1
|
Zhu S, Chen J, Yu L, Li J, You S, Zheng Y, Zhuang W, Qiu B, Huang Y. Detection of fucosylated extracellular vesicles miR-4732-5p related to diagnosis of early lung adenocarcinoma by the electrochemical biosensor. Sci Rep 2024; 14:11217. [PMID: 38755208 PMCID: PMC11099009 DOI: 10.1038/s41598-024-61060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Our preliminary investigation has identified the potential of serum fucosylated extracellular vesicles (EVs) miR-4732-5p in the early diagnosis of lung adenocarcinoma (LUAD) by a fucose-captured strategy utilizing lentil lectin (LCA)-magnetic beads and subsequent screening of high throughput sequencing and validation of real-time quantitative polymerase chain reaction (RT-qPCR). Considering the relatively complicated procedure, expensive equipment, and stringent laboratory condition, we have constructed an electrochemical biosensor assay for the detection of miR-4732-5p. miR-4732-5p is extremely low in serum, down to the fM level, so it needs to be detected by highly sensitive electrochemical methods based on the Mg2+-dependent DNAzyme splitting nucleic acid lock (NAL) cycle and hybridization chain reaction (HCR) signal amplification. In this study, signal amplification is achieved through the dual amplification reactions using NAL cycle in combination with HCR. In addition, hybridized DNA strands bind to a large number of methylene blue (MB) molecules to enhance signaling. Based on the above strategy, we further enhance our signal amplification strategies to improve detection sensitivity and accuracy. The implementation of this assay proceeded as follows: initially, miR-4732-5p was combined with NAL, and then Mg2+-dependent DNAzyme splitted NAL to release auxiliary DNA (S1) strands, which were subsequently captured by the immobilized capture probe DNA (C1) strands on the electrode surface. Following this, abundant quantities of DNA1 (H1) and DNA2 (H2) tandems were generated by HCR, and S1 strands then hybridized with the H1 and H2 tandems through base complementary pairing. Finally, MB was bonded to the H1 and H2 tandems through π-π stacking interaction, leading to the generation of a signal current upon the detection of a potential capable of inducing a redox change of MB by the electrode. Furthermore, we evaluated the performance of our developed electrochemical biosensor assay. The results demonstrated that our assay is a reliable approach, characterized by its high sensitivity (with a detection limit of 2.6 × 10-17 M), excellent specificity, good accuracy, reproducibility, and stability. Additionally, it is cost-effective, requires simple operation, and is portable, making it suitable for the detection of serum fucosylated extracellular vesicles miR-4732-5p. Ultimately, this development has the potential to enhance the diagnostic efficiency for patients with early-stage LUAD.
Collapse
Affiliation(s)
- Shengting Zhu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
- Department of Blood Transfusion, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jianlin Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Lili Yu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jiawen Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, 350108, China
| | - Shumin You
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, 350108, China
| | - Yue Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Wanzhen Zhuang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou, 350108, China.
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, China.
- Central Laboratory, Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China.
- Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Key Laboratory of Cardiovascular Disease, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Li J, Feng X, Zhu C, Jiang Y, Liu H, Feng W, Lu H. Intact glycopeptides identified by LC-MS/MS as biomarkers for response to chemotherapy of locally advanced cervical cancer. Front Oncol 2023; 13:1149599. [PMID: 37519786 PMCID: PMC10373866 DOI: 10.3389/fonc.2023.1149599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Objective For locally advanced cervical cancer (LACC), patients who respond to chemotherapy have a potential survival advantage compared to nonresponsive patients. Thus, it is necessary to explore specific biological markers for the efficacy of chemotherapy, which is beneficial to personalized treatment. Methods In the present study, we performed a comprehensive screening of site-specific N-glycopeptides in serum glycoproteins to identify glycopeptide markers for predicting the efficacy of chemotherapy, which is beneficial to personalized treatment. In total, 20 serum samples before and after neoadjuvant chemotherapy (NACT) from 10 LACC patients (NACT response, n=6) and NACT nonresponse, n=4) cases) were analyzed using LC-MS/MS, and 20 sets of mass spectrometry (MS) data were collected using liquid chromatography coupled with high-energy collisional dissociation tandem MS (LC-HCD-MS/MS) for quantitative analysis on the novel software platform, Byos. We also identified differential glycopeptides before and after chemotherapy in chemo-sensitive and chemo-resistant patients. Results In the present study, a total of 148 glycoproteins, 496 glycosylation sites and 2279 complete glycopeptides were identified in serum samples of LACC patients. Before and after chemotherapy, there were 13 differentially expressed glycoproteins, 654 differentially expressed glycopeptides and 93 differentially expressed glycosites in the NACT responsive group, whereas there were 18 differentially expressed glycoproteins, 569 differentially expressed glycopeptides and 99 differentially expressed glycosites in the NACT nonresponsive group. After quantitative analysis, 6 of 570 glycopeptides were identified as biomarkers for predicting the sensitivity of neoadjuvant chemotherapy in LACC. The corresponding glycopeptides included MASP1, LUM, ATRN, CO8A, CO8B and CO6. The relative abundances of the six glycopeptides, including MASP1, LUM, ATRN, CO8A, CO8B and CO6, were significantly higher in the NACT-responsive group and were significantly decreased after chemotherapy. High levels of these six glycopeptides may indicate that chemotherapy is effective. Thus, these glycopeptides are expected to serve as biomarkers for predicting the efficacy of neoadjuvant chemotherapy in locally advanced cervical cancer. Conclusion The present study revealed that the N-glycopeptide of MASP1, LUM, ATRN, CO8A, CO8B and CO6 may be potential biomarkers for predicting the efficacy of chemotherapy for cervical cancer.
Collapse
Affiliation(s)
- Jing Li
- Department of Obstetrics and Gynecology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoxiao Feng
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chongying Zhu
- Department of Laboratory of Obstetrics and Gynecology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yahui Jiang
- Department of Obstetrics and Gynecology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weiwei Feng
- Department of Obstetrics and Gynecology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haojie Lu
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Jing W, Zhang R, Chen X, Zhang X, Qiu J. Association of Glycosylation-Related Genes with Different Patterns of Immune Profiles and Prognosis in Cervical Cancer. J Pers Med 2023; 13:jpm13030529. [PMID: 36983711 PMCID: PMC10054345 DOI: 10.3390/jpm13030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
(1) Background: Although the application of modern diagnostic tests and vaccination against human papillomavirus has markedly reduced the incidence and mortality of early cervical cancer, advanced cervical cancer still has a high death rate worldwide. Glycosylation is closely associated with tumor invasion, metabolism, and the immune response. This study explored the relationship among glycosylation-related genes, the immune microenvironment, and the prognosis of cervical cancer. (2) Methods and results: Clinical information and glycosylation-related genes of cervical cancer patients were downloaded from the TCGA database and the Molecular Signatures Database. Patients in the training cohort were split into two subgroups using consensus clustering. A better prognosis was observed to be associated with a high immune score, level, and status using ESTIMATE, CIBERSORT, and ssGSEA analyses. The differentially expressed genes were revealed to be enriched in proteoglycans in cancer and the cytokine–cytokine receptor interaction, as well as in the PI3K/AKT and the Hippo signaling pathways according to functional analyses, including GO, KEGG, and PPI. The prognostic risk model generated using the univariate Cox regression analysis, LASSO algorithm and multivariate Cox regression analyses, and prognostic nomogram successfully predicted the survival and prognosis of cervical cancer patients. (3) Conclusions: Glycosylation-related genes are correlated with the immune microenvironment of cervical cancer and show promising clinical prediction value.
Collapse
Affiliation(s)
- Wanling Jing
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China (R.Z.)
| | - Runjie Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China (R.Z.)
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai 200336, China
| | - Xinyi Chen
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai 200336, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China (R.Z.)
- Correspondence: (X.Z.); (J.Q.)
| | - Jin Qiu
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai 200336, China
- Correspondence: (X.Z.); (J.Q.)
| |
Collapse
|
4
|
DelaCourt A, Mehta A. Beyond glyco-proteomics-Understanding the role of genetics in cancer biomarkers. Adv Cancer Res 2023; 157:57-81. [PMID: 36725113 DOI: 10.1016/bs.acr.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development of robust cancer biomarkers is the most effective way to improve overall survival, as early detection and treatment leads to significantly better clinical outcomes. Many of the cancer biomarkers that have been identified and are clinically utilized are glycoproteins, oftentimes a specific glycoform. Aberrant glycosylation is a common theme in cancer, with dysregulated glycosylation driving tumor initiation and metastasis, and abnormal glycosylation can be detection both on the tissue surface and in serum. However, most cancer types are heterogeneous in regard to tumor genomics, and this heterogeneity extends to cancer glycomics. This limits the sensitivity of standalone glycan-based biomarkers, which has slowed their implementation clinically. However, if targeted biomarker development can take into account genomic tumor information, the development of complementary biomarkers that target unique cancer subgroups can be accomplished. This idea suggests the need for algorithm-based cancer biomarkers, which can utilize multiple biomarkers along with relevant demographic information. This concept has already been established in the detection of hepatocellular carcinoma with the GALAD score, and an algorithm-based approach would likely be effective in improving biomarker sensitivity for additional cancer types. In order to increase cancer diagnostic biomarker sensitivity, there must be more targeted biomarker development that considers tumor genomic, proteomic, metabolomic, and clinical data while identifying tumor biomarkers.
Collapse
Affiliation(s)
- Andrew DelaCourt
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Anand Mehta
- Department of Cell & Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
5
|
Choi Y, Kim J, Chae J, Hong J, Park J, Jeong E, Kim H, Tanaka M, Okochi M, Choi J. Surface glycan targeting for cancer nano-immunotherapy. J Control Release 2022; 342:321-336. [PMID: 34998918 DOI: 10.1016/j.jconrel.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy is an emerging therapeutic strategy for cancer treatment. Most of the immunotherapeutics approved by the FDA regulate the innate immune system and associated immune cell activity, with immune check inhibitors in particular having transformed the field of cancer immunotherapy due to their significant clinical potential. However, previously reported immunotherapeutics have exhibited undesirable side effects, including autoimmune toxicity and inflammation. Controlling these deleterious responses and designing therapeutics that can precisely target specific regions are thus crucial to improving the efficacy of cancer immunotherapies. Recent studies have reported that cancer cells employ glycan-immune checkpoint interactions to modulate immune cell activity. Thus, the recognition of cancer glycan moieties such as sialoglycans may improve the anticancer activity of immune cells. In this review, we discuss recent advances in cancer immunotherapies involving glycans and glycan-targeting technologies based on nanomaterial-assisted local delivery systems.
Collapse
Affiliation(s)
- Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jongjun Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hayoung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Xu Z, Zhang Y, Ocansey DKW, Wang B, Mao F. Glycosylation in Cervical Cancer: New Insights and Clinical Implications. Front Oncol 2021; 11:706862. [PMID: 34485140 PMCID: PMC8415776 DOI: 10.3389/fonc.2021.706862] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer has become the most frequent female malignancy and presents as a general health challenge in many countries undergoing economic development. Various human papillomaviruses (HPV) types have appeared as one of the most critically identifiable causes of widespread cervical cancers. Conventional cervical cytological inspection has limitations of variable sensitivity according to cervical cytology. Glycobiology has been fundamental in related exploration in various gynecologic and reproductive fields and has contributed to our understanding of cervical cancer. It is associated with altered expression of N-linked glycan as well as abnormal expression of terminal glycan structures. The analytical approaches available to determine serum and tissue glycosylation, as well as potential underlying molecular mechanisms involved in the cellular glycosylation alterations, are monitored. Moreover, cellular glycosylation influences various aspects of cervical cancer biology, ranging from cell surface expressions, cell-cell adhesion, cancer signaling, cancer diagnosis, and management. In general, discoveries in glycan profiling make it technically reproducible and affordable to perform serum glycoproteomic analyses and build on previous work exploring an expanded variety of glycosylation markers in the majority of cervical cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Kori M, Aydin B, Gulfidan G, Beklen H, Kelesoglu N, Caliskan Iscan A, Turanli B, Erzik C, Karademir B, Arga KY. The Repertoire of Glycan Alterations and Glycoproteins in Human Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:139-168. [PMID: 33404348 DOI: 10.1089/omi.2020.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer as the leading cause of death worldwide has many issues that still need to be addressed. Since the alterations on the glycan compositions or/and structures (i.e., glycosylation, sialylation, and fucosylation) are common features of tumorigenesis, glycomics becomes an emerging field examining the structure and function of glycans. In the past, cancer studies heavily relied on genomics and transcriptomics with relatively little exploration of the glycan alterations and glycoprotein biomarkers among individuals and populations. Since glycosylation of proteins increases their structural complexity by several orders of magnitude, glycome studies resulted in highly dynamic biomarkers that can be evaluated for cancer diagnosis, prognosis, and therapy. Glycome not only integrates our genetic background with past and present environmental factors but also offers a promise of more efficient patient stratification compared with genetic variations. Therefore, studying glycans holds great potential for better diagnostic markers as well as developing more efficient treatment strategies in human cancers. While recent developments in glycomics and associated technologies now offer new possibilities to achieve a high-throughput profiling of glycan diversity, we aim to give an overview of the current status of glycan research and the potential applications of the glycans in the scope of the personalized medicine strategies for cancer.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Nurdan Kelesoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayşegul Caliskan Iscan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Department of Pharmacy, Istinye University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology and School of Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
8
|
Lim AWW, Neves AA, Lam Shang Leen S, Lao-Sirieix P, Bird-Lieberman E, Singh N, Sheaff M, Hollingworth T, Brindle K, Sasieni P. Lectins in Cervical Screening. Cancers (Basel) 2020; 12:E1928. [PMID: 32708812 PMCID: PMC7409129 DOI: 10.3390/cancers12071928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022] Open
Abstract
Cervical screening in low-resource settings remains an unmet need. Lectins are naturally occurring sugar-binding glycoproteins whose binding patterns change as cancer develops. Lectins discriminate between dysplasia and normal tissue in several precancerous conditions. We explored whether lectins could be developed for cervical screening via visual inspection. Discovery work comprised lectin histochemistry using a panel of candidate lectins on fixed-human cervix tissue (high-grade cervical intraepithelial neoplasia (CIN3, n = 20) or normal (n = 20)), followed by validation in a separate cohort (30 normal, 25 CIN1, 25 CIN3). Lectin binding was assessed visually according to staining intensity. To validate findings macroscopically, near-infra red fluorescence imaging was conducted on freshly-resected cervix (1 normal, 7 CIN3), incubated with topically applied fluorescently-labelled lectin. Fluorescence signal was compared for biopsies and whole specimens according to regions of interest, identified by the overlay of histopathology grids. Lectin histochemistry identified two lectins-wheat germ agglutinin (WGA) and Helix pomatia agglutinin (HPA)-with significantly decreased binding to CIN3 versus normal in both discovery and validation cohorts. Findings at the macroscopic level confirmed weaker WGA binding (lower signal intensity) in CIN3 vs. normal for biopsies (p = 0.0308) and within whole specimens (p = 0.0312). Our findings confirm proof-of-principle and indicate that WGA could potentially be developed further as a probe for high-grade cervical disease.
Collapse
Affiliation(s)
- Anita WW Lim
- Wolfson Institute of Preventive Medicine, Centre for Cancer Prevention, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | - André A. Neves
- Cancer Research UK Cambridge Institute, Li-Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; (A.A.N.); (K.B.)
| | - Sarah Lam Shang Leen
- Department of Cellular Pathology, Barts and the London NHS Trust, Pathology and Pharmacy Building, The Royal London Hospital, 80 Newark Street, London E1 2ES, UK; (S.L.S.L.); (N.S.); (M.S.)
| | - Pierre Lao-Sirieix
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge CB2 0XZ, UK; (P.L.-S.); (E.B.-L.)
| | - Elizabeth Bird-Lieberman
- MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge CB2 0XZ, UK; (P.L.-S.); (E.B.-L.)
- Translational Gastroenterology Unit and Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Naveena Singh
- Department of Cellular Pathology, Barts and the London NHS Trust, Pathology and Pharmacy Building, The Royal London Hospital, 80 Newark Street, London E1 2ES, UK; (S.L.S.L.); (N.S.); (M.S.)
| | - Michael Sheaff
- Department of Cellular Pathology, Barts and the London NHS Trust, Pathology and Pharmacy Building, The Royal London Hospital, 80 Newark Street, London E1 2ES, UK; (S.L.S.L.); (N.S.); (M.S.)
| | - Tony Hollingworth
- Whipps Cross University Hospital, Barts Health NHS Trust, Whipps Cross Road, London E11 1NR, UK;
| | - Kevin Brindle
- Cancer Research UK Cambridge Institute, Li-Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; (A.A.N.); (K.B.)
| | - Peter Sasieni
- Wolfson Institute of Preventive Medicine, Centre for Cancer Prevention, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| |
Collapse
|
9
|
Park S, Lim JM, Chun JN, Lee S, Kim TM, Kim DW, Kim SY, Bae DJ, Bae SM, So I, Kim HG, Choi JY, Jeon JH. Altered expression of fucosylation pathway genes is associated with poor prognosis and tumor metastasis in non‑small cell lung cancer. Int J Oncol 2019; 56:559-567. [PMID: 31894325 PMCID: PMC6959459 DOI: 10.3892/ijo.2019.4953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022] Open
Abstract
Fucosylation is a post‑translational modification that attaches fucose residues to protein‑ or lipid‑bound oligosaccharides. Certain fucosylation pathway genes are aberrantly expressed in several types of cancer, including non‑small cell lung cancer (NSCLC), and this aberrant expression is associated with poor prognosis in patients with cancer. However, the molecular mechanism by which these fucosylation pathway genes promote tumor progression has not been well‑characterized. The present study analyzed public microarray data obtained from NSCLC samples. Multivariate analysis revealed that altered expression of fucosylation pathway genes, including fucosyltransferase 1 (FUT1), FUT2, FUT3, FUT6, FUT8 and GDP‑L‑fucose synthase (TSTA3), correlated with poor survival in patients with NSCLC. Inhibition of FUTs by 2F‑peracetyl‑fucose (2F‑PAF) suppressed transforming growth factor β (TGFβ)‑mediated Smad3 phosphorylation and nuclear translocation in NSCLC cells. In addition, wound‑healing and Transwell migration assays demonstrated that 2F‑PAF inhibited TGFβ‑induced NSCLC cell migration and invasion. Furthermore, in vivo bioluminescence imaging analysis revealed that 2F‑PAF attenuated the metastatic capacity of NSCLC cells. These results may help characterize the oncogenic role of fucosylation in NSCLC biology and highlight its potential for developing cancer therapeutics.
Collapse
Affiliation(s)
- Soonbum Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jin-Muk Lim
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sanghoon Lee
- Department of Biochemistry, University of
Utah School of Medicine, Salt Lake City, UT 84112‑5650, USA
| | - Tae Min Kim
- Seoul National University Cancer Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dong-Wan Kim
- Seoul National University Cancer Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05535, Republic of Korea
| | - Dong-Jun Bae
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05535, Republic of Korea
| | - Sang-Mun Bae
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05535, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hong-Gee Kim
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Yeob Choi
- Seoul National University Cancer Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
10
|
Turiák L, Sugár S, Ács A, Tóth G, Gömöry Á, Telekes A, Vékey K, Drahos L. Site-specific N-glycosylation of HeLa cell glycoproteins. Sci Rep 2019; 9:14822. [PMID: 31616032 PMCID: PMC6794373 DOI: 10.1038/s41598-019-51428-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/23/2019] [Indexed: 01/28/2023] Open
Abstract
We have characterized site-specific N-glycosylation of the HeLa cell line glycoproteins, using a complex workflow based on high and low energy tandem mass spectrometry of glycopeptides. The objective was to obtain highly reliable data on common glycoforms, so rigorous data evaluation was performed. The analysis revealed the presence of a high amount of bovine serum contaminants originating from the cell culture media - nearly 50% of all glycans were of bovine origin. Unaccounted, the presence of bovine serum components causes major bias in the human cellular glycosylation pattern; as is shown when literature results using released glycan analysis are compared. We have reliably identified 43 (human) glycoproteins, 69 N-glycosylation sites, and 178 glycoforms. HeLa glycoproteins were found to be highly (68.7%) fucosylated. A medium degree of sialylation was observed, on average 46.8% of possible sialylation sites were occupied. High-mannose sugars were expressed in large amounts, as expected in the case of a cancer cell line. Glycosylation in HeLa cells is highly variable. It is markedly different not only on various proteins but also at the different glycosylation sites of the same protein. Our method enabled the detailed characterization of site-specific N-glycosylation of several glycoproteins expressed in HeLa cell line.
Collapse
Affiliation(s)
- Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - András Ács
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Semmelweis University, Ph.D. School of Pharmaceutical Sciences, Üllői út 26, H-1085, Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Műegyetem rakpart 3, H-1111, Budapest, Hungary
| | - Ágnes Gömöry
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - András Telekes
- Department of Oncology, St Lazarus County Hospital, Füleki út 54-56, H-3100, Salgótarján, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| |
Collapse
|
11
|
Keeley TS, Yang S, Lau E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers (Basel) 2019; 11:E1241. [PMID: 31450600 PMCID: PMC6769556 DOI: 10.3390/cancers11091241] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fucosylation is a post-translational modification of glycans, proteins, and lipids that is responsible for many biological processes. Fucose conjugation via α(1,2), α(1,3), α(1,4), α(1,6), and O'- linkages to glycans, and variations in fucosylation linkages, has important implications for cancer biology. This review focuses on the roles that fucosylation plays in cancer, specifically through modulation of cell surface proteins and signaling pathways. How L-fucose and serum fucosylation patterns might be used for future clinical diagnostic, prognostic, and therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Tyler S Keeley
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
- University of South Florida Cancer Biology Graduate Program, Tampa, FL 33602, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA.
| |
Collapse
|
12
|
Zhang J, Zhong Y, Zhang P, Du H, Shu J, Liu X, Zhang H, Guo Y, Jia Z, Niu L, Yang F, Li Z. Identification of abnormal fucosylated-glycans recognized by LTL in saliva of HBV-induced chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Glycobiology 2019; 29:242-259. [PMID: 30535277 DOI: 10.1093/glycob/cwy108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/12/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022] Open
Abstract
The hepatitis B virus (HBV)-induced chronic liver diseases are serious health threats worldwide. There is evidence to display the alterations of salivary N-linked glycans related to the development of HBV-infected liver diseases. Here, we further investigated the alterations of fucosylated N/O-glycans recognized by LTL in saliva from 120 subjects (30 healthy volunteers (HV), 30 patients with hepatitis B (HB), 30 patients with hepatic cirrhosis (HC), and 30 patients with hepatocellular carcinoma (HCC)) using salivary microarrys and MALDI-TOF/TOF-MS. The results showed that the expression level of fucosylated glycans recognized by LTL was significantly increased in HCC compared with other subjects (P < 0.0001). Besides, the fucosylated glycoproteins were isolated from pooled saliva of HV, HB, HC, and HCC by LTL-magnetic particle conjugates. Then, N/O- glycans were released from the isolated glycoproteins with PNGase F and NaClO, and were identified by MALDI-TOF-MS, respectively. Totally, there were 21/20, 25/18, 29/19, and 28/24 N/O-glycan peaks that were identified and annotated with proposed structures in saliva of HV, HB, HC, and HCC. Among the total, there were 8 N-glycan peaks (e.g., m/z 1905.634, 2158.777 and 2905.036) and 15 O-glycan peaks (e.g., 1177.407, 1308.444 and 1322.444) that only presented in patients with HBV-induced liver diseases. One N-glycan peak (m/z 2205.766) was unique in HC, and 9 O-glycan peaks (e.g., m/z 1157.420, 1163.417 and 1193.402) were unique in HCC. This study could facilitate the discovery of biomarkers for HC and HCC based on precise alterations of fucosylated N/O-glycans in saliva.
Collapse
Affiliation(s)
- Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Peixin Zhang
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hua Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yonghong Guo
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhansheng Jia
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lili Niu
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institution of Biophysics, Chineses Academy of Sciences, Beijing, China
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institution of Biophysics, Chineses Academy of Sciences, Beijing, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
13
|
Szczubiał M, Wawrzykowski J, Dąbrowski R, Bochniarz M, Brodzki P, Kankofer M. The effect of pyometra on glycosylation of proteins in the uterine tissues from female dogs. Theriogenology 2019; 131:41-46. [PMID: 30939355 DOI: 10.1016/j.theriogenology.2019.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
The main aim of this study was to investigate the effect of pyometra on glycosylation of proteins in the uterine tissues from female dogs, using western blotting with selected lectins (Sambucus nigra agglutinin - SNA and Maackia amurensis agglutinin - MAL II). In addition protein pattern of examined tissues was also evaluated. The study was performed on 10 female dogs undergoing ovariohysterectomy because of pyometra and 10 clinically healthy female dogs, undergoing elective spaying (ovariohysterectomy). Uterine tissue samples of 1 cm2 were taken from the middle region of each uterine horn in both group of animals immediately after ovariohysterectomy. Tissue samples were homogenized and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting with SNA and MAL II. SDS-PAGE analysis showed differences between pyometra samples and controls in the amount of obtained protein fractions and the protein content in the individual fractions. Five protein (with a molecular weight of 193.78 kDa, 103.18 kDa, 77.67 kDa, 70.39 kDa, and 53.00 kDa) were found only in the pyometra samples. The remaining fractions differed in intensity of staining, which indicated differ abundance of a given protein. The results of western blotting with SNA and MAL II demonstrated that the pattern obtained from densitometric analysis differs between adequate healthy and pyometra samples with regard to the amount of protein fraction obtained as well as the intensity of staining of particular fraction. The pyometra tissues contained seven SNA-binding proteins (with a molecular weight 189.94 kDa, 165.51 kDa, 100.94 kDa, 59.42 KDa, 41.32 kDa, 35.16 kDa, and 32.6 kDa) that were not in the healthy tissues. Of the nine remaining fractions, six showed significantly higher (P < 0.05) intensity of staining in the healthy uterine tissues. In turn, the MAL II-binding protein with a molecular weight 75.85 kDa, 51.12 kDa, and 49.98 kDa were found only in the pyometra samples. Of the 28 remaining fractions, ten demonstrated significantly higher (P < 0.05), and five fractions had significantly lower (P < 0.05) intensity of staining in the pyometra tissues. The results obtained indicate that proteins in uterine tissues from female dogs with pyometra are differently glycosylated compared to normal uterine tissues. These findings provide the basis for further studies of the possible role of glycosylation in the pathogenesis of canine pyometra.
Collapse
Affiliation(s)
- Marek Szczubiał
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Głeboka 30, 20-612, Lublin, Poland.
| | - Jacek Wawrzykowski
- Department of Animal Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Głeboka 30, 20-612, Lublin, Poland
| | - Mariola Bochniarz
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Głeboka 30, 20-612, Lublin, Poland
| | - Piotr Brodzki
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Głeboka 30, 20-612, Lublin, Poland
| | - Marta Kankofer
- Department of Animal Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| |
Collapse
|
14
|
Chen X, Wang L, Zhao Y, Yuan S, Wu Q, Zhu X, Niang B, Wang S, Zhang J. ST6Gal-I modulates docetaxel sensitivity in human hepatocarcinoma cells via the p38 MAPK/caspase pathway. Oncotarget 2018; 7:51955-51964. [PMID: 27340870 PMCID: PMC5239527 DOI: 10.18632/oncotarget.10192] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/07/2016] [Indexed: 01/17/2023] Open
Abstract
The β-galactoside α2-6-sialyltransferase 1 (ST6Gal-I) is the principal sialyltransferase responsible for the addition of α2-6-sialic acid to the termini N-glycans on cell surface. Although ST6Gal-I in cancer cell resistance to chemotherapeutics agents has been previously reported, the role of ST6Gal-I in clinical drug resistance of hepatocellular carcinoma (HCC) is not fully understood. In this study, we found that knockdown of ST6Gal-I increased the sensitivity of hepatocarcinoma MHCC97-H cells to docetaxel treatment by instigating the process of apoptosis. Silencing ST6Gal-I expression decreased the survival rate of MHCC97-H cells after docetaxel treatment. Importantly, ST6Gal-I silencing resulted in an increasing of phospho-p38, Bax, Bad, cytochrome c and the cleaved caspase-9, 3 and PARP, while a decreasing of the anti-apoptotic protein Bcl-2. In addition, we found that p38 MAPK and caspase-3 inhibitors can reduce the enhanced apoptosis levels of MHCC97-H cells resulted by either ST6Gal-I silencing or docetaxel treatment. Conversely, exogenous expression of ST6Gal-I in hepatocarcinoma Huh7 cells inhibited apoptotic cell death and prevented docetaxel-induced apoptosis by inhibiting p38 MAPK mediated mitochondrial-dependent pathway. Taken together, these results indicate that ST6Gal-I might play a positive role in mediating the survival of human hepatocarcinoma cells and could be a potential target for gene and antitumor drugs therapy.
Collapse
Affiliation(s)
- Xixi Chen
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, Liaoning, China
| | - Liping Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Yujie Zhao
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Shiqi Yuan
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Qiang Wu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Xiaoling Zhu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Bachir Niang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, Liaoning, China
| |
Collapse
|
15
|
Hashim OH, Jayapalan JJ, Lee CS. Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ 2017; 5:e3784. [PMID: 28894650 PMCID: PMC5592079 DOI: 10.7717/peerj.3784] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
In recent years, the use of lectins for screening of potential biomarkers has gained increased importance in cancer research, given the development in glycobiology that highlights altered structural changes of glycans in cancer associated processes. Lectins, having the properties of recognizing specific carbohydrate moieties of glycoconjugates, have become an effective tool for detection of new cancer biomarkers in complex bodily fluids and tissues. The specificity of lectins provides an added advantage of selecting peptides that are differently glycosylated and aberrantly expressed in cancer patients, many of which are not possibly detected using conventional methods because of their low abundance in bodily fluids. When coupled with mass spectrometry, research utilizing lectins, which are mainly from plants and fungi, has led to identification of numerous potential cancer biomarkers that may be used in the future. This article reviews lectin-based methods that are commonly adopted in cancer biomarker discovery research.
Collapse
Affiliation(s)
- Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cheng-Siang Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Mass spectrometry of gangliosides in extracranial tumors: Application to adrenal neuroblastoma. Anal Biochem 2016; 509:1-11. [DOI: 10.1016/j.ab.2016.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022]
|
17
|
Mehta A, Comunale MA, Rawat S, Casciano JC, Lamontagne J, Herrera H, Ramanathan A, Betesh L, Wang M, Norton P, Steel LF, Bouchard MJ. Intrinsic hepatocyte dedifferentiation is accompanied by upregulation of mesenchymal markers, protein sialylation and core alpha 1,6 linked fucosylation. Sci Rep 2016; 6:27965. [PMID: 27328854 PMCID: PMC4916422 DOI: 10.1038/srep27965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
Alterations in N-linked glycosylation have long been associated with cancer but for the most part, the reasons why have remained poorly understood. Here we show that increased core fucosylation is associated with de-differentiation of primary hepatocytes and with the appearance of markers indicative of a transition of cells from an epithelial to a mesenchymal state. This increase in core fucosylation was associated with increased levels of two enzymes involved in α-1,6 linked fucosylation, GDP-mannose 4, 6-dehydratase (Gmds) and to a lesser extent fucosyltransferase 8 (Fut8). In addition, the activation of cancer-associated cellular signaling pathways in primary rat hepatocytes can increase core fucosylation and induce additional glycoform alterations on hepatocyte proteins. Specifically, we show that increased levels of protein sialylation and α-1,6-linked core fucosylation are observed following activation of the β-catenin pathway. Activation of the Akt signaling pathway or induction of hypoxia also results in increased levels of fucosylation and sialylation. We believe that this knowledge will help in the better understanding of the genetic factors associated with altered glycosylation and may allow for the development of more clinically relevant biomarkers.
Collapse
Affiliation(s)
- Anand Mehta
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Mary Ann Comunale
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Siddhartha Rawat
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Molecular and Cellular Biology and Genetics Graduate Program, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jessica C Casciano
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Molecular and Cellular Biology and Genetics Graduate Program, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Jason Lamontagne
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Microbiology and Immunology Graduate Program, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Microbiology and Immunology Graduate Program, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Aarti Ramanathan
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Microbiology and Immunology Graduate Program, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Lucy Betesh
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Mengjun Wang
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Pamela Norton
- Drexel University College of Medicine, Department of Microbiology and Immunology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | - Laura F Steel
- Drexel University College of Medicine, Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Michael J Bouchard
- Drexel University College of Medicine, Department of Biochemistry and Molecular Biology, 245 N. 15th Street, Philadelphia, PA 19102, USA
| |
Collapse
|
18
|
Wi GR, Moon BI, Kim HJ, Lim W, Lee A, Lee JW, Kim HJ. A lectin-based approach to detecting carcinogenesis in breast tissue. Oncol Lett 2016; 11:3889-3895. [PMID: 27313712 DOI: 10.3892/ol.2016.4456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that the diversity of glycosylation structures that form during cancer progression and the sensitivity with which they are able to be detected have great potential for cancer screening. However, the large majority of breast cancer research has instead focused on the development of protein or nucleic acid markers. In the present study, alterations in glycosylation in breast cancer tissue were analyzed using enzyme-linked lectin assays (ELLAs), which have potential for high-throughput screening. Cancer tissues (CCs) and normal tissues (CNs) were collected from women with breast cancer ranging from stage 0 to IIIA. The specimens were divided into two groups, stage 0-I and stage II-III, and the levels of four types of lectin in stage 0-I and stage II-III CCs and CNs were compared by ELLA. The results demonstrated that, relative to CNs, the CCs contained significantly enhanced levels of mannosylation (stage 0-I, P<0.001; stage II-III, P<0.001), galactosylation (stage 0-I, P<0.05; stage II-III, P<0.001), sialylation (stage 0-I, P<0.001; stage II-III, P<0.01) and fucosylation (stage 0-I, P<0.01; stage II-III, P<0.01). Furthermore, stage II-III CCs had higher levels of mannosylation (P<0.05) and galactosylation (P<0.01) than stage 0-I CCs. The sensitivity of the ELLA system ranged from 71-100% when specificity was set at 100%. These results demonstrate that enhanced glycosylation levels identified by ELLA are associated with the development of breast tumors, and provide evidence of the exceptional sensitivity and specificity of the ELLA system in the detection of breast cancer. This approach is anticipated to contribute highly to the development of reliable diagnostic procedures for breast cancer.
Collapse
Affiliation(s)
- Ga Ram Wi
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Byung-In Moon
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 06974, Republic of Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Woosung Lim
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 06974, Republic of Korea
| | - Anbok Lee
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 06974, Republic of Korea
| | - Jun Woo Lee
- Breast and Thyroid Cancer Center, Ewha Womans University College of Medicine, Yangcheon-Gu, Seoul 06974, Republic of Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul 156-756, Republic of Korea
| |
Collapse
|
19
|
Jin Y, Kim SC, Kim HJ, Ju W, Kim YH, Kim HJ. Increased sialylation and reduced fucosylation of exfoliated cervical cells are potential markers of carcinogenesis in the cervix. ACTA ACUST UNITED AC 2016; 54:1811-1819. [DOI: 10.1515/cclm-2015-1014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
AbstractBackground:The Pap test has been used for over 50 years for primary screening of cervical cancer. There has been no study of glycosylation changes in Pap test samples despite considerable potential of the glycosylation changes as biomarkers for detecting cancerous lesions. In this study, we developed a 96-well platform for enzyme-linked lectin assays (ELLAs) to evaluate glycosylation levels in cervical cells.Methods:A total of 117 samples of exfoliated cervical cells (ECCs) from 37 individuals with normal cytology, 20 with cervical intraepithelial neoplasia (CIN) 1, 19 with CIN 2, 26 with CIN 3 and 15 with cervical cancer were analyzed by ELLAs. The wells of 96-well plates were coated with lysates of the cervical cells, and sialylation and fucosylation levels were compared between the groups.Results:Sialylation levels increased and fucosylation levels decreased with increasing grade of cervical dysplasia. ELLAs for sialylation [ELLA-Conclusions:The sialylation and fucosylation levels of ECCs as measured by ELLAs have great potential as biomarkers for primary screening of cervical cancer.
Collapse
|
20
|
Clark GF. Functional glycosylation in the human and mammalian uterus. FERTILITY RESEARCH AND PRACTICE 2015; 1:17. [PMID: 28620522 PMCID: PMC5424290 DOI: 10.1186/s40738-015-0007-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022]
Abstract
Background Glycosylation is the most common and structurally diverse of all the post-translational modifications of proteins. Lipids and extracellular matrices are also often glycosylated. The mammalian uterus is highly enriched in glycoconjugates that are associated with the apical surfaces of epithelial cells and the secretions released by both epithelial and stromal cells. These glycoconjugates interact primarily with sperm, the implanting embryo, the fetus, and any pathogen that happens to gain entry into the uterus. Secretions of the endometrial glands increase substantially during the luteal phase of the menstrual cycle. These secretions are highly enriched in glycoproteins and mucins that promote specific uterine functions. Findings Lectins and antibodies have been employed in the majority of the studies focused on uterine glycosylation have employed to define the expression of carbohydrate sequences. However, while these studies provide insight about potential glycosylation, precise information about glycan structure is lacking. Direct sequencing studies that employ biochemical or mass spectrometric methods are far more definitive, but have rarely been employed with uterine glycoproteins. Both lectin/antibody binding and direct carbohydrate sequencing studies that have been focused on the mammalian uterus are reviewed. The primary functional role of the eutherian uterus is to facilitate fertilization and nurture the developing embryo/fetus. Trophoblasts are the primary cells that mediate the binding of the embryo and placenta to the uterine lining. In mammals that utilize hemochorial placentation, they invade the decidua, the specialized endometrial lining that forms during pregnancy. Trophoblasts have also been analyzed for their lectin/antibody binding as a complement to the analysis of the uterine cells and tissues. They will also be reviewed here. Conclusions The functional roles of the glycans linked to uterine and trophoblast glycoconjugates remain enigmatic. Another major question in the human is whether defects in placental or uterine glycosylation play a role in the development the Great Obstetrical Syndromes. More recent findings indicate that changes in glycosylation occur in trophoblasts obtained from patients that develop preeclampsia and preterm birth. The functional significance of these changes remain to be defined. Whether such shifts happen during the development of other types of obstetrical syndromes remains to be determined.
Collapse
Affiliation(s)
- Gary F Clark
- Division of Reproductive and Perinatal Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri, 1 Hospital Drive HSC M658, Columbia, MO 65211 USA
| |
Collapse
|
21
|
Kurmyshkina OV, Kovchur PI, Volkova TO. 'Drawing' a Molecular Portrait of CIN and Cervical Cancer: a Review of Genome-Wide Molecular Profiling Data. Asian Pac J Cancer Prev 2015; 16:4477-87. [DOI: 10.7314/apjcp.2015.16.11.4477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Sialic acids: biomarkers in endocrinal cancers. Glycoconj J 2015; 32:79-85. [PMID: 25777812 DOI: 10.1007/s10719-015-9577-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
Sialylations are post translational modification of proteins and lipids that play important role in recognition, signaling, immunological response and cell-cell interaction. Improper sialylations due to altered sialyl transferases, sialidases, gene structure and expression, sialic acid metabolism however lead to diseases and thus sialic acids form an important biomarker in disease. In the endocrinal biology such improper sialylations including altered expression of sialylated moieties have been shown to be associated with disorders. Cancer still remains to be the major cause of global death and the cancer of the endocrine organs suffer from the dearth of appropriate markers for disease prediction at the early stage and monitoring. This review is aimed at evaluating the role of sialic acids as markers in endocrinal disorders with special reference to cancer of the endocrine organs. The current study is summarized under the following headings of altered sialylations in endocrinal cancer of the (i) ovary (ii) pancreas (iii) thyroid (iv) adrenal and (v) pituitary gland. Studies in expression of sialic acid in testis cancer are limited. The future scope of this review remains in the targeting of endocrinal cancer by targeting altered sialylation which is a common expression associated with endocrinal cancer.
Collapse
|
23
|
Garibay-Cerdenares OL, Hernández-Ramírez VI, Osorio-Trujillo JC, Hernández-Ortíz M, Gallardo-Rincón D, Cantú de León D, Encarnación-Guevara S, Villegas-Pineda JC, Talamás-Rohana P. Proteomic identification of fucosylated haptoglobin alpha isoforms in ascitic fluids and its localization in ovarian carcinoma tissues from Mexican patients. J Ovarian Res 2014; 7:27. [PMID: 24576319 PMCID: PMC3943579 DOI: 10.1186/1757-2215-7-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/19/2014] [Indexed: 12/18/2022] Open
Abstract
Background Ovarian cancer is the most lethal gynecologic disease due to delayed diagnosis, and ascites production is a characteristic of patients in advanced stages. The aim of this study was to perform the proteomic analysis of ascitic fluids of Mexican patients with ovarian carcinoma, in order to detect proteins with a differential expression pattern in the continuing search to identify biomarkers for this disease. Methods Samples were collected from 50 patients from the Instituto Nacional de Cancerología of México under informed consent and with approval of the bioethics and scientific committees. After elimination of abundant proteins (Albumin/IgGs) samples were processed for 2D electrophoresis and further protein identification by Mass Spectrometry (MALDI-TOF). Molecules of interest were followed by western blot and lectin binding assays, and their tissue location by histo-immunofluorescence and confocal analysis. Results and discussion An area with a differential expression pattern among samples was located in the 2D gels. Identified proteins were 6 alpha 1 isoforms and 1 alpha 2 isoform of Haptoglobin, and 2 isoforms of Transthyretin. While Transthyretin isoforms were constitutively expressed in all samples, clear differences in the expression pattern of Haptoglobin alpha isoforms were found. Moreover, increased levels of fucosylation of Haptoglobin alpha isoforms analyzed in 40 samples by Aleuria aurantia lectin binding by 1D overlay assay showed a positive correlation with advanced stages of the disease. Tissue detection of Haptoglobin and its fucosylated form, by histo-immunofluorescence in biopsies of ovarian cancer, also showed a correlation with ovarian cancer progression. Moreover, results show that fucosylated Haptoglobin is produced by tumor cells. Conclusions Increased numbers of highly fucosylated Haptoglobin alpha isoforms in ascitic fluids and the presence of fucosylated Haptoglobin in tumor tissues of ovarian cancer Mexican patients associated with advanced stages of the disease, reinforce the potential of fucosylated Haptoglobin alpha isoforms to be characterized as biomarkers for disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av, Instituto Politécnico Nacional 2508, Col, San Pedro Zacatenco, Delegación Gustavo A, Madero, México, D,F, 07360, México.
| |
Collapse
|