1
|
Milković L, Mlinarić M, Lučić I, Čipak Gašparović A. The Involvement of Peroxiporins and Antioxidant Transcription Factors in Breast Cancer Therapy Resistance. Cancers (Basel) 2023; 15:5747. [PMID: 38136293 PMCID: PMC10741870 DOI: 10.3390/cancers15245747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is still the leading cause of death in women of all ages. The reason for this is therapy resistance, which leads to the progression of the disease and the formation of metastases. Multidrug resistance (MDR) is a multifactorial process that leads to therapy failure. MDR involves multiple processes and many signaling pathways that support each other, making it difficult to overcome once established. Here, we discuss cellular-oxidative-stress-modulating factors focusing on transcription factors NRF2, FOXO family, and peroxiporins, as well as their possible contribution to MDR. This is significant because oxidative stress is a consequence of radiotherapy, chemotherapy, and immunotherapy, and the activation of detoxification pathways could modulate the cellular response to therapy and could support MDR. These proteins are not directly responsible for MDR, but they support the survival of cancer cells under stress conditions.
Collapse
Affiliation(s)
| | | | | | - Ana Čipak Gašparović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (L.M.); (M.M.); (I.L.)
| |
Collapse
|
2
|
Critical Role of Aquaporins in Cancer: Focus on Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14174182. [PMID: 36077720 PMCID: PMC9455074 DOI: 10.3390/cancers14174182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Aquaporins are proteins able to regulate the transfer of water and other small substances such as ions, glycerol, urea, and hydrogen peroxide across cellular membranes. AQPs provide for a huge variety of physiological phenomena; their alteration provokes several types of pathologies including cancer and hematological malignancies. Our review presents data revealing the possibility of employing aquaporins as biomarkers in patients with hematological malignancies and evaluates the possibility that interfering with the expression of aquaporins could represent an effective treatment for hematological malignancies. Abstract Aquaporins are transmembrane molecules regulating the transfer of water and other compounds such as ions, glycerol, urea, and hydrogen peroxide. Their alteration has been reported in several conditions such as cancer. Tumor progression might be enhanced by aquaporins in modifying tumor angiogenesis, cell volume adaptation, proteases activity, cell–matrix adhesions, actin cytoskeleton, epithelial–mesenchymal transitions, and acting on several signaling pathways facilitating cancer progression. Close connections have also been identified between the aquaporins and hematological malignancies. However, it is difficult to identify a unique action exerted by aquaporins in different hemopathies, and each aquaporin has specific effects that vary according to the class of aquaporin examined and to the different neoplastic cells. However, the expression of aquaporins is altered in cell cultures and in patients with acute and chronic myeloid leukemia, in lymphoproliferative diseases and in multiple myeloma, and the different expression of aquaporins seems to be able to influence the efficacy of treatment and could have a prognostic significance, as greater expression of aquaporins is correlated to improved overall survival in leukemia patients. Finally, we assessed the possibility that modifying the aquaporin expression using aquaporin-targeting regulators, specific monoclonal antibodies, and even aquaporin gene transfer could represent an effective therapy of hematological malignancies.
Collapse
|
3
|
Clinical value and molecular mechanism of AQGPs in different tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:174. [PMID: 35972604 PMCID: PMC9381609 DOI: 10.1007/s12032-022-01766-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.
Collapse
|
4
|
da Silva IV, Garra S, Calamita G, Soveral G. The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 2022; 12:biom12070897. [PMID: 35883453 PMCID: PMC9313442 DOI: 10.3390/biom12070897] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention. Aquaporin-9 (AQP9) is the most expressed in the liver, with implications in general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities, facilitating glycerol and hydrogen peroxide (H2O2) diffusion across membranes. AQP9 is also expressed in other tissues, and their altered expression is described in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders. The present review compiles the current knowledge of AQP9 implication in diseases and highlights its potential as a new biomarker for diagnosis and prognosis in clinical medicine.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
- Correspondence: (G.C.); (G.S.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: (G.C.); (G.S.)
| |
Collapse
|
5
|
Fu W, Zhu G, Xu L, Liu J, Han X, Wang J, Wang X, Hou J, Zhao H, Zhong H. G-CSF upregulates the expression of aquaporin-9 through CEBPB to enhance the cytotoxic activity of arsenic trioxide to acute myeloid leukemia cells. Cancer Cell Int 2022; 22:195. [PMID: 35590355 PMCID: PMC9118687 DOI: 10.1186/s12935-022-02613-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arsenic trioxide (ATO) is highly effective in acute promyelocytic leukemia (APL) patients, but it fails to show satisfactory efficacy in other acute myeloid leukemia (AML) patients with non-APL subtypes. Different from the APL cells, most non-APL AML cells express low levels of the ATO transporter Aquaporin-9 (AQP9) protein, making them less sensitive to ATO treatment. Recently, we found that granulocyte colony stimulating factor (G-CSF) can upregulate the expression of AQP9. We hypothesized that the pretreatment with G-CSF may enhance the antitumor effect of ATO in non-APL AML cells. In addition, we aimed to elucidate the underlying mechanisms by which G-CSF upregulates the expression of AQP9. METHODS Non-APL AML cell lines including THP-1 and HL-60 were pretreated with or without G-CSF (100 ng/ml) for 24 h, followed by the treatment with ATO (2 μM) for 48 h. Cell morphology was observed under the microscope after Wright-Giemsa staining. Flow cytometry was performed to evaluate the cell apoptosis levels. The intracellular concentrations of ATO were determined by atomic fluorescence spectrometry. The mRNA and protein expression were respectively measured by quantitative reverse transcription PCR (RT-qPCR) and western blotting. Target genes were knocked down by transfection with small interfering RNA (siRNA), or overexpressed by transfection with overexpression plasmids. The cell line derived xenograft mouse model was established to confirm the results of the in vitro experiments. RESULTS Compared with using ATO alone, the combination of G-CSF with ATO induced the cell apoptosis more dramatically. G-CSF upregulated the expression of AQP9 and enhanced the intracellular concentrations of ATO in AML cells. When AQP9 was overexpressed, it markedly enhanced the cytotoxic activity of ATO. On the other hand, when AQP9 was knocked down, it profoundly attenuated the combinational effect. Moreover, we found that the upregulation of AQP9 by G-CSF depends on the transcription factor CCAAT enhancer binding protein beta (CEBPB). We also demonstrated that the combination of G-CSF and ATO significantly inhibited tumor growth in the xenograft mouse model. CONCLUSIONS The combination of G-CSF and ATO may be a potential therapeutic strategy for AML patients.
Collapse
Affiliation(s)
- Wanbin Fu
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gelan Zhu
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Xu
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Han
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junying Wang
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinpeng Wang
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanbin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
7
|
Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. ENVIRONMENT INTERNATIONAL 2018; 112:183-197. [PMID: 29275244 DOI: 10.1016/j.envint.2017.12.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
More than 200 million people in 70 countries are exposed to arsenic through drinking water. Chronic exposure to this metalloid has been associated with the onset of many diseases, including cancer. Epidemiological evidence supports its carcinogenic potential, however, detailed molecular mechanisms remain to be elucidated. Despite the global magnitude of this problem, not all individuals face the same risk. Susceptibility to the toxic effects of arsenic is influenced by alterations in genes involved in arsenic metabolism, as well as biological factors, such as age, gender and nutrition. Moreover, chronic arsenic exposure results in several genotoxic and epigenetic alterations tightly associated with the arsenic biotransformation process, resulting in an increased cancer risk. In this review, we: 1) review the roles of inter-individual DNA-level variations influencing the susceptibility to arsenic-induced carcinogenesis; 2) discuss the contribution of arsenic biotransformation to cancer initiation; 3) provide insights into emerging research areas and the challenges in the field; and 4) compile a resource of publicly available arsenic-related DNA-level variations, transcriptome and methylation data. Understanding the molecular mechanisms of arsenic exposure and its subsequent health effects will support efforts to reduce the worldwide health burden and encourage the development of strategies for managing arsenic-related diseases in the era of personalized medicine.
Collapse
Affiliation(s)
- Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Christine Anderson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Dunoyer-Geindre S, Rivier-Cordey AS, Tsopra O, Lecompte T, Kruithof EKO. Effect of ATRA and ATO on the expression of tissue factor in NB4 acute promyelocytic leukemia cells and regulatory function of the inflammatory cytokines TNF and IL-1β. Ann Hematol 2017; 96:905-917. [PMID: 28343272 PMCID: PMC5406437 DOI: 10.1007/s00277-017-2970-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
The characteristic hemorrhages of acute promyelocytic leukemia (APL) are caused in part by the high expression of tissue factor (TF) on leukemic cells, which also produce TNF and IL-1β, proinflammatory cytokines known to increase TF in various cell types. Exposure of NB4 cells, an APL cell line, to all-trans retinoic acid (ATRA) or arsenic trioxide (ATO) rapidly and strongly reduced TF mRNA. Both drugs also reduced TNF mRNA, but later, and moreover increased IL-1β mRNA. The effect on procoagulant activity of cells and microparticles, as measured with calibrated automated thrombography, was delayed and only partial at 24 h. TNF and IL-1β inhibition reduced TF mRNA and activity only partially. Inhibition of the inflammatory signaling intermediate p38 reduced TF mRNA by one third but increased TNF and IL-1β mRNA. NF-κB inhibition reduced, within 1 h, TF and TNF mRNA but did not change IL-1β mRNA, and rapidly and markedly reduced cell survival, with procoagulant properties still being present. In conclusion, although we provide evidence that TNF, IL-1β, and their signaling intermediates have a regulatory function on TF expression by NB4 APL cells, the effect of ATRA and ATO on TF can only partially be accounted for by their impact on these cytokines.
Collapse
Affiliation(s)
- Sylvie Dunoyer-Geindre
- Division of Angiology and Hemostasis, Department of Medical Specialties, University Hospital of Geneva, Geneva, Switzerland.,Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Anne-Sophie Rivier-Cordey
- Division of Angiology and Hemostasis, Department of Medical Specialties, University Hospital of Geneva, Geneva, Switzerland.,Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Olga Tsopra
- Division of Hematology, Department of Medical Specialties, University Hospital of Geneva, Rue Gabrielle Perret-Gentil 4, 1211, Geneva, Switzerland
| | - Thomas Lecompte
- Division of Hematology, Department of Medical Specialties, University Hospital of Geneva, Rue Gabrielle Perret-Gentil 4, 1211, Geneva, Switzerland.
| | - Egbert K O Kruithof
- Division of Angiology and Hemostasis, Department of Medical Specialties, University Hospital of Geneva, Geneva, Switzerland.,Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Hou F, Huang QM, Hu DN, Jonas JB, Wei WB. Immune oppression array elucidating immune escape and survival mechanisms in uveal melanoma. Int J Ophthalmol 2016; 9:1701-1712. [PMID: 28003967 DOI: 10.18240/ijo.2016.12.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
AIM To examine the genetic profile of primary uveal melanoma (UM) as compared to UM in immune escape. METHODS Dendritic cells (DC) loaded with lysates of UM cells of high metastatic potential were used to stimulate CTLs(CTLs). When CTLs co-cultured with the UM cells, most UM cells could be eliminated. Survival UM cells grew slowly and were considered to be survival variants and examined by a microarray analysis. These differential genes were analyzed further with Venn Diagrams and functions related to immune escape. We additionally examined transcriptional changes of manually selected survival variants of UM cells and of clinical UM samples by quantitative real-time polymerase chain reaction (qRT-PCR), and analyzed the correlation of these expressions and patients' survival. RESULTS Gene expression analyses revealed a marked up-regulation of SLAMF7 and CCL22 and a significant down-regulation of KRT10, FXYD3 and ABCC2. The expression of these genes in the relapsed UM was significantly greater than those in primary UM. UM patients with overexpression of these genes had a shorter survival period as compared with those of their underexpression. CONCLUSION Gene expression, in particular of SLAMF7, CCL22, KRT10, FXYD3 and ABCC2, differed between primary UM cells and survival variants of UM cells.
Collapse
Affiliation(s)
- Fang Hou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China
| | - Qi-Ming Huang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China
| | - Dan-Ning Hu
- Departments of Ophthalmology and Pathology, New York Eye and Ear Infirmary of Mount Sinai, 310 E.14th St., NY 10003, USA
| | - Jost B Jonas
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China; Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University, Heidelberg 67117, Germany
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China
| |
Collapse
|
10
|
Yuan B, He J, Kisoh K, Hayashi H, Tanaka S, Si N, Zhao HY, Hirano T, Bian B, Takagi N. Effects of active bufadienolide compounds on human cancer cells and CD4+CD25+Foxp3+ regulatory T cells in mitogen-activated human peripheral blood mononuclear cells. Oncol Rep 2016; 36:1377-84. [PMID: 27431260 DOI: 10.3892/or.2016.4946] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
Abstract
The growth inhibitory effects of bufadienolide compounds were investigated in two intractable cancer cells, a human glioblastoma cell line U-87 and a pancreatic cancer cell line SW1990. Among four bufadienolide compounds, a dose-dependent cytotoxicity was observed in these cancer cells after treatment with gamabufotalin and arenobufagin. The IC50 values of the two compounds were 3-5 times higher in normal peripheral blood mononuclear cells (PBMCs) than these values for both cancer cell lines. However, similar phenomena were not observed for two other bufadienolide compounds, telocinobufagin and bufalin. These results thus suggest that gamabufotalin and arenobufagin possess selective cytotoxic activity against tumor cells rather than normal cells. Moreover, a clear dose-dependent lactate dehydrogenase (LDH) release, a well-known hallmark of necrosis, was observed in both cancer cells treated with gamabufotalin, suggesting that gamabufotalin-mediated cell death is predominantly associated with a necrosis-like phenotype. Of most importance, treatment with as little as 8 ng/ml of gamabufotalin, even an almost non-toxic concentration to PBMCs, efficiently downregulated the percentages of CD4+CD25+Foxp3+ regulator T (Treg) cells in mitogen-activated PBMCs. Given that Treg cells play a critical role in tumor immunotolerance by suppressing antitumor immunity, these results suggest that gamabufotalin may serve as a promising candidate, as an adjuvant therapeutic agent by manipulating Treg cells to enhance the efficacy of conventional anticancer drugs and lessen their side-effects. These findings provide insights into the clinical application of gamabufotalin for cancer patients with glioblastoma/pancreatic cancer based on its cytocidal effect against tumor cells as well as its depletion of Treg cells.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Jing He
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keishi Kisoh
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Hai-Yu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
11
|
Iriyama N, Yuan B, Hatta Y, Takagi N, Takei M. Lyn, a tyrosine kinase closely linked to the differentiation status of primary acute myeloid leukemia blasts, associates with negative regulation of all-trans retinoic acid (ATRA) and dihydroxyvitamin D3 (VD3)-induced HL-60 cells differentiation. Cancer Cell Int 2016; 16:37. [PMID: 27182202 PMCID: PMC4866426 DOI: 10.1186/s12935-016-0314-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Background Lyn, an import member of Src family kinases (SFKs), is supposed to be implicated in acute myeloid leukemia (AML) pathogenesis and development by participation in AML differentiation, yet the details still remain incompletely understood. The expression status of Lyn and its correlation with multiple clinical parameters including cell differentiation degree, different cytogenetic risk classification, and the activity of myeloperoxidase (MPO) were thus investigated. To address the mechanisms underlying the involvement of Lyn in differentiation induction, the effects of dasatinib, an inhibitor for SFKs including Lyn, on the alterations of all-trans retinoic acid (ATRA)- or dihydroxyvitamin D3 (VD3)-induced differentiation, and c-Myc protein expression were investigated. Methods Primary AML blasts were obtained from 31 newly diagnosed AML patients with different French-American-British (FAB) subtypes. The expression of phosphorylated and total Lyn, c-Myc, and CD11b, CD11c and CD15 was analyzed by flow cytometry. The activation of Akt and Erk known to be involved in the regulation of c-Myc expression was investigated using western blotting. Results Significant higher expression levels of total Lyn were observed in AML patients with favorable cytogenetics, higher MPO activity and FAB M2 subtype. A clear positive correlation between the expression levels of Lyn and differentiation status of primary AML blasts was observed. Dasatinib inhibited the expression of phosphorylated Lyn, and further enhanced the differentiation-inducing activity of ATRA and VD3 in HL-60 cells. Augmented downregulation of c-Myc protein expression was observed in the combination treatment with ATRA, VD3 and dasatinib compared to treatment with each reagent alone in HL-60 cells. The suppression of the activation of Akt and Erk was also observed concomitantly. Conclusions The expression level of total Lyn is closely linked to the differentiation status of AML blasts. The enhancement of differentiation-inducing activity of ATRA/VD3 by dasatinib suggested that Lyn was associated in the negative regulation of ATRA/VD3-induced HL-60 cells differentiation. The enhancement probably was attributed to the downregulation of c-Myc implicated with the suppression of the activation of Akt and Erk. These results provide novel insights into a possible combinational therapeutic approach by targeting Lyn for AML patients, and offer new possibilities for the combination therapy with VD3 and dasatinib.
Collapse
Affiliation(s)
- Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Itabashi Hospital, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Itabashi Hospital, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Itabashi Hospital, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
12
|
Exceptions in patterns of arsenic compounds in urine of acute promyelocytic leukaemia patients treated with As2O3. Biometals 2015; 29:107-18. [DOI: 10.1007/s10534-015-9901-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
|
13
|
Yuan B, Yoshino Y, Fukushima H, Markova S, Takagi N, Toyoda H, Kroetz DL. Multidrug resistance-associated protein 4 is a determinant of arsenite resistance. Oncol Rep 2015; 35:147-54. [PMID: 26497925 PMCID: PMC6918809 DOI: 10.3892/or.2015.4343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022] Open
Abstract
Although arsenic trioxide (arsenite, AsIII) has shown a remarkable efficacy in the treatment of acute promyelocytic leukemia patients, multidrug resistance is still a major concern for its clinical use. Multidrug resistance-associated protein 4 (MRP4), which belongs to the ATP-binding cassette (ABC) superfamily of transporters, is localized to the basolateral membrane of hepatocytes and the apical membrane of renal proximal tubule cells. Due to its characteristic localization, MRP4 is proposed as a candidate in the elimination of arsenic and may contribute to resistance to AsIII. To test this hypothesis, stable HEK293 cells overexpressing MRP4 or MRP2 were used to establish the role of these two transporters in AsIII resistance. The IC50 values of AsIII in MRP4 cells were approximately 6-fold higher than those in MRP2 cells, supporting an important role for MRP4 in resistance to AsIII. The capacity of MRP4 to confer resistance to AsIII was further confirmed by a dramatic decrease in the IC50 values with the addition of MK571, an MRP4 inhibitor, and cyclosporine A, a well-known broad-spectrum inhibitor of ABC transporters. Surprisingly, the sensitivity of the MRP2 cells to AsIII was similar to that of the parent cells, although insufficient formation of glutathione and/or Se conjugated arsenic compounds in the MRP2 cells might limit transport. Given that MRP4 is a major contributor to arsenic resistance in vitro, further investigation into the correlation between MRP4 expression and treatment outcome of leukemia patients treated with arsenic-based regimens is warranted.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yuta Yoshino
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hisayo Fukushima
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Svetlana Markova
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Yuan B, Okusumi S, Yoshino Y, Moriyama C, Tanaka S, Hirano T, Takagi N, Toyoda H. Delphinidin induces cytotoxicity and potentiates cytocidal effect in combination with arsenite in an acute promyelocytic leukemia NB4 cell line. Oncol Rep 2015; 34:431-8. [PMID: 25954945 DOI: 10.3892/or.2015.3963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/02/2015] [Indexed: 11/06/2022] Open
Abstract
The effects of delphinidin were investigated by focusing on growth inhibition, cell cycle arrest and apoptosis induction in the human acute promyelocytic leukemia (APL) NB4 cell line. Delphinidin exhibited a dose- and time-dependent cytotoxic effect against NB4 cells. Almost no cell cycle arrest, but an apparent increase in the percentage of sub-G1 cells was observed in delphinidin-treated cells. The activation of caspase-8 and -9 was observed as early as 1-h post-exposure to delphinidin, followed by the activation of caspase-3 from 3-h post-exposure. A substantial decrease in the expression level of Bid was also observed as early as 1-h post-exposure. A modest decrease in the mitochondrial membrane potential (ΔΨm) was observed at 3-h post-exposure, followed by a substantial time-dependent decrease in ΔΨm in treated cells. Delphinidin exerted more potent cytotoxicity against NB4 cells than normal peripheral blood mononuclear cells (PBMNCs). In addition, delphinidin in combination with an arsenic derivative arsenite (As(III)), which has demonstrated marked efficacy in patients with APL, achieved an enhanced cytocidal effect against NB4 cells, but lesser on PBMNCs. Treatment of NB4 cells with As(III) plus delphinidin did not increase, but decreased slightly, intracellular arsenic accumulation (As[i]) as compared to that treated with As(III) alone. These results suggested that delphinidin selectively sensitized NB4 cells to As(III), resulting in the enhancement of As(III) cytotoxicity by strengthening intrinsic/extrinsic pathway-mediated apoptosis induction, rather than affecting the As[i] levels. These observations may offer a rationale for the use of delphinidin to improve the clinical efficacy of As(III).
Collapse
Affiliation(s)
- Bo Yuan
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Saki Okusumi
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yuta Yoshino
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chihiro Moriyama
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroo Toyoda
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
15
|
Uchino Y, Iriyama N, Hatta Y, Takei M. Granulocyte colony-stimulating factor potentiates all-trans retinoic acid-induced granulocytic differentiation in acute promyelocytic leukemia cell line HT93A. Cancer Cell Int 2015; 15:30. [PMID: 25805962 PMCID: PMC4372317 DOI: 10.1186/s12935-015-0176-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/13/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (G-CSF) promotes proliferation, survival, and differentiation of myeloid-linage leukemic cells, as well as normal hematopoietic cells. Terminal granulocytic differentiation can be induced in acute promyelocytic (APL) cell line HT93A by G-CSF and all-trans retinoic acid (ATRA). Because the detailed mechanism has never been shown, we investigated the signal transduction pathway in granulocytic differentiation by G-CSF, alone or in combination with ATRA. METHODS HT93A cell viability and growth were investigated by trypan blue exclusion assay. Cell differentiation was assessed by CD11b and CD34 expressions. Intracellular protein expressions were also evaluated by flow cytometry after fixation and permeabilization. RESULTS ATRA (100 nM) induced granulocytic differentiation (upregulation of CD11b and downregulation of CD34) and the effect was potentiated by addition of G-CSF, while G-CSF alone had no effect on HT93A cells. The addition of G-CSF to ATRA had little or no effect on NB4 and THP-1 cells in comparison to ATRA alone. G-CSF receptor expression was reduced by ATRA treatment in a time-dependent manner. After 5 days' incubation with ATRA, the expression levels of signal transducer and activator of transcription (STAT) 3, and phosphorylated STAT3 and STAT5, were significantly reduced. STAT5 was strongly activated by G-CSF stimulation in ATRA-pretreated cells in comparison to untreated cells. In contrast, STAT3 showed no response to G-CSF. Janus kinase (JAK) inhibitor ruxolitinib (320 nM) had little or no effect on ATRA-induced differentiation, but eliminated the enhancing effect of G-CSF, as evidenced by the levels of CD11b and CD34 expression. These results suggest G-CSF activates STAT5 through the JAK pathway in combination with ATRA, resulting in myeloid differentiation in HT93A cells. CONCLUSIONS In conclusion, activation of the JAK-STAT pathway is likely essential for inducting differentiation in the APL cell line HT93A; thus, monitoring its expression and activation is important for predicting clinical efficacy and understanding the mechanisms of cytokine-dependent myelopoiesis, proliferation, and differentiation of acute myeloid leukemia.
Collapse
Affiliation(s)
- Yoshihito Uchino
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610 Japan
| | - Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610 Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610 Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo 173-8610 Japan
| |
Collapse
|
16
|
Smith AH, Marshall G, Yuan Y, Steinmaus C, Liaw J, Smith MT, Wood L, Heirich M, Fritzemeier RM, Pegram MD, Ferreccio C. Rapid reduction in breast cancer mortality with inorganic arsenic in drinking water. EBioMedicine 2014; 1:58-63. [PMID: 25580451 PMCID: PMC4286879 DOI: 10.1016/j.ebiom.2014.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Arsenic trioxide is effective in treating promyelocytic leukemia, and laboratory studies demonstrate that arsenic trioxide causes apoptosis of human breast cancer cells. Region II in northern Chile experienced very high concentrations of inorganic arsenic in drinking water, especially in the main city Antofagasta from 1958 until an arsenic removal plant was installed in 1970. METHODS We investigated breast cancer mortality from 1950 to 2010 among women in Region II compared to Region V, which had low arsenic water concentrations. We conducted studies on human breast cancer cell lines and compared arsenic exposure in Antofagasta with concentrations inducing apoptosis in laboratory studies. FINDINGS Before 1958, breast cancer mortality rates were similar, but in 1958-1970 the rates in Region II were half those in Region V (rate ratio RR = 0·51, 95% CI 0·40-0·66; p<0·0001). Women under the age of 60 experienced a 70% reduction in breast cancer mortality during 1965-1970 (RR=0·30, 0·17-0·54; p<0·0001). Breast cancer cell culture studies showed apoptosis at arsenic concentrations close to those estimated to have occurred in people in Region II. INTERPRETATION We found biologically plausible major reductions in breast cancer mortality during high exposure to inorganic arsenic in drinking water which could not be attributed to bias or confounding. We recommend clinical trial assessment of inorganic arsenic in the treatment of advanced breast cancer.
Collapse
Affiliation(s)
- Allan H Smith
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Guillermo Marshall
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Yan Yuan
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Craig Steinmaus
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Jane Liaw
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Martyn T Smith
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Lily Wood
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Marissa Heirich
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Rebecca M Fritzemeier
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Mark D Pegram
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| | - Catterina Ferreccio
- Arsenic Research Group, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof AH Smith MD, Y Yuan MPH, Assoc Prof C Steinmaus MD, J Liaw MPH); Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Catòlica de Chile, Santiago, Chile (Prof G Marshall PhD); Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA (Prof MT Smith PhD); Breast Cancer Oncology Program, Stanford Cancer Institute, Stanford, CA (L Wood, M Heirich, RM Fritzemeier MS, Prof MD Pegram MD); Departamento de Salud Pública, Escuela de Medicina, Pontificia Universidad Catòlica de Chile, and Advanced Center for Chronic Diseases ACCDIS, Santiago, Chile (Prof C Ferreccio MD)
| |
Collapse
|
17
|
Parasite aquaporins: Current developments in drug facilitation and resistance. Biochim Biophys Acta Gen Subj 2014; 1840:1566-73. [DOI: 10.1016/j.bbagen.2013.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/15/2023]
|