. The protein expression of PPARγ was induced versus the control group. Furthermore, critical factors related to invasion, including matrix metallopeptidase 9 (MMP9), heparanase (Hpa), and vascular endothelial growth factor (VEGF), were drastically downregulated through the PPARγ/NF-κB signaling pathway. C-X-C chemokine receptor type 4 (CXCR4) and cofilin were significantly suppressed via DHA-PC and EPA-PC through the PPARγ/phosphatase and tensin homolog (PTEN)/serine-threonine protein kinase (AKT) signaling pathway. DHA-PC and EPA-PC reversed the PPARγ antagonist GW9662-induced reduction of 95D cells in migration and invasion capacity, suggesting that PPARγ was directly involved in the anti-metastasis efficacy of DHA-PC and EPA-PC. In conclusion, DHA-PC and EPA-PC have great potential for cancer therapy, and the antineoplastic effects involve the activation of PPARγ. EPA-PC showed more pronounced antineoplastic effects than DHA-PC, possibly due to the more robust activation of PPARγ by EPA-PC.
Collapse
Affiliation(s)
- Haowen Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuanyuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yun-Tao Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zifang Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Hainan Huayan Collagen Technology Co., Ltd., Haikou 571000, China
- Correspondence: (Z.Z.); (J.W.); Tel.: +86-898-6655-3777 (Z.Z.); +86-532-8203-1967 (J.W.)
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (Z.Z.); (J.W.); Tel.: +86-898-6655-3777 (Z.Z.); +86-532-8203-1967 (J.W.)
| |
Collapse
|
3
|
Lin TA, Lin WS, Chou YC, Nagabhushanam K, Ho CT, Pan MH. Oxyresveratrol inhibits human colon cancer cell migration through regulating epithelial-mesenchymal transition and microRNA. Food Funct 2021; 12:9658-9668. [PMID: 34664597 DOI: 10.1039/d1fo01920a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major cause of death in colorectal cancer (CRC) patients is metastasis. Moreover, lots of studies have emphasized that the epithelial-mesenchymal transition (EMT) is a pivotal step in metastasis. Both transforming growth factor beta (TGF-β) and dysregulation of microRNAs (miRNAs) can induce or regulate EMT, promoting the loss of intercellular adhesion and increased motility of cancer cells. Therefore, it is necessary to prevent or inhibit the metastasis of colorectal cancer. Relatively little is known about the anti-metastatic effect of oxyresveratrol (OXY), a natural derivative of resveratrol (RES), compared to RES. Accordingly, RES was used as the positive control to investigate the effects of OXY on colon cancer cell migration. The results showed that OXY could significantly inhibit cell migration (67.17% ± 0.04, 64.89% ± 0.04) compared to RES (84.6% ± 0.07, 76.34% ± 0.08) in HCT116 cells and TGF-β-induced HT-29 cells, respectively, via Snail/E-cadherin expression. In addition, OXY improved EMT-related miRNA expression through, for example, lowering the levels of miR-3687 and miR-301a-3p while upregulating miR-3612 in TGF-β-induced HT-29 cells. In conclusion, OXY inhibits human colon cancer cell migration by regulating EMT and miRNAs. Based on these findings, it can be stated that OXY promotes anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Ting-Ann Lin
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Sheng Lin
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Ya-Chun Chou
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Min-Hisung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
4
|
Cytotoxic effect of Aeruginosin-865, capsaicin, and resveratrol on mouse cell lines of different origin. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the study was to compare the effects of three natural bioactive compounds (and their combinations) on normal vs. tumour-transformed mouse cells. The cytotoxic effect of Aeruginosin-865 (Aer), capsaicin (Cap), resveratrol (Res) and their combinations was evaluated on normal hepatocytes (AML) and tumour cells derived from livers (Hepa) and kidneys (Renca). Various concentrations from 25 to 200 μM of tested substances were used. Only the Aer + Res combination and a low concentration of Res had a significant cytotoxic effect on Hepa and Renca and no significant cytotoxic effect on AML. Cap had a significant cytotoxic effect on all tested cell lines, but tumour-derived cells showed higher resistance than AML. A significantly increased cytotoxicity was found in the combination of Cap + Res compared to each substance alone. All types of cells showed similar sensitivity to the cytotoxic effect of Cap + Res. Because of a possible hepatotoxic effect, we recommend further investigations into side-effects of Cap + Res. No cytotoxic effect was described in Cap + Aer or in Aer alone. Only substances with a significant cytotoxic effect on tumour cells and no cytotoxic effect on normal cells can be potentially used in anticancer treatment. According to the results, only Res or the combination of Aer + Res can be recommended for further evaluation in the process of new anticancer drug development. The potential hepatotoxic effect of Cap + Res can significantly limit the utilisation of these substances in anticancer treatment.
Collapse
|
5
|
Hayuningtyas RA, Han M, Choi S, Kwak MS, Park IH, Lee JH, Choi JE, Kim DK, Son M, Shin JS. The collagen structure of C1q induces wound healing by engaging discoidin domain receptor 2. Mol Med 2021; 27:125. [PMID: 34602056 PMCID: PMC8489103 DOI: 10.1186/s10020-021-00388-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background C1q has been reported to reveal complement-independent roles in immune and non-immune cells. C1q binds to its specific receptors to regulate distinct functions that rely on the environment and cell types. Discoidin domain receptor 2 (DDR2) is activated by collagen and functions in wound healing by controlling matrix metalloproteinase (MMP) expression. Since C1q exhibits a collagen-like structure, we hypothesized that C1q might engage DDR2 to regulate wound healing and extracellular matrix (ECM) remodeling. Methods Cell-based assay, proximity ligation assay, ELISA, and surface plasmon analysis were utilized to investigate DDR2 and C1q binding. We also investigate the C1q-mediated in vitro wound healing ability using the human fibrosarcoma cell line, HT1080. Results C1q induced the phosphorylation of DDR2, p38 kinase, and ERK1/2. C1q and DDR2 binding improved cell migration and induced MMP2 and MMP9 expression. DDR2-specific shRNA reduced C1q-mediated cell migration for wound healing. Conclusions C1q is a new DDR2 ligand that promotes wound healing. These findings have therapeutic implications in wound healing-related diseases.
Collapse
Affiliation(s)
- Ria Aryani Hayuningtyas
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seoyeon Choi
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - In Ho Park
- Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ji-Hyun Lee
- Department of Immunology and Institute for Medical Sciences, Jeonbuk National University, Medical School, Jeonju, Jeollabuk-do, 54907, Republic of Korea
| | - Ji Eun Choi
- Department of Pediatrics, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, 07061, Republic of Korea
| | - Dae Ki Kim
- Department of Immunology and Institute for Medical Sciences, Jeonbuk National University, Medical School, Jeonju, Jeollabuk-do, 54907, Republic of Korea
| | - Myoungsun Son
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea. .,Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Arablou T, Aryaeian N, Khodaverdi S, Kolahdouz-Mohammadi R, Moradi Z, Rashidi N, Delbandi AA. The effects of resveratrol on the expression of VEGF, TGF-β, and MMP-9 in endometrial stromal cells of women with endometriosis. Sci Rep 2021; 11:6054. [PMID: 33723310 PMCID: PMC7961000 DOI: 10.1038/s41598-021-85512-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
Resveratrol is a phytochemical with anti-angiogenic, anti-inflammatory, and antioxidant properties. The present study has evaluated the effect of resveratrol on the expression of vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β) and matrix metalloproteinase-9 (MMP-9) as factors related to endometriosis progression. Thirteen eutopic (EuESCs) and 8 ectopic (EESCs) endometrial stromal cells from women with endometriosis and 11 control endometrial stromal cells (CESCs) were treated with resveratrol (100 µM) for 6, 24 and 48 h. The gene and protein expression levels of VEGF, TGF-β, and MMP-9 were measured using real-time PCR and ELISA methods, respectively. Results showed that the basal gene and protein expression of VEGF and MMP-9 were higher in EESCs compared to EuESCs and CESCs (P < 0.01 to < 0.001 and P < 0.05 to < 0.01 respectively). Also, resveratrol treatment decreased the gene and protein expression of VEGF and MMP-9 in EuESCs, EESCs and CESCs (P < 0.05 to < 0.01 and P < 0.05 to < 0.01 respectively) and gene and protein expression of TGF-β in EESCs and EuESCs (P < 0.05 to < 0.01). The effect of resveratrol in reduction of VEGF gene expression was statistically more noticeable in EESCs compared to EuESCs and CESCs (P < 0.05). According to the findings, resveratrol may ameliorate endometriosis progression through reducing the expression of VEGF, TGF-β, and MMP-9 in endometrial stromal cells (ESCs).
Collapse
Affiliation(s)
- Tahereh Arablou
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Khodaverdi
- grid.411746.10000 0004 4911 7066Endometriosis Research Center, Iran University of Medical Science, Tehran, Iran
| | - Roya Kolahdouz-Mohammadi
- grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Moradi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nesa Rashidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Immunology Research Center, Immunology and Infectious Disease Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Guo Z, Huang J, Wang Y, Liu XP, Li W, Yao J, Li S, Hu W. Analysis of Expression and Its Clinical Significance of the Secreted Phosphoprotein 1 in Lung Adenocarcinoma. Front Genet 2020; 11:547. [PMID: 32595698 PMCID: PMC7303289 DOI: 10.3389/fgene.2020.00547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Objective To explore the expression of secreted phosphoprotein 1 (SPP1) in lung adenocarcinoma (LUAD), and evaluate its relationship with clinicopathological characteristics and prognosis of LUAD, and analyze the advantages of SPP1 as a potential prognostic marker in LUAD. Methods The expression of SPP1 in normal lung tissue and LUAD was analyzed from the Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), and Human Protein Atlas (HPA) databases. GSE68465 was used to explore the relationship between the SPP1 expression and clinicopathological characteristics and the prognosis of LUAD patients. The relationship between SPP1 and immune infiltration in LUAD was analyzed by the Tumor Immune Estimation Resource (TIMER) database. Gene enrichment analysis was performed in GSEA. The Cancer Genome Atlas (TCGA)-LUAD data was used to verify the results. Results In the cell line level, non-small cell lung cancer ranked ninth among cancer cell lines based on SPP1 expression. In the messenger RNA (mRNA) and protein levels, SPP1 expression was higher in LUAD tissues than that in normal control. SPP1 expression was related to gender, N stage, histological grade, and progression or relapse. In men, SPP1 expression were higher compared to that in women. The higher the N stage, the higher the SPP1 expression level. As LUAD progresses or relapses, SPP1 expression could increase. In the pathological grade, the SPP1 expression was higher in LUAD samples with moderate differentiation. In addition, the overall 5-year survival rates of the SPP1 high and low expression groups were 50.574 and 59.181% [P = 0.008; hazard ratio (HR) = 0.7057; 95% CI, 0.5467-0.9109], indicating that SPP1 had an impact on overall survival for LUAD patients. The relationship between SPP1 expression and CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration was weak in LUAD. SPP1 could be considered as an independent prognostic marker in LUAD (P = 0.003; HR = 1.150; 95% CI, 1.048-1.261) by multivariate Cox regression analysis. The results of GSEA indicated that samples with high SPP1 expression were enriched in protein secretion, mTORC1 signaling, angiogenesis, and glycolysis pathway. The analysis results obtained by TCGA-LUAD data were basically consistent with the results obtained by GSE68465. Conclusions SPP1 can not only affect the occurrence and development of LUAD but also may be an independent prognostic marker of LUAD. SPP1 is expected to be a new target for molecular targeted therapy.
Collapse
Affiliation(s)
- Zixin Guo
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingyu Huang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yujin Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Oncology, The First People's Hospital of Tianmen, Tianmen, China
| | - Jie Yao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Anti-stress, Glial- and Neuro-differentiation Potential of Resveratrol: Characterization by Cellular, Biochemical and Imaging Assays. Nutrients 2020; 12:nu12030671. [PMID: 32121454 PMCID: PMC7146125 DOI: 10.3390/nu12030671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Environmental stress, exhaustive industrialization and the use of chemicals in our daily lives contribute to increasing incidence of cancer and other pathologies. Although the cancer treatment has revolutionized in last 2–3 decades, shortcomings such as (i) extremely high cost of treatment, (ii) poor availability of drugs, (iii) severe side effects and (iv) emergence of drug resistance have prioritized the need of developing alternate natural, economic and welfare (NEW) therapeutics reagents. Identification and characterization of such anti-stress NEW drugs that not only limit the growth of cancer cells but also reprogram them to perform their specific functions are highly desired. We recruited rat glioma- and human neuroblastoma-based assays to explore such activities of resveratrol, a naturally occurring stilbenoid. We demonstrate that nontoxic doses of resveratrol protect cells against a variety of stresses that are largely involved in age-related brain pathologies. These included oxidative, DNA damage, metal toxicity, heat, hypoxia, and protein aggregation stresses. Furthermore, it caused differentiation of cells to functional astrocytes and neurons as characterized by the upregulation of their specific protein markers. These findings endorse multiple bioactivities of resveratrol and encourage them to be tested for their benefits in animal models and humans.
Collapse
|
9
|
Man AWC, Li H, Xia N. Resveratrol and the Interaction between Gut Microbiota and Arterial Remodelling. Nutrients 2020; 12:nu12010119. [PMID: 31906281 PMCID: PMC7019510 DOI: 10.3390/nu12010119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Arterial remodelling refers to the alteration in the structure of blood vessel that contributes to the progression of hypertension and other cardiovascular complications. Arterial remodelling is orchestrated by the crosstalk between the endothelium and vascular smooth muscle cells (VSMC). Vascular inflammation participates in arterial remodelling. Resveratrol is a natural polyphenol that possesses anti-oxidant and anti-inflammatory properties and has beneficial effects in both the endothelium and VSMC. Resveratrol has been studied for the protective effects in arterial remodelling and gut microbiota, respectively. Gut microbiota plays a critical role in the immune system and inflammatory processes. Gut microbiota may also regulate vascular remodelling in cardiovascular complications via affecting endothelium function and VSMC proliferation. Currently, there is new evidence showing that gut microbiota regulate the proliferation of VSMC and the formation of neointimal hyperplasia in response to injury. The change in population of the gut microbiota, as well as their metabolites (e.g., short-chain fatty acids) could critically contribute to VSMC proliferation, cell cycle progression, and migration. Recent studies have provided strong evidence that correlate the effects of resveratrol in arterial remodelling and gut microbiota. This review aims to summarize recent findings on the resveratrol effects on cardiovascular complications focusing on arterial remodelling and discuss the possible interactions of resveratrol and the gut microbiota that modulate arterial remodelling.
Collapse
Affiliation(s)
- Andy W C Man
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| |
Collapse
|
10
|
Chen M, Gilbert N, Liu H. Reduced expression of PD-L1 in autoimmune thyroiditis attenuate trophoblast invasion through ERK/MMP pathway. Reprod Biol Endocrinol 2019; 17:86. [PMID: 31656199 PMCID: PMC6816196 DOI: 10.1186/s12958-019-0536-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Autoimmune thyroiditis (AIT) with euthyroid is associated with miscarriage. But the exact mechanism remains unclear. Studies have shown that the programmed cell death-1 (PD-1)/programmed cell death -ligand 1 (PD-L1) pathway is essential for normal pregnancy. However, the expression of PD-L1 in gestational trophoblasts in mice with autoimmune thyroiditis and the mechanisms leading to miscarriage have not been fully investigated. METHODS Immunofluorescence and Western blot were used to detect the expression of PD-L1, p-ERK, MMP-2 and MMP-9 in embryonic trophoblast cells of pregnant mice with AIT. The expression of PD-L1 in HTR-8/SVneo cells were silenced, and the expression of PD-L1, MMP-2, MMP-9, ERK and p-ERK1/2 was detected by Western blot analyses and immunofluorescence assays. Invasive assays were performed in PD-L1 silenced HTR-8/SVneo cells using a Transwell chamber. RESULTS Compared with normal pregnancy, the expression of PD-L1, ERK, p-ERK, MMP-2 and MMP-9 in embryonic trophoblast cells was significantly lower in pregnant mice with AIT. Compared with the negative control (NC) group (cells transfected with negative control siRNA), phosphorylation of MMP-2, MMP-9 and P-ERK1/2 proteins was significantly reduced in HTR-8/SVneo cells transfected with PD-L1 siRNA, and the number of cells penetrating the membrane was reduced. CONCLUSION AIT inhibits ERK/MMP-2 and MMP-9 pathways through PD-L1 reduction, attenuates embryonic trophoblast invasion and ultimalely induces miscarriage ultimately.
Collapse
Affiliation(s)
- Mengya Chen
- grid.452828.1Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027 Liaoning China
| | - Nduwimana Gilbert
- grid.452828.1Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027 Liaoning China
| | - Haixia Liu
- grid.452828.1Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027 Liaoning China
| |
Collapse
|
11
|
Chen Q, Yang C, Chen L, Zhang JJ, Ge WL, Yuan H, Meng LD, Huang XM, Shen P, Miao Y, Jiang KR. YY1 targets tubulin polymerisation-promoting protein to inhibit migration, invasion and angiogenesis in pancreatic cancer via p38/MAPK and PI3K/AKT pathways. Br J Cancer 2019; 121:912-921. [PMID: 31631174 PMCID: PMC6888832 DOI: 10.1038/s41416-019-0604-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PDAC) is a highly invasive cancer with poor prognosis. Recent research has found that the transcription factor Yin Yang 1 (YY1) plays an inhibitory role in the development of pancreatic cancer. It has been reported that tubulin polymerisation-promoting protein (TPPP) plays an indispensable role in a variety of tumours, but its expression and role in pancreatic cancer have not yet been elucidated. METHODS In this study, we performed ChIP-sequencing and found that YY1 directly binds to the promoter region of TPPP. The expression of TPPP in pancreatic cancer was detected by western blotting and immunohistochemistry. Four-week-old male BALB/c-nude mice were used to assess the effect of TPPP on pancreatic cancer. RESULTS Immunohistochemistry revealed that TPPP was expressed at low levels in pancreatic cancer tissues, and was associated with blood vessel invasion. The results from vivo experiments have showed that TPPP could enhance the migration and invasion of pancreatic cancer. Further experiments showed that YY1 could inhibit the migration, invasion and angiogenesis of pancreatic cancer cells by downregulating TPPP via p38/MAPK and PI3K/AKT pathways. CONCLUSION Our study demonstrates that TPPP may act as a promoter and may serve as a novel target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chuang Yang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Wan-Li Ge
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Ling-Dong Meng
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Xu-Min Huang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Peng Shen
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Kui-Rong Jiang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Pancreas Institute, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Resveratrol-mediated inhibition of cyclooxygenase-2 in melanocytes suppresses melanogenesis through extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt signalling. Eur J Pharmacol 2019; 860:172586. [PMID: 31377156 DOI: 10.1016/j.ejphar.2019.172586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), has been reported to exert a variety of important pharmacological effects including anti-inflammatory, anticancer, and direct inhibition of tyrosinase. This study aimed to examine the expression of melanogenic molecules following down-regulation of cyclooxygenase (COX)-2 expression by resveratrol and the related signal transduction pathways in mouse B16F10 melanoma cells and zebrafish larvae. We report that resveratrol suppressed COX-2 in melanocytes and decreased the expressions of tyrosinase and microphthalmia-associated transcription factor (MITF). Furthermore, inhibition of COX-2 with NS398 enhanced resveratrol-reduced tyrosinase and MITF expression. Resveratrol also induced phosphorylation of extracellular signal-regulated 1/2 (ERK1/2) and phosphoinositide-3 (PI-3)-kinase/Akt. Inhibition of ERK1/2 or PI-3K/Akt by PD98059 and LY294002 restored the decreased tyrosinase activity and MITF expression via resveratrol-mediated down-regulation of COX-2. Additionally, resveratrol inhibited body pigmentation in zebrafish. These results indicated that resveratrol inhibited melanogenesis by down-regulating COX-2 via ERK1/2 and PI-3K/Akt pathways in B16F10 cells.
Collapse
|
13
|
Viridicatol and viridicatin isolated from a shark-gill-derived fungus Penicilliumpolonicum AP2T1 as MMP-2 and MMP-9 inhibitors in HT1080 cells by MAPKs signaling pathway and docking studies. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02358-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Dai L, Zhou J, Li T, Qian Y, Jin L, Zhu C, Li S. STRIP2 silencing inhibits vascular smooth muscle cell proliferation and migration via P38-AKT-MMP-2 signaling pathway. J Cell Physiol 2019; 234:22463-22476. [PMID: 31093976 DOI: 10.1002/jcp.28810] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Abstract
STRIP2 (FAM40B) was reported to regulate tumor cell migration. Our study aims to discuss the effect of STRIP2 in mouse aortic smooth muscle cell (MOVAS) proliferation and migration processes, which contributes greatly to atherosclerosis formation. In MOVAS cells, STRIP2 depletion suppressed cell proliferation and migration, which were related to a remarkable decrease in matrix metalloproteinases-2 (MMP-2)/MMP-9 expression. Additionally, P38 mitogen-activated protein kinases and Protein kinase B (AKT) are inactivated while extracellular signal-regulated kinase (ERK1/2) and jun N-terminal kinase (JNK) are activated upon STRIP2 silencing. SB203580 (P38 inhibitor) further reduced AKT phosphorylation (p-AKT) while dehydrocorydaline chloride (Dc; P38 activator) reversed this effect. Furthermore, Dc significantly recovered MMP-2 expression in STRIP2-knockdown cells. As expected, overexpressing STRIP2 exhibited a contrary effect. Dc and AKT activator SC79 reversed the inhibition of cell proliferation and migration induced by STRIP2 silencing. Interestingly, STRIP2 depletion increased vascular endothelial growth factor level significantly. Taken together, STRIP2 contributed to cell proliferation and migration through P38-AKT-MMP-2 signaling in MOVAS cells, indicating the importance of STRIP2 in atherosclerosis.
Collapse
Affiliation(s)
- Li Dai
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Qian
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
IOP lowering effect of topical trans-resveratrol involves adenosine receptors and TGF-β2 signaling pathways. Eur J Pharmacol 2018; 838:1-10. [DOI: 10.1016/j.ejphar.2018.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023]
|
16
|
Nana AW, Wu SY, Yang YCS, Chin YT, Cheng TM, Ho Y, Li WS, Liao YM, Chen YR, Shih YJ, Liu YR, Pedersen J, Incerpi S, Hercbergs A, Liu LF, Whang-Peng J, Davis PJ, Lin HY. Nano-Diamino-Tetrac (NDAT) Enhances Resveratrol-Induced Antiproliferation by Action on the RRM2 Pathway in Colorectal Cancers. Discov Oncol 2018; 9:349-360. [PMID: 30027502 DOI: 10.1007/s12672-018-0334-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer resistance to chemotherapeutic agents is a major issue in the management of cancer patients. Overexpression of the ribonucleotide reductase regulatory subunit M2 (RRM2) has been associated with aggressive cancer behavior and chemoresistance. Nano-diamino-tetrac (NDAT) is a nanoparticulate derivative of tetraiodothyroacetic acid (tetrac), which exerts anticancer properties via several mechanisms and downregulates RRM2 gene expression in cancer cells. Resveratrol is a stilbenoid phytoalexin which binds to a specific site on the cell surface integrin αvβ3 to trigger cancer cell death via nuclear translocation of COX-2. Here we report that resveratrol paradoxically activates RRM2 gene expression and protein translation in colon cancer cells. This unanticipated effect inhibits resveratrol-induced COX-2 nuclear accumulation. RRM2 downregulation, whether achieved by RNA interference or treatment with NDAT, enhanced resveratrol-induced COX-2 gene expression and nuclear uptake which is essential to integrin αvβ3-mediated-resveratrol-induced antiproliferation in cancer cells. Elsewhere, NDAT downregulated resveratrol-induced RRM2 expression in vivo but potentiated the anticancer effect of the stilbene. These findings suggest that RRM2 appears as a cancer cell defense mechanism which can hinder the anticancer effect of the stilbene via the integrin αvβ3 axis. Furthermore, the antagonistic effect of RRM2 against resveratrol is counteracted by the administration of NDAT.
Collapse
Affiliation(s)
- André Wendindondé Nana
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Szu Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Yu-Chen Sh Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yih Ho
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wen-Shan Li
- Laboratory of Chemical Biology and Medicinal Chemistry, Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Min Liao
- Integrated Laboratory, Center of Translational Medicine, Core Facility, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Ya-Jung Shih
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Jens Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, Roma Tre University, Rome, Italy
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Leroy F Liu
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | | | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
- Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Hung-Yun Lin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
17
|
Perfluorooctanoic acid stimulates ovarian cancer cell migration, invasion via ERK/NF-κB/MMP-2/-9 pathway. Toxicol Lett 2018; 294:44-50. [PMID: 29753068 DOI: 10.1016/j.toxlet.2018.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/04/2018] [Accepted: 05/08/2018] [Indexed: 01/10/2023]
Abstract
As widely used in consumer products, perfluorooctanoic acid (PFOA) has become a common environmental pollutant, which has been detected in human serum and associated with cancers. Our previous study showed that PFOA is a carcinogen that promotes endometrial cancer cell migration and invasion through activation of ERK/mTOR signaling. Here, we showed that PFOA (≥100 nM) treatment also stimulated A2780 ovarian cancer cell invasion and migration, which correlated with increased matrix metalloproteinases MMP-2/-9 expression, important proteases associated with tumor invasion and migration. Notably, PFOA treatment induced activation of ERK1/2/ NF-κB signaling. Pre-treatment with U0126, an ERK1/2inhibitor;or JSH-23, a NF-kB inhibitor, can reverse the PFOA-induced cell migration and invasion. Consistent with these results, inhibiting ERK1/2 or NF-κB signaling abolished PFOA-induced up-regulation of MMP-2/-9 expression. These results indicate that PFOA can stimulate ovarian cancer cell migration, invasion and MMP-2/-9 expression by up-regulating ERK/NF-κB pathway.
Collapse
|
18
|
Kwon EJ, Park EJ, Yu H, Huh JS, Kim J, Cho M. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression. Connect Tissue Res 2018; 59:245-254. [PMID: 28750181 DOI: 10.1080/03008207.2017.1360293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.
Collapse
Affiliation(s)
- Eun-Jeong Kwon
- a Department of Medicine , Jeju National University School of Medicine , Jeju , Republic of Korea
| | - Eun-Jung Park
- b Department of Internal Medicine , Jeju National University Hospital , Jeju , Republic of Korea
| | - Hyeran Yu
- c Department of Biochemistry , Jeju National University School of Medicine , Jeju , Republic of Korea
| | - Jung-Sik Huh
- d Departmnet of Urology , Jeju National University Hospital , Jeju , Republic of Korea
| | - Jinseok Kim
- a Department of Medicine , Jeju National University School of Medicine , Jeju , Republic of Korea.,b Department of Internal Medicine , Jeju National University Hospital , Jeju , Republic of Korea
| | - Moonjae Cho
- c Department of Biochemistry , Jeju National University School of Medicine , Jeju , Republic of Korea
| |
Collapse
|
19
|
Veselá I, Kolísková PC, Kuchařová V, Tomenendálová J, Kováčová V, Pikula J, Repková B, Rapekta P, Hrouzek P, Cheel J, Doubek J. Cytotoxic Effect of Aeruginosin-865, Resveratrol and Capsaicin on Mouse Fibroblasts and Cells Derived from Fallow Deer. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural substances offer interesting bioactivity patterns including antiproliferative, antioxidant or cytotoxic effects. However, the safety profile of many of them has not been extensively determined. In this study, the cytotoxic effect of Aeruginosin-865, resveratrol and capsaicin at different concentrations was tested on normal mouse cells (NIH/3T3) and tumour fibroblasts (WEHI-13VAR) as well as on liver- and kidney-derived cells from fallow deer. A lactate dehydrogenase cytotoxicity assay kit was used to measure cell death in response to treatment with the test substances. It was found that NIH/3T3 cells tolerated Aeruginosin-865 (10-200 μM) and resveratrol (5-100 μM) treatment without any cytotoxic effect, while capsaicin exerted a cytotoxic effect only at the highest tested concentration (200 μ M). Mouse fibrosarcoma cells were more sensitive to the cytotoxic effect of all three compounds where Aeruginosin-865 (100-200 μM) and resveratrol (50–100 μM) showed high-dose cytotoxicity and capsaicin showed low- and high-dose cytotoxicity (25 μM and 200 μ M). The three tested compounds at the highest concentrations were found to be cytotoxic to both liver- and kidney-derived cells from fallow deer. Overall, the results indicate that the cytotoxic effects of the three tested natural substances on cells derived from fallow deer and mouse tumour fibroblasts differ significantly from those exerted on normal fibroblasts. The results demonstrate the potential of these natural compounds as therapeutic agents and pave the way for future in vivo toxicological investigations.
Collapse
Affiliation(s)
- Ivana Veselá
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petra Celá Kolísková
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vendula Kuchařová
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jaroslava Tomenendálová
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Veronika Kováčová
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jiří Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Barbora Repková
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Polina Rapekta
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences (CAS) v.v.i., Trebon, Czech Republic
| | - José Cheel
- Centre Algatech, Institute of Microbiology, The Czech Academy of Sciences (CAS) v.v.i., Trebon, Czech Republic
| | - Jaroslav Doubek
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
20
|
Abstract
Bone cancer is a malignant primary tumour of the bone with different typing, such as, osteosarcoma, chondrosarcoma, Ewing's sarcoma and fibrosarcoma. Despite the clinical efficacy of conventional therapies of bone cancer, most patients eventually relapse and the disease remains incurable. Therefore, new therapeutic strategies are needed to improve patient outcome. In this review article, we have discussed the role of resveratrol in preventing bone and spinal cancers and therapeutics. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenol, which has been widely reported as an anticancer molecule. Resveratrol exhibits multiple tumour-suppressing activities in bone cancer by affecting a series of critical events. It has the protective effects against oxidative injury, possesses antiproliferative activity and induces apoptosis in cancer cells. Resveratrol might be a good option for the treatment of different types of bone and spinal cancers.
Collapse
Affiliation(s)
- Gang Chen
- a Department of Spine , Xiangtan Central Hospital , Xiangtan , Hunan , P.R. China
| | - Hong Xia
- a Department of Spine , Xiangtan Central Hospital , Xiangtan , Hunan , P.R. China
| | - Zhi-Guo Zhang
- a Department of Spine , Xiangtan Central Hospital , Xiangtan , Hunan , P.R. China
| | - Hai-Liang Yu
- a Department of Spine , Xiangtan Central Hospital , Xiangtan , Hunan , P.R. China
| |
Collapse
|
21
|
Qin H, Liu X, Li F, Miao L, Li T, Xu B, An X, Muth A, Thompson PR, Coonrod SA, Zhang X. PAD1 promotes epithelial-mesenchymal transition and metastasis in triple-negative breast cancer cells by regulating MEK1-ERK1/2-MMP2 signaling. Cancer Lett 2017; 409:30-41. [PMID: 28844713 DOI: 10.1016/j.canlet.2017.08.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
Peptidylargininedeiminase 1 (PAD1) catalyzes protein for citrullination, and this activity has been linked to the epidermal cornification. However, a role for PAD1 in tumorigenesis, including breast cancers has not been previously explored. Here we first showed that PAD1 is overexpressed in human triple negative breast cancer (TNBC). In cultured cells and xenograft mouse models, PAD1 depletion or inhibition reduced cell proliferation, suppressed epithelial-mesenchymal transition, and prevented metastasis of MDA-MB-231 cells. These changes were correlated with a dramatic decrease in MMP2/9 expression. Furthermore, ERK1/2 and P38 MAPK signaling pathways are activated upon PAD1 silencing. Treatment with MEK1/2 inhibitor in PAD1 knockdown cells significantly recovered MMP2 expression, while inhibiting P38 activation only slightly elevated MMP9 levels. We then showed that PAD1 interacts with and citrullinates MEK1 thereby disrupting MEK1-catalyzed ERK1/2 phosphorylation, thus leading to the MMP2 overexpression. Collectively, our data indicate that PAD1 appears to promote tumorigenesis by regulating MEK1-ERK1/2-MMP2 signaling in TNBC. These results also raise the possibility that PAD1 may function as an important new biomarker for TNBC tumors and suggest that PAD1-specific inhibitors could potentially be utilized to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Hao Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoqiu Liu
- Department of Microbiology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Fujun Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lixia Miao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tingting Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Boqun Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Aaron Muth
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, New York, 14853, USA
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
22
|
Agarwal R, Agarwal P. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate? Exp Biol Med (Maywood) 2017; 242:374-383. [PMID: 27798117 PMCID: PMC5298538 DOI: 10.1177/1535370216675065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 01/29/2023] Open
Abstract
Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.
Collapse
Affiliation(s)
- Renu Agarwal
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor 47000, Malaysia
| | - Puneet Agarwal
- Department of Ophthalmology, School of Medicine, International Medical University, Jalan Rasah, Seremban 70300, Malaysia
| |
Collapse
|
23
|
Pavan AR, Silva GDBD, Jornada DH, Chiba DE, Fernandes GFDS, Man Chin C, Dos Santos JL. Unraveling the Anticancer Effect of Curcumin and Resveratrol. Nutrients 2016; 8:nu8110628. [PMID: 27834913 PMCID: PMC5133053 DOI: 10.3390/nu8110628] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | | | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | - Chung Man Chin
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| |
Collapse
|
24
|
Zhou Q, Bennett LL, Zhou S. Multifaceted ability of naturally occurring polyphenols against metastatic cancer. Clin Exp Pharmacol Physiol 2016; 43:394-409. [DOI: 10.1111/1440-1681.12546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Qingyu Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa Florida
| | | | - Shufeng Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa Florida
| |
Collapse
|
25
|
YUAN SHUANGXUE, WANG DONGXU, WU QIUXIANG, REN CHUNMEI, LI YANG, CHEN QIANZHAO, ZENG YUHUA, SHAO YING, YANG JUNQIN, BAI YAN, ZHANG PU, YU YU, WU KE, SUN WENJUAN, HE BAICHENG. BMP9/p38 MAPK is essential for the antiproliferative effect of resveratrol on human colon cancer. Oncol Rep 2015; 35:939-47. [DOI: 10.3892/or.2015.4407] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/12/2015] [Indexed: 11/06/2022] Open
|
26
|
Sklirou AD, Ralli M, Dominguez M, Papassideri I, Skaltsounis AL, Trougakos IP. Hexapeptide-11 is a novel modulator of the proteostasis network in human diploid fibroblasts. Redox Biol 2015; 5:205-215. [PMID: 25974626 PMCID: PMC4434199 DOI: 10.1016/j.redox.2015.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/20/2015] [Accepted: 04/26/2015] [Indexed: 01/01/2023] Open
Abstract
Despite the fact that several natural products (e.g. crude extracts or purified compounds) have been found to activate cell antioxidant responses and/or delay cellular senescence the effect(s) of small peptides on cell viability and/or modulation of protective mechanisms (e.g. the proteostasis network) remain largely elusive. We have thus studied a hexapeptide (Hexapeptide-11) of structure Phe-Val-Ala-Pro-Phe-Pro (FVAPFP) originally isolated from yeast extracts and later synthesized by solid state synthesis to high purity. We show herein that Hexapeptide-11 exhibits no significant toxicity in normal human diploid lung or skin fibroblasts. Exposure of fibroblasts to Hexapeptide-11 promoted dose and time-dependent activation of proteasome, autophagy, chaperones and antioxidant responses related genes. Moreover, it promoted increased nuclear accumulation of Nrf2; higher expression levels of proteasomal protein subunits and increased proteasome peptidase activities. In line with these findings we noted that Hexapeptide-11 conferred significant protection in fibroblasts against oxidative-stress-mediated premature cellular senescence, while at in vivo skin deformation assays in human subjects it improved skin elasticity. Finally, Hexapeptide-11 was found to induce the activity of extracellular MMPs and it also suppressed cell migration. Our presented findings indicate that Hexapeptide-11 is a promising anti-ageing agent.
Collapse
Affiliation(s)
- Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Marianna Ralli
- Korres S.A. Natural Products, 57th Athens-Lamia National Road, 32011 Inofyta, Greece
| | | | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| |
Collapse
|
27
|
DAI ZIXUN, LEI PENGFEI, XIE JIE, HU YIHE. Antitumor effect of resveratrol on chondrosarcoma cells via phosphoinositide 3-kinase/AKT and p38 mitogen-activated protein kinase pathways. Mol Med Rep 2015; 12:3151-5. [DOI: 10.3892/mmr.2015.3683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
|
28
|
Antioxidant Peptide Derived from Spirulina maximaSuppresses HIF1 α-Induced Invasive Migration of HT1080 Fibrosarcoma Cells. J CHEM-NY 2015. [DOI: 10.1155/2015/308602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypoxia causes the malignant progression of tumor cells; hence, it has been considered a central issue that must be addressed for effective cancer therapy. The initiation of tumor metastasis requires invasive cell migration. Here, we show that an antioxidant peptide derived fromSpirulina maximasuppresses hypoxia-induced invasive migration of HT1080 human fibrosarcoma cells. HT1080 cells treated with a hypoxia-inducing agent, CoCl2, exhibited an increase in invasive migration and intracellular reactive oxygen species (ROS), which is associated with an increase in the expression of hypoxia-induced factor 1α(HIF1α) accompanied by the activation of PI3K/Akt and ERK1/2. The inhibition of PI3K/Akt and ERK1/2 with specific inhibitors diminished the CoCl2-induced increase in HIF1αexpression and invasive cell migration. Moreover, CoCl2-induced HIF1αexpression was associated with an increase in the expression of molecules downstream ofβ-integrin, such as N-cadherin, vimentin, andβ-catenin. Therefore, theS. maximapeptide effectively attenuated the CoCl2-induced ROS generation and downregulated the HIF1αsignaling pathway involving PI3K/Akt, ERK1/2, andβ-integrin in cells. These results suggest that theS. maximaantioxidant peptide downregulates the HIF1αsignaling pathway necessary for hypoxia-induced invasive migration of HT1080 cells by attenuating intracellular ROS.S. maximapeptide may be an effective constituent in antitumor progression products.
Collapse
|
29
|
Liu YZ, Wu K, Huang J, Liu Y, Wang X, Meng ZJ, Yuan SX, Wang DX, Luo JY, Zuo GW, Yin LJ, Chen L, Deng ZL, Yang JQ, Sun WJ, He BC. The PTEN/PI3K/Akt and Wnt/β-catenin signaling pathways are involved in the inhibitory effect of resveratrol on human colon cancer cell proliferation. Int J Oncol 2014; 45:104-12. [PMID: 24756222 DOI: 10.3892/ijo.2014.2392] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/11/2014] [Indexed: 12/28/2022] Open
Abstract
Colon cancer is one of the most common malignancies and the treatments for colon cancer have been developed substantially in the last decades, but there is still a great clinical need to explore new treatment regimens due to the undesirable prognosis. In this investigation, we demonstrated the anti-proliferative and apoptosis-inducing activities of resveratrol (Res) in human colon cancer cells, and the possible mechanisms underlying these effects. We used crystal violet staining, flow cytometry and western blotting to validate the anti-proliferative and apoptosis-inducing effects of Res on HCT116 cells. A xenograft tumor model was used to confirm the anti-proliferative effects of Res. We employed polymerase chain reaction, western blotting, recombinant adenovirus and luciferase reporter assay to explore the possible mechanism(s) of action. We found that Res inhibits significantly the proliferation and promotes apoptosis in HCT116 cells, as well as inhibits the xenograft tumor growth of colon cancer. Res upregulates the expression of phosphatase and tensin homolog (PTEN) and decreases the phosphorylation of Akt1/2. The exogenous expression of PTEN inhibits the PI3K/Akt signal and promotes the anti-proliferative effects of Res in HCT116 cells, while knockdown of PTEN increases PI3K/Akt signal but reduces the anti-proliferative function of Res. The protein and mRNA expression of β-catenin are all decreased by Res concentration-dependently. Thus, our findings strongly suggest that the anti-proliferative effects of Res in human colon cancer cells may be mediated by regulating separately the PTEN/PI3K/Akt and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Ying-Zi Liu
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Ke Wu
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Jun Huang
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Yang Liu
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Xin Wang
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Zi-Jun Meng
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Shuang-Xue Yuan
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Dong-Xu Wang
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Jin-Yong Luo
- Key Laboratory for Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Guo-Wei Zuo
- Key Laboratory for Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, P.R. China
| | - Liang-Jun Yin
- Department of Orthopedic Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Liang Chen
- Department of Orthopedic Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Zhong-Liang Deng
- Department of Orthopedic Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Jun-Qin Yang
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Wen-Juan Sun
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| | - Bai-Cheng He
- Chongqing Municipal Key Laboratory of Higher Education Institutions for Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
30
|
Eo SH, Cho HS, Kim SJ. Resveratrol regulates type II collagen and COX-2 expression via the ERK, p38 and Akt signaling pathways in rabbit articular chondrocytes. Exp Ther Med 2014; 7:640-648. [PMID: 24520260 PMCID: PMC3919857 DOI: 10.3892/etm.2014.1484] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/27/2013] [Indexed: 01/11/2023] Open
Abstract
Resveratrol, a naturally occurring polyphenolic phytoalexin antioxidant compound present in grapes and red wine, has been reported to induce various biochemical responses. It has been shown to possess anti-aging, anti-inflammatory and anti-proliferative activities in several cell types. However, the effects of resveratrol in normal cells, including chondrocytes, have not yet been clearly elucidated. The aim of the present study was to evaluate the effects of resveratrol on differentiation and inflammation in rabbit articular chondrocytes and to investigate the underlying mechanism of action. Rabbit articular chondrocytes were treated with 20 μM resveratrol for different time periods or with various concentrations of resveratrol for 24 h. It was observed that the expression levels of type II collagen and sulfated proteoglycan, as determined by western blot analysis and Alcian blue staining, respectively, increased following treatment with resveratrol in a concentration-dependent manner at concentrations up to 20 μM and then decreased at higher concentrations. The expression levels of cyclooxygenase (COX-2) and prostaglandin E2 (PGE2) began to increase at 10 min after the addition of resveratrol, reached peak levels at 3 h and decreased from the peak level thereafter, as determined by western blot analysis and PGE2 assay, respectively. It was also demonstrated that resveratrol caused phosphorylation of mitogen-activated protein kinase proteins [extracellular signal-regulated kinases (ERK), p38 and c-Jun N-terminal kinases (JNK)] and Akt in rabbit articular chondrocytes. The inhibition of ERK, p38 kinase, phosphoinositide 3-kinase (PI3K) and Akt with PD98059, SB203580, LY294002 and triciribine, respectively, suppressed resveratrol-induced type II collagen and COX-2 expression. However, inhibition of JNK with SP600125 produced no clear changes in the expression levels of type II collagen and COX-2. The results suggest that resveratrol in articular chondrocytes stimulates differentiation and inflammation via the ERK, p38 and Akt signaling pathways.
Collapse
Affiliation(s)
- Seong-Hui Eo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Chungnam 314-701, Republic of Korea
| | - Hong-Sik Cho
- The University of Tennessee Health Science Center, Memphis, TN 38163, USA ; Department of Orthopaedic Surgery, Campbell Clinic, Memphis, TN 38163, USA ; Veterans Affairs Medical Center, Memphis, TN 38163, USA
| | - Song-Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Chungnam 314-701, Republic of Korea
| |
Collapse
|
31
|
Lin CC, Lee IT, Chi PL, Hsieh HL, Cheng SE, Hsiao LD, Liu CJ, Yang CM. C-Src/Jak2/PDGFR/PKCδ-dependent MMP-9 induction is required for thrombin-stimulated rat brain astrocytes migration. Mol Neurobiol 2013; 49:658-72. [PMID: 24018979 DOI: 10.1007/s12035-013-8547-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/27/2013] [Indexed: 12/15/2022]
Abstract
Among matrix metalloproteinases (MMPs), MMP-9 has been observed in patients with brain inflammatory diseases and may contribute to the pathology of brain diseases. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) were not completely understood. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 in RBA-1 cells and cells migration which were attenuated by pretreatment with the inhibitor of receptor tyrosine kinase (Genistein), c-Src (PP1), Jak2 (AG490), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), PKCs (Ro318220), PKCδ (Rottlerin), or NF-κB (Bay11-7082) and transfection with siRNA of c-Src, PDGFR, Akt, PKCδ, ATF2, p65, IKKα, or IKKβ. In addition, thrombin-stimulated c-Src, Jak2, or PDGFR phosphorylation was inhibited by a thrombin inhibitor (PPACK), PP1, AG490, or AG1296. Thrombin further stimulated c-Src and PDGFR complex formation in RBA-1 cells. Thrombin also stimulated Akt and PKCδ phosphorylation and PKCδ translocation which were reduced by PPACK, PP1, AG490, AG1296, or LY294002. We further observed that thrombin markedly stimulated ATF2 or IκBα phosphorylation and NF-κB p65 translocation which were inhibited by Rottlerin or LY294002. Finally, thrombin stimulated in vivo binding of p65 to the MMP-9 promoter, which was reduced by pretreatment with Rottlerin or LY294002. These results concluded that in RBA-1 cells, thrombin activated a c-Src/Jak2/PDGFR/PI3K/Akt/PKCδ pathway, which in turn triggered ATF2 and NF-κB activation and ultimately induced MMP-9 expression associated with cell migration.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|