1
|
Gholamhosseinzadeh E, Ghalehnoei H, Kazemi Veisari A, Jafari N, Goli HR. Evaluation of the Rock1 and microRNA-148a expression in biopsies collected from patients with Helicobacter pylori induced gastritis. BMC Gastroenterol 2024; 24:251. [PMID: 39112943 PMCID: PMC11308716 DOI: 10.1186/s12876-024-03347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Helicobacter pylori infection is one of the most common chronic bacterial infections, especially in developing countries. MicroRNA-148a is involved in the regulation of various genes, including Rock1, which is altered in gastric cancer. Decreased expression of mir-148a leads to tumor metastasis and increased Rock1 gene expression in gastric cancer. This study aimed to investigate the expression of these genes in biopsies collected from patients with H. pylori induced gastritis. METHODS Informed consent forms were gotten from the studied patients with gastritis who needed endoscopy. Gastric biopsies were taken by a gastroenterologist from patients with inflammation. Rapid urease test, stool antigen detection, and histopathological staining were used to determine the H. pylori infected patients. Real time PCR was used to evaluate the miRNA and Rock1 expression levels. RESULTS The Rock1 expression level in biopsies that were positive for H. pylori was significantly increased compared to our control gastritis group that were H. pylori-negative, but the results were not statistically significant. Moreover, the mir-148a expression level in H. pylori-positive patients with gastritis was increased compared to our control group. However, the results were not statistically significant. We did not find a significant relation between the expression levels of Rock1 and mir-148a in samples with gastritis infected or uninfected by H. pylori. This result may be due to the small sample size. CONCLUSION We suggest that this test should be carried out with more samples, and the comparison should be done between biopsies with inflammation and no inflammation in a patient.
Collapse
Affiliation(s)
- Ebrahim Gholamhosseinzadeh
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran
| | - Hossein Ghalehnoei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Kazemi Veisari
- Gut and Liver Research Center, Non-communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran.
| |
Collapse
|
2
|
Zou Y, Yuan Y, Zhou Q, Yue Z, Liu J, Fan L, Xu H, Xin L. The Role of Methionine Restriction in Gastric Cancer: A Summary of Mechanisms and a Discussion on Tumor Heterogeneity. Biomolecules 2024; 14:161. [PMID: 38397398 PMCID: PMC10887009 DOI: 10.3390/biom14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer is ranked as the fifth most prevalent cancer globally and has long been a topic of passionate discussion among numerous individuals. However, the incidence of gastric cancer in society has not decreased, but instead has shown a gradual increase in recent years. For more than a decade, the treatment effect of gastric cancer has not been significantly improved. This is attributed to the heterogeneity of cancer, which makes popular targeted therapies ineffective. Methionine is an essential amino acid, and many studies have shown that it is involved in the development of gastric cancer. Our study aimed to review the literature on methionine and gastric cancer, describing its mechanism of action to show that tumor heterogeneity in gastric cancer does not hinder the effectiveness of methionine-restricted therapies. This research also aimed to provide insight into the inhibition of gastric cancer through metabolic reprogramming with methionine-restricted therapies, thereby demonstrating their potential as adjuvant treatments for gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang 330006, China; (Y.Z.); (Y.Y.); (Q.Z.); (Z.Y.); (J.L.); (L.F.); (H.X.)
| |
Collapse
|
3
|
Dara M, Azarpira N, Motazedian N, Hossein-Aghdaie M, Dehghani SM, Geramizadeh B, Esfandiari E. Expression of miR-let7b and miR-19b in progressive familial intrahepatic cholestasis (PFIC) children. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:24-31. [PMID: 36934840 DOI: 10.1016/j.gastrohep.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are a group of small non-coding RNAs that bind to the target mRNA and regulate gene expression. Recently circulating microRNAs were investigated as markers of diseases and therapeutic targets. Although various studies analyze the miRNA expression in liver disease, these studies on PFIC are few. Progressive familial intrahepatic cholestasis (PFIC) is a rare liver disease with autosomal recessive inheritance. Most children with PFIC progress to cirrhosis and liver failure and consequently need to have a liver transplant. The aim of this study is the investigation of the miR-19b and miR-let7b expression levels in Iranian PFIC children. METHODS 25 PFIC patients, 25 healthy children and 25 Biliary Atresia patients were considered as case and two control groups respectively. Blood samples were obtained and Liver function tests (LFTs) were measured. After RNA extraction and cDNA synthesis, quantitative PCR was performed using specific primers for miR-19b and miR-let7b. The U6 gene is used as an internal control. RESULTS qPCR on PFIC patients' samples demonstrated that the miR-19b and the miR-let7b expression were significantly decreased in patients compared to the control groups, with a p-value<0.0001 and p-value=0.0006 receptively. CONCLUSION In conclusion, circulating micro-RNA like miR-19b and miR-let7b have a potential opportunity to be a non-invasive diagnostic marker or therapeutic target for PFIC in the future.
Collapse
Affiliation(s)
- Mahintaj Dara
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nasrin Motazedian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Esfandiari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Bhadresha K, Mirza S, Penny C, Mughal MJ. Targeting AXL in Mesothelioma: from functional characterization to clinical implication. Crit Rev Oncol Hematol 2023:104043. [PMID: 37268175 DOI: 10.1016/j.critrevonc.2023.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Malignant pleural mesothelioma (MM) is a highly aggressive and lethal cancer with a poor survival rate. Current treatment approaches primarily rely on chemotherapy and radiation, but their effectiveness is limited. Consequently, there is an urgent need for alternative treatment strategies, a comprehensive understanding of the molecular mechanisms underlying MM, and the identification of potential therapeutic targets. Extensive studies over the past decade have emphasized the role of Axl in driving tumor development and metastasis, while high levels of Axl expression have been associated with immune evasion, drug resistance, and reduced patient survival in various cancer types. Ongoing clinical trials are investigating the efficacy of Axl inhibitors for different cancers. However, the precise role of Axl in MM progression, development, and metastasis, as well as its regulatory mechanisms within MM, remain inadequately understood. This review aims to comprehensively investigate the involvement of Axl in MM. We discuss Axl role in MM progression, development, and metastasis, along with its specific regulatory mechanisms. Additionally, we examined the Axl associated signaling pathways, the relationship between Axl and immune evasion, and the clinical implications of Axl for MM treatment. Furthermore, we discussed the potential utility of liquid biopsy as a non-invasive diagnostic technique for early detection of Axl in MM. Lastly, we evaluated the potential of a microRNA signature that targets Axl. By consolidating existing knowledge and identifying research gaps, this review contributes to a better understanding of Axl's role in MM and sets the stage for future investigations and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Kinjal Bhadresha
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheefa Mirza
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington DC, United States of America.
| |
Collapse
|
5
|
Farasati Far B, Vakili K, Fathi M, Yaghoobpoor S, Bhia M, Naimi-Jamal MR. The role of microRNA-21 (miR-21) in pathogenesis, diagnosis, and prognosis of gastrointestinal cancers: A review. Life Sci 2023; 316:121340. [PMID: 36586571 DOI: 10.1016/j.lfs.2022.121340] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of several target genes. miRNAs play a significant role in cancer biology, as they can downregulate their corresponding target genes by impeding the translation of mRNA (at the mRNA level) as well as degrading mRNAs by binding to the 3'-untranslated (UTR) regions (at the protein level). miRNAs may be employed as cancer biomarkers. Therefore, miRNAs are widely investigated for early detection of cancers which can lead to improved survival rates and quality of life. This is particularly important in the case of gastrointestinal cancers, where early detection of the disease could substantially impact patients' survival. MicroRNA-21 (miR-21 or miRNA-21) is one of the most frequently researched miRNAs, where it is involved in the pathophysiology of cancer and the downregulation of several tumor suppressor genes. In gastrointestinal cancers, miR-21 regulates phosphatase and tensin homolog (PTEN), programmed cell death 4 (PDCD4), mothers against decapentaplegic homolog 7 (SMAD7), phosphatidylinositol 3-kinase /protein kinase B (PI3K/AKT), matrix metalloproteinases (MMPs), β-catenin, tropomyosin 1, maspin, and ras homolog gene family member B (RHOB). In this review, we investigate the functions of miR-21 in pathogenesis and its applications as a diagnostic and prognostic cancer biomarker in four different gastrointestinal cancers, including colorectal cancer (CRC), pancreatic cancer (PC), gastric cancer (GC), and esophageal cancer (EC).
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammed Bhia
- Student Research Committee, Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Reza Naimi-Jamal
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
6
|
Usman M, Beilerli A, Sufianov A, Kudryashov V, Ilyasova T, Balaev P, Danilov A, Lu H, Gareev I. Investigations into the impact of non-coding RNA on the sensitivity of gastric cancer to radiotherapy. Front Physiol 2023; 14:1149821. [PMID: 36909247 PMCID: PMC9998927 DOI: 10.3389/fphys.2023.1149821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a newly discovered functional RNA different from messenger RNA, which can participate in regulating the occurrence and development of tumors. More and more research results show that ncRNAs can participate in the regulation of gastric cancer (GC) radiotherapy response, and its mechanism may be related to its effect on DNA damage repair, gastric cancer cell stemness, cell apoptosis, activation of epidermal growth factor receptor signaling pathway, etc. This article summarizes the relevant mechanisms of ncRNAs regulating the response to radiotherapy in gastric cancer, which will be directly important for the introduction of ncRNAs particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) into clinical medicine as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Valentin Kudryashov
- Gastric Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Pavel Balaev
- Department of Oncology and Radiology, Ural State Medical University, Yekaterinburg, Russia
| | - Andrei Danilov
- Department of Clinical Pharmacology, Smolensk State Medical University, Smolensk, Russia
| | - Hong Lu
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Рeoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
7
|
Autophagy-Related ncRNAs in Pancreatic Cancer. Pharmaceuticals (Basel) 2022; 15:ph15121547. [PMID: 36558998 PMCID: PMC9785627 DOI: 10.3390/ph15121547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is a malignancy accounting for only 3% of total cancers, but with a low 5-year relative survival rate. Approximately 80% of PC patients are diagnosed at a late stage when the disease has already spread from the primary site. Despite advances in PC treatment, there is an urgently needed for the identification of novel therapeutic strategies for PC, particularly for patients who cannot undergo classical surgery. Autophagy is an evolutionarily conserved process used by cells to adapt to metabolic stress via the degrading or recycling of damaged or unnecessary organelles and cellular components. This process is elevated in PC and, thus, it contributes to the onset, progression, and cancer cell resistance to chemotherapy in pancreatic tumors. Autophagy inhibition has been shown to lead to cancer regression and to increase the sensitivity of pancreatic cells to radiation and chemotherapy. Emerging studies have focused on the roles of non-coding RNAs (ncRNAs), such as miRNAs, long non-coding RNAs, and circular RNAs, in PC development and progression. Furthermore, ncRNAs have been reported as crucial regulators of many biological processes, including autophagy, suggesting that ncRNA-based autophagy targeting methods could be promising novel molecular approaches for specifically reducing autophagic flux, thus improving the management of PC patients. In this review, we briefly summarize the existing studies regarding the role and the regulatory mechanisms of autophagy-related ncRNAs in the context of this cancer.
Collapse
|
8
|
Treese C, Hartl K, Pötzsch M, Dahlmann M, von Winterfeld M, Berg E, Hummel M, Timm L, Rau B, Walther W, Daum S, Kobelt D, Stein U. S100A4 Is a Strong Negative Prognostic Marker and Potential Therapeutic Target in Adenocarcinoma of the Stomach and Esophagus. Cells 2022; 11:cells11061056. [PMID: 35326507 PMCID: PMC8947340 DOI: 10.3390/cells11061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Deregulated Wnt-signaling is a key mechanism driving metastasis in adenocarcinoma of the gastroesophageal junction and stomach (AGE/S). The oncogene S100A4 was identified as a Wnt-signaling target gene and is known to promote metastasis. In this project, we illuminate the role of S100A4 for metastases development and disease prognosis of AGE/S. Five gastric cancer cell lines were assessed for S100A4 expression. Two cell lines with endogenous high S100A4 expression were used for functional phenotyping including analysis of proliferation and migration after stable S100A4 knock-down. The prognostic value of S100A4 was evaluated by analyzing the S100A4 expression of tissue microarrays with samples of 277 patients with AGE/S. S100A4 knock-down induced lower migration in FLO1 and NCI-N87 cells. Treatment with niclosamide in these cells led to partial inhibition of S100A4 and to reduced migration. Patients with high S100A4 expression showed lower 5-year overall and disease-specific survival. In addition, a larger share of patients in the S100A4 high expressing group suffered from metachronous metastasis. This study identifies S100A4 as a negative prognostic marker for patients with AGE/S. The strong correlation between S100A4 expression, metastases development and patient survival might open opportunities to use S100A4 to improve the prognosis of these patients and as a therapeutic target for intervention in this tumor entity.
Collapse
Affiliation(s)
- Christoph Treese
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
- Berlin Institute of Health (BIH), 10115 Berlin, Germany
| | - Kimberly Hartl
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Michelle Pötzsch
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
| | - Matthias Dahlmann
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
| | - Moritz von Winterfeld
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.v.W.); (E.B.); (M.H.)
| | - Erika Berg
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.v.W.); (E.B.); (M.H.)
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.v.W.); (E.B.); (M.H.)
| | - Lena Timm
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
| | - Beate Rau
- Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
| | - Severin Daum
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- German Cancer Consortium (DKTK), 69126 Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- German Cancer Consortium (DKTK), 69126 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
9
|
Zeng L, Liao Q, Zeng X, Ye J, Yang X, Zhu S, Tang H, Liu G, Cui W, Ma S, Cui S. Noncoding RNAs and hyperthermic intraperitoneal chemotherapy in advanced gastric cancer. Bioengineered 2022; 13:2623-2638. [PMID: 35089117 PMCID: PMC8973587 DOI: 10.1080/21655979.2021.2021348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors globally. About 20-30% of patients with gastric cancer show peritoneal implantation metastasis at the first diagnosis. Peritoneal metastasis is responsible for 70% of deaths of patients with advanced gastric cancer. Although there are many ways to treat advanced gastric cancer, the prognosis of patients with recurrence is unsatisfactory. An auxiliary treatment with hyperthermic intraperitoneal chemotherapy (HIPEC), is an internationally recognized recommended treatment for advanced gastric cancer. A series of clinical trials have shown that HIPEC significantly improves the overall survival of patients with cancer. Compared with the cytoreductive surgery (CRS) alone, HIPEC combined with CRS markedly reduced the rate of peritoneal metastasis in patients with ovarian cancer and colorectal cancer. It has been demonstrated that HIPEC alters transcription of many genes by affecting non-coding RNAs, which may contribute to the suppressive effect of HIPEC on the synthesis of nucleic acids and proteins in cancer cells. This paper reviews the recent advances in understanding the role of non-coding RNAs in tumor invasion and metastasis of advanced gastric cancer. We also consider changes in noncoding RNA levels and other molecules in advanced gastric cancer cases treated with HIPEC. We hope that our review will provide a reference for future research on molecular epidemiology and etiology of advanced gastric cancer and promote precise treatment of this malignancy using HIPEC.
Collapse
Affiliation(s)
- Lisi Zeng
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Quanxing Liao
- Department of the Second Area of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Zeng
- Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jiacai Ye
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xianzi Yang
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Siyu Zhu
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Tang
- Department of the Second Area of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Gaojie Liu
- Department of the Second Area of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Weiwen Cui
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Shuzhong Cui
- Department of the Second Area of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Jiang D, Wu X, Sun X, Tan W, Dai X, Xie Y, Du A, Zhao Q. Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leukemia by targeting OSBPL11. J Nanobiotechnology 2022; 20:29. [PMID: 35012554 PMCID: PMC8744354 DOI: 10.1186/s12951-021-01206-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a malignant clonal disease of hematopoietic stem- and progenitor-cell origin. AML features massive proliferation of abnormal blasts and leukemia cells in the bone marrow and the inhibition of normal hematopoiesis at onset. Exosomes containing proteins or nucleic acids are secreted by cells; they participate in intercellular communication and serve as key modulators of hematopoiesis. The purpose of this study was to investigate the effects of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) on the regulation of AML and the underlying mechanisms mediated by microRNA (miRNA). METHODS Dysregulated miR-7-5p in AML patients was identified using qRT-PCR and its clinical significance was explored. Bioinformatic analysis revealed the target gene OSBPL11 that could be regulated by miR-7-5p. The findings were validated using a dual-luciferase reporter assay and western blotting. The functional genes of the PI3K/AKT/mTOR signaling pathway were identified, and the functional significance of miR-7-5p in AML cells was determined using a functional recovery assay. AML cells were co-cultured with exosomes originating from BMSCs overexpressing miR-7-5p to determine cell-cell regulation by Exo-miR-7-5p, as well as in vitro and in vivo functional validation via gain- and loss-of-function methods. RESULTS Expression of miR-7-5p was decreased in AML patients and cells. Overexpression of miR-7-5p curbed cellular proliferation and promoted apoptosis. Overexpression of OSBPL11 reversed the tumorigenic properties of miR-7-5p in AML cells in vitro. Exo-miR-7-5p derived from BMSCs induced formation of AML cells prone to apoptosis and a low survival rate, with OSBPL11 expression inhibited through the PI3K/AKT/mTOR signaling pathway. Exo-miR-7-5p derived from BMSCs exhibited tumor homing effects in vitro and in vivo, and inhibited AML development. CONCLUSIONS Exo-miR-7-5p derived from BMSCs negatively regulates OSBPL11 by suppressing the phosphorylation of the PI3K/AKT/mTOR signaling pathway, thereby inhibiting AML proliferation and promoting apoptosis. The data will inform the development of AML therapies based on BMSC-derived exosomes.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, Second Affiliated Hospital of Hainan Medical College, Haikou, 570311, People's Republic of China.,Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xin Wu
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xiaoying Sun
- Nursing School, Soochow University, Suzhou, 215000, People's Republic of China.,Department of Emergency, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Wei Tan
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xin Dai
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Youbang Xie
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Ashuai Du
- Department of Infectious Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, People's Republic of China.
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China. .,Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
| |
Collapse
|
11
|
Ke C, Zhou H, Jiang B, Xie X. Zinc finger protein 852 is essential for the proliferation, drug sensitivity, and self-renewal of gastric cancer cells. Cell Biol Int 2021; 46:579-587. [PMID: 34957631 DOI: 10.1002/cbin.11754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022]
Abstract
Exploring cellular and molecular mechanisms responsible for gastric cancer growth, survival, self-renewal, and metastasis helps develop efficacious therapeutic strategies. In this study, the expression and function of Zinc finger protein 852 (ZNF852) in human gastric cancer cell lines were characterized. ZNF852 was up-regulated in gastric cancer cell lines relative to normal gastric epithelial cell line GES-1. When the ZNF852 gene was ablated in gastric cancer cell line MGC-803 using the CRISPR/Cas9-encoding lentivirus, the proliferation of MGC-803 was suppressed. ZNF852 deficiency also resulted in the inhibition of MGC-803 sphere formation, along with decreases in SRY-box 2 (SOX2), Octamer-binding transcription factor 4 (OCT4), and Nanog homeobox (NANOG), suggesting that ZNF852 sustains self-renewal of MGC-803 cells. Furthermore, ZNF852 deficiency increased oxaliplatin-induced MGC-803 cell death, implying the role of ZNF852 in drug sensitivity. Subcutaneous infusion of MGC-803 cells into nude mice illustrated the same effects of ZNF852 on the proliferation and self-renewal of gastric cancer cells. Similar effects of ANF852 were also seen in gastric cancer cell line SNU-1. Interestingly, ZNF852 deficiency caused down-regulation of epidermal growth factor receptor (EGFR) on gastric cancer cells. In summary, this study uncovers the positive regulatory role of ZNF852 in gastric cancer growth and maintenance. ZNF852 could be a potential therapeutic target for inhibiting gastric cancer initiation or progression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Ke
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China, 430060
| | - Hongjian Zhou
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China, 430060
| | - Bin Jiang
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China, 430060
| | - Xingwang Xie
- The Department of Gastrointestinal, Hernia and Abdominal Wall Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China, 430060
| |
Collapse
|
12
|
Deng LH, Zhao H, Bai LP, Xie J, Liu K, Yan F. Linc00467 promotion of gastric cancer development by directly regulating miR-7-5p expression and downstream epidermal growth factor receptor. Bioengineered 2021; 12:9484-9495. [PMID: 34713767 PMCID: PMC8810099 DOI: 10.1080/21655979.2021.1996014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Linc00467 is a vital regulator in tumor progression. This study explores the molecular mechanisms of linc00467 in gastric cancer (GC). Linc00467 expression was obtained and analyzed in GC tissue through exploration in the cancer genome atlas database. Then, real-time quantitative polymerase chain reaction was used to detect linc000467 expression in GC cells. Cell functions were observed using cell counting Kit-8, Transwell assay, Western blotting to testify the proliferation, migration, invasion, and the relative expression of epidermal growth factor receptor (EGFR) in GC cells. Moreover, a dual-luciferase reporter gene assay was used to verify the relationship between linc00467 and miR-7-5p. Results showed that the expression of linc00467 was overexpressed in GC. Linc00467 silencing decreased the GC cell proliferation, migration, and invasion. With mRNA verification and combined previous research, linc00467 directly regulated the miR-7-5p expression and downstream EGFR expression. Inhibited miR-7-5p could restore cell function, EGFR expression of GC cells when linc00467 knockdown occurs. Altogether, linc00467 directly regulates the miR-7-5p and EGFR signaling pathway to promote GC proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Li-Hao Deng
- Department of Gastrointestinal Surgery, the Affiliated Zhongshan Hospital of Xiamen University; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen 361004, China
| | - Hui Zhao
- Medical Cosmetology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, China
| | - Li-Ping Bai
- Department of Gastrointestinal Surgery, the Affiliated Zhongshan Hospital of Xiamen University; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen 361004, China
| | - Jun Xie
- Department of Gastrointestinal Surgery, the Affiliated Zhongshan Hospital of Xiamen University; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen 361004, China
| | - Kai Liu
- Department of Gastrointestinal Surgery, the Affiliated Zhongshan Hospital of Xiamen University; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen 361004, China
| | - Feng Yan
- Department of Gastrointestinal Surgery, the Affiliated Zhongshan Hospital of Xiamen University; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen 361004, China
| |
Collapse
|
13
|
Roychowdhury D, Gupta S, Qin X, Arighi CN, Vijay-Shanker K. emiRIT: a text-mining-based resource for microRNA information. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6287648. [PMID: 34048547 PMCID: PMC8163238 DOI: 10.1093/database/baab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/15/2021] [Accepted: 05/04/2021] [Indexed: 01/18/2023]
Abstract
microRNAs (miRNAs) are essential gene regulators, and their dysregulation often leads to diseases. Easy access to miRNA information is crucial for interpreting generated experimental data, connecting facts across publications and developing new hypotheses built on previous knowledge. Here, we present extracting miRNA Information from Text (emiRIT), a text-miningbased resource, which presents miRNA information mined from the literature through a user-friendly interface. We collected 149 ,233 miRNA –PubMed ID pairs from Medline between January 1997 and May 2020. emiRIT currently contains ‘miRNA –gene regulation’ (69 ,152 relations), ‘miRNA disease (cancer)’ (12 ,300 relations), ‘miRNA –biological process and pathways’ (23, 390 relations) and circulatory ‘miRNAs in extracellular locations’ (3782 relations). Biological entities and their relation to miRNAs were extracted from Medline abstracts using publicly available and in-house developed text-mining tools, and the entities were normalized to facilitate querying and integration. We built a database and an interface to store and access the integrated data, respectively. We provide an up-to-date and user-friendly resource to facilitate access to comprehensive miRNA information from the literature on a large scale, enabling users to navigate through different roles of miRNA and examine them in a context specific to their information needs. To assess our resource’s information coverage, we have conducted two case studies focusing on the target and differential expression information of miRNAs in the context of cancer and a third case study to assess the usage of emiRIT in the curation of miRNA information. Database URL: https://research.bioinformatics.udel.edu/emirit/
Collapse
Affiliation(s)
- Debarati Roychowdhury
- Department of Computer and Information Sciences, University of Delaware, 101 Smith Hall, 18 Amstel Ave, Newark, DE 19716, USA
| | - Samir Gupta
- Department of Computer and Information Sciences, University of Delaware, 101 Smith Hall, 18 Amstel Ave, Newark, DE 19716, USA
| | - Xihan Qin
- Department of Computer and Information Sciences, Center of Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, Room 205, Newark, DE 19711, USA
| | - Cecilia N Arighi
- Department of Computer and Information Sciences, Center of Bioinformatics and Computational Biology, University of Delaware, 15 Innovation Way, Room 205, Newark, DE 19711, USA
| | - K Vijay-Shanker
- Department of Computer and Information Sciences, University of Delaware, 101 Smith Hall, 18 Amstel Ave, Newark, DE 19716, USA
| |
Collapse
|
14
|
The Multifaceted Role and Utility of MicroRNAs in Indolent B-Cell Non-Hodgkin Lymphomas. Biomedicines 2021; 9:biomedicines9040333. [PMID: 33806113 PMCID: PMC8064455 DOI: 10.3390/biomedicines9040333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Normal B-cell development is a tightly regulated complex procedure, the deregulation of which can lead to lymphomagenesis. One common group of blood cancers is the B-cell non-Hodgkin lymphomas (NHLs), which can be categorized according to the proliferation and spread rate of cancer cells into indolent and aggressive ones. The most frequent indolent B-cell NHLs are follicular lymphoma and marginal zone lymphoma. MicroRNAs (miRNAs) are small non-coding RNAs that can greatly influence protein expression. Based on the multiple interactions among miRNAs and their targets, complex networks of gene expression regulation emerge, which normally are essential for proper B-cell development. Multiple miRNAs have been associated with B-cell lymphomas, as the deregulation of these complex networks can lead to such pathological states. The aim of the present review is to summarize the existing information regarding the multifaceted role of miRNAs in indolent B-cell NHLs, affecting the main B-cell subpopulations. We attempt to provide insight into their biological function, the complex miRNA-mRNA interactions, and their biomarker utility in these malignancies. Lastly, we address the limitations that hinder the investigation of the role of miRNAs in these lymphomas and discuss ways that these problems could be overcome in the future.
Collapse
|
15
|
Hirschfeld M, Rücker G, Weiß D, Berner K, Ritter A, Jäger M, Erbes T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol Diagn Ther 2021; 24:215-232. [PMID: 32112368 DOI: 10.1007/s40291-020-00453-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most frequent malignant disease in women worldwide and is therefore challenging for the healthcare system. Early BC detection remains a leading factor that improves overall outcome and disease management. Aside from established screening procedures, there is a constant demand for additional BC detection methods. Routine BC screening via non-invasive liquid biopsy biomarkers is one auspicious approach to either complete or even replace the current state-of-the-art diagnostics. The study explores the diagnostic potential of urinary exosomal microRNAs with specific BC biomarker characteristics to initiate the potential prospective application of non-invasive BC screening as routine practice. METHODS Based on a case-control study (69 BC vs. 40 healthy controls), expression level quantification and subsequent biostatistical computation of 13 urine-derived microRNAs were performed to evaluate their diagnostic relevance in BC. RESULTS Multilateral statistical assessment determined and repeatedly confirmed a specific panel of four urinary microRNA types (miR-424, miR-423, miR-660, and let7-i) as a highly specific combinatory biomarker tool discriminating BC patients from healthy controls, with 98.6% sensitivity and 100% specificity. DISCUSSION Urine-based BC diagnosis may be achieved through the analysis of distinct microRNA panels with proven biomarker abilities. Subject to further validation, the implementation of urinary BC detection in routine screening offers a promising non-invasive alternative in women's healthcare.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Ku GW, Kang Y, Yu SL, Park J, Park S, Jeong IB, Kang MW, Son JW, Kang J. LncRNA LINC00240 suppresses invasion and migration in non-small cell lung cancer by sponging miR-7-5p. BMC Cancer 2021; 21:44. [PMID: 33422052 PMCID: PMC7796488 DOI: 10.1186/s12885-020-07755-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background lncRNAs have important roles in regulating cancer biology. Accumulating evidence has established a link between the dysregulation of lncRNAs and microRNA in cancer progression. In previous studies, miR-7-5p has been found to be significantly down-regulated in mesenchymal-like lung cancer cell lines and directly regulated EGFR. In this work, we investigated the lncRNA partner of miR-7-5p in the progression of lung cancer. Methods We investigated the expression of miR-7-5p and the lncRNA after transfection with an miR-7-5p mimics using a microarray. The microarray results were validated using quantitative real time-polymerase Chain Reaction (qRT-PCR). The regulatory effects of lncRNA on miR-7-5p and its target were evaluated by changes in the expression of miR-7-5p after transfection with siRNAs for lncRNA and the synthesis of full-length lncRNA. The effect of miR-7-5p on lncRNA and the miRNA target was evaluated after transfection with miRNA mimic and inhibitor. The role of lncRNA in cancer progression was determined using invasion and migration assays. The level of lncRNA and EGFR in lung cancer and normal lung tissue was analyzed using TCGA data. Results We found that LINC00240 was downregulated in lung cancer cell line after miR-7-5p transfection with an miR-7-5p mimic. Further investigations revealed that the knockdown of LINC00240 induced the overexpression of miR-7-5p. The overexpression of miR-7-5p diminished cancer invasion and migration. The EGFR expression was down regulated after siRNA treatment for LINC00240. Silencing LINC00240 suppressed the invasion and migration of lung cancer cells, whereas LINC00240 overexpression exerted the opposite effect. The lower expression of LINC00240 in squamous lung cancer was analyzed using TCGA data. Conclusions Taken together, LINC00240 acted as a sponge for miR-7-5p and induced the overexpression of EGFR. LINC00240 may represent a potential target for the treatment of lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07755-8.
Collapse
Affiliation(s)
- Gwan Woo Ku
- Department of Thoracic Surgery, Konyang University Hospital, Daejeon, 35365, Republic of Korea
| | - Yujin Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Joonghoon Park
- Graduate School of International Agricultural Technology and Institute of GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Sejin Park
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - In Beom Jeong
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Min Woong Kang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Ji Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea.
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea. .,Department of Pharmacology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
17
|
Lin J, Liu Z, Liao S, Li E, Wu X, Zeng W. Elevated microRNA-7 inhibits proliferation and tumor angiogenesis and promotes apoptosis of gastric cancer cells via repression of Raf-1. Cell Cycle 2020; 19:2496-2508. [PMID: 32931357 PMCID: PMC7553585 DOI: 10.1080/15384101.2020.1807670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/01/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Since the essential involvement of microRNAs (miRNAs) in the development and progression of GC, the study was for the exploration of the value of microRNA-7 (miR-7) in the evaluation of neoadjuvant chemotherapy for gastric cancer (GC) and its effects on apoptosis, proliferation and angiogenesis of GC. METHODS miR-7 expression in serum of GC patients before and after neoadjuvant chemotherapy were detected to explore its role in neoadjuvant chemotherapy of GC. The GC cells were transfected with miR-7 mimics/inhibitors, or siRNA-Raf-1 to figure out their roles in proliferation, migration, invasion, cycle distribution and apoptosis. Tumor xenograft was conducted to test tumor growth. Microvessel density (MVD) in tumors was tested by immunohistochemical staining. RESULTS miR-7 expression in serum of GC patients was lower than that of healthy controls while it was elevated after neoadjuvant chemotherapy. Moreover, higher miR-7 expression was exhibited in chemotherapy-effective patients rather than chemotherapy-ineffective patients (P < 0.01). miR-7 expression in serum was connected with tumor size, degree of differentiation, TNM stage and lymphatic metastasis.miR-7 was decreased and Raf-1 was elevated in GC cells (both P < 0.05). Elevated miR-7 or declined Raf-1 inhibited GC cell migration, proliferation and invasion, cell cycle entry, xenografted tumor growth and MVD and stimulated apoptosis (all P < 0.05). Down-regulated Raf-1 reversed the impacts of miR-7 knockdown on GC cells (all P < 0.05). CONCLUSION Our study highlights that elevated miR-27a indicates the good efficacy of neoadjuvant chemotherapy in GC and miR-7 targets Raf-1 to suppress tumor development and angiogenesis of GC cells.
Collapse
Affiliation(s)
- Jing Lin
- Oncology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- CONTACT Jing Lin
| | - Zewa Liu
- Oncology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shasha Liao
- Oncology Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
| | - E Li
- Oncology Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
| | - Xiaohua Wu
- Oncology Department, Shantou Longhu People’s Hospital, Shantou, Guangdong, China
| | - Wanting Zeng
- MSci Applied Medical Science, Division of Medicine, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
18
|
UV-type specific alteration of miRNA expression and its association with tumor progression and metastasis in SCC cell lines. J Cancer Res Clin Oncol 2020; 146:3215-3231. [PMID: 32865618 DOI: 10.1007/s00432-020-03358-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE UV exposure is the main risk factor for development of cutaneous squamous cell carcinoma (cSCC). While early detection greatly improves cSCC prognosis, locally advanced or metastatic cSCC has a severely impaired prognosis. Notably, the mechanisms of progression to metastatic cSCC are not well understood. We hypothesized that UV exposure of already transformed epithelial cSCC cells further induces changes which might be involved in the progression to metastatic cSCCs and that UV-inducible microRNAs (miRNAs) might play an important role. METHODS Thus, we analyzed the impact of UV radiation of different quality (UVA, UVB, UVA + UVB) on the miRNA expression pattern in established cell lines generated from primary and metastatic cSCCs (Met-1, Met-4) using the NanoString nCounter platform. RESULTS This analysis revealed that the expression pattern of miRNAs depends on both the cell line used per se and on the quality of UV radiation. Comparison of UV-induced miRNAs in cSCC cell lines established from a primary tumor (Met-1) and the respective (un-irradiated) metastasis (Met-4) suggest that miR-7-5p, miR-29a-3p and miR-183-5p are involved in a UV-driven pathway of progression to metastasis. This notion is supported by the fact that these three miRNAs build up a network of 81 potential target genes involved e.g. in UVA/UVB-induced MAPK signaling and regulation of the epithelial-mesenchymal transition. As an example, PTEN, a target of UV-upregulated miRNAs (miR-29a-3p, miR-183-5p), could be shown to be down-regulated in response to UV radiation. We further identified CNOT8, the transcription complex subunit 8 of the CCR4-NOT complex, a deadenylase removing the poly(A) tail from miRNA-destabilized mRNAs, in the center of this network, targeted by all three miRNAs. CONCLUSION In summary, our results demonstrate that UV radiation induces an miRNA expression pattern in primary SCC cell line partly resembling those of metastatic cell line, thus suggesting that UV radiation impacts SCC progression beyond initiation.
Collapse
|
19
|
miR-7-5p Promotes Hepatic Stellate Cell Activation by Targeting Fibroblast Growth Factor Receptor 4. Gastroenterol Res Pract 2020; 2020:5346573. [PMID: 32587612 PMCID: PMC7303738 DOI: 10.1155/2020/5346573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Aims Fibroblast growth factor receptor 4 (FGFR4) is a key mediator that protects the liver from chronic injury. MicroRNA-7 (miR-7) is a tumor suppressor and associated with lipid homeostasis in the liver. This study was designed to examine the role of the miR-7-5p/FGFR4 axis in liver fibrogenesis. Methods TargetScan was employed to predict microRNAs that targeted FGFR4 on the 3'-untranslated region (3'-UTR). miR-7-5p and FGFR4 expression in pathological liver tissues and LX-2 cells was determined using qRT-PCR and an immunoblotting assay. A dual-luciferase assay was conducted to validate the target prediction. A Cell Counting Lit-8 assay was performed to assess the proliferation ability of LX-2 cells. Hydroxyproline content in LX-2 cells was measured using a hydroxyproline assay. The expression of hepatic stellate cell (HSC) activation markers was examined using qRT-PCR and an immunoblotting assay. Results FGFR4 was a putative target of miR-7-5p. In LX-2 cells, miR-7-5p targeted FGFR4 by binding to 3'-UTR. FGFR4 was downregulated, but miR-7-5p was markedly enhanced in the liver samples as the degree of liver fibrosis rose. miR-7-5p was negatively associated with FGFR4 expression in liver tissues. The miR-7-5p inhibitor blocked the lipopolysaccharide-induced proliferation and activation of LX-2 cells, and FGFR4 overexpression inhibited LX-2 cell proliferation and activation triggered by miR-7-5p. Conclusion miR-7-5p promotes HSC proliferation and activation by downregulating FGFR4.
Collapse
|
20
|
Shi Y, Sun H. Down-regulation of lncRNA LINC00152 Suppresses Gastric Cancer Cell Migration and Invasion Through Inhibition of the ERK/MAPK Signaling Pathway. Onco Targets Ther 2020; 13:2115-2124. [PMID: 32210577 PMCID: PMC7074822 DOI: 10.2147/ott.s217452] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of this study was to explore the regulatory role and mechanism of long noncoding RNA LINC00152 in gastric cancer (GC) cells. Methods LINC00152 expression in GC tissues and cells was detected by reverse transcription-polymerase chain reaction (qRT-PCR). MKN45 and MGC-803 cells were selected and assigned into different groups after transfection with si-LINC00152, activated ERK/MAPK signaling pathway (SA), or negative control. Cell proliferation, apoptosis, cycle, migration and invasion were assessed by CCK-8, flow cytometry, Transwell assay and Scratch test, respectively. Western blot analysis was conducted to detect the expression of E-cadherin, N-cadherin and ERK/MAPK signaling pathway protein. Results Compared with the normal tissues, higher expression of LINC00152 was found in GC tissues and LINC00152 was remarkably correlative with clinical stage and lymphatic metastasis. LINC00152 expression in GC cells was higher than that in GES-1 cells. Compared with the NC group, the cell proliferation rate, cells in G2/M phase, migration and invasion abilities as well as the expression of N-cadherin and p-ERK-1/2 were significantly decreased, and the expression of E-cadherin, cells in G0/G1 phase and cell apoptosis rate were significantly increased in the si-LINC00152-1 group. ERK/MAPK signaling pathway activator SA could reverse the biological role of LINC00152 in GC cells. Conclusion These results demonstrated that the interference of LINC00152 expression may inhibit the invasion and migration of GC cells by inhibiting the ERK/MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan Shi
- Department of Hyperbaric Oxygen, Dongying People's Hospital, Dongying, Shandong, 257091, People's Republic of China
| | - Huihui Sun
- Department of Gastroenterology, Jinan First People's Hospital, Jinan, Shandong 250011, People's Republic of China
| |
Collapse
|
21
|
MicroRNA-7 Inhibits Rotavirus Replication by Targeting Viral NSP5 In Vivo and In Vitro. Viruses 2020; 12:v12020209. [PMID: 32069901 PMCID: PMC7077326 DOI: 10.3390/v12020209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Rotavirus (RV) is the major causes of severe diarrhea in infants and young children under five years of age. There are no effective drugs for the treatment of rotavirus in addition to preventive live attenuated vaccine. Recent evidence demonstrates that microRNAs (miRNAs) can affect RNA virus replication. However, the antiviral effect of miRNAs during rotavirus replication are largely unknown. Here, we determined that miR-7 is upregulated during RV replication and that it targets the RV NSP5 (Nonstructural protein 5). Results suggested that miR-7 affected viroplasm formation and inhibited RV replication by down-regulating RV NSP5 expression. Up-regulation of miR-7 expression is a common regulation method of different G-type RV-infected host cells. Then, we further revealed the antiviral effect of miR-7 in diarrhea suckling mice model. MiR-7 is able to inhibit rotavirus replication in vitro and in vivo. These data provide that understanding the role of cellular miR-7 during rotaviral replication may help in the identification of novel therapeutic small RNA molecule drug for anti-rotavirus.
Collapse
|
22
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
23
|
Bakirtzi K, Man Law IK, Fang K, Iliopoulos D, Pothoulakis C. MiR-21 in Substance P-induced exosomes promotes cell proliferation and migration in human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2019; 317:G802-G810. [PMID: 31545921 PMCID: PMC6957364 DOI: 10.1152/ajpgi.00043.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/31/2023]
Abstract
Exosomes are cellular vesicles involved in intercellular communication via their specialized molecular cargo, such as miRNAs. Substance P (SP), a neuropeptide/hormone, and its high-affinity receptor, NK-1R, are highly expressed during colonic inflammation. Our previous studies show that SP/NK-1R signaling stimulates differential miRNA expression and promotes colonic epithelial cell proliferation. In this study, we examined whether SP/NK-1R signaling regulates exosome biogenesis and exosome-miRNA cargo sorting. Moreover, we examined the role of SP/NK-1R signaling in exosome-regulated cell proliferation and migration. Exosomes produced by human colonic NCM460 epithelial cells overexpressing NK-1R (NCM460-NK1R) were isolated from culture media. Exosome abundance and uptake were assessed by Western blot analysis (abundance) and Exo-Green fluorescence microscopy (abundance and uptake). Cargo-miRNA levels were assessed by RT-PCR. Cell proliferation and migration were assessed using xCELLigence technology. Colonic epithelial exosomes were isolated from mice pretreated with SP for 3 days. Cell proliferation in vivo was assessed by Ki-67 staining. SP/NK-1R signaling in human colonic epithelial cells (in vitro) and mouse colons (in vivo) increased 1) exosome production, 2) the level of fluorescence in NCM460s treated with Exo-Green-labeled exosomes, and 3) the level of miR-21 in exosome cargo. Moreover, our results showed that SP/NK-1R-induced cell proliferation and migration are at least in part dependent on intercellular communication via exosomal miR-21 in vitro and in vivo. Our results demonstrate that SP/NK-1R signaling regulates exosome biogenesis and induces its miR-21 cargo sorting. Moreover, exosomal miR-21 promotes proliferation and migration of target cells.NEW & NOTEWORTHY Substance P signaling regulates exosome production in human colonic epithelial cells and colonic crypts in wild-type mice. MiR-21 is selectively sorted into exosomes induced by Substance P stimulation and promotes cell proliferation and migration in human colonocytes and mouse colonic crypts.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Kai Fang
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
24
|
Xiao H. MiR-7-5p suppresses tumor metastasis of non-small cell lung cancer by targeting NOVA2. Cell Mol Biol Lett 2019; 24:60. [PMID: 31832068 PMCID: PMC6864997 DOI: 10.1186/s11658-019-0188-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Distant metastasis is thought to be one of the most important factors responsible for the failure of NSCLC therapy. MicroRNA-7-5p (miR-7-5p) has been demonstrated to be a tumor suppressor in breast cancer, hepatocarcinoma, prostate cancer and glioblastoma multiforme (GBM). However, its role in NSCLC is still not fully understood. This study evaluated the role of miR-7-5p in the progression of NSCLC and explored the underlying mechanism. Materials & methods The quantitative real-time PCR (qPCR), MTT, migration and invasion assays were used to evaluate the effects of miR-7-5p on the proliferation, migration and invasion of A549 and SPCA-1 cells. A tumor xenograft model was created to determine the effects of miR-7-5p on metastasis in vivo. The dual-luciferase reporter gene, neuro-oncological ventral antigen 2 (NOVA2) overexpression and western blotting assays were performed to explore the underlying mechanism. Results MiR-7-5p is downregulated in NSCLC tissues and lung cancer cell lines. It suppresses proliferation, migration, invasion and EMT marker expression in vitro and in vivo. Further study showed that miR-7-5p suppresses tumor metastasis of NSCLC by targeting NOVA2. Overexpression of NOVA2 attenuates the miR-7-5p-mediated inhibitory effect on lung cancer cells. Conclusion MiR-7-5p suppresses NSCLC metastasis. Targeting miR-7-5p may contribute to the success of NSCLC therapy.
Collapse
Affiliation(s)
- Haiping Xiao
- Thoracic Surgery Department, General Hospital of Southern Theater Command, Guangzhou, 510010 PLA China
| |
Collapse
|
25
|
Xin L, Liu L, Liu C, Zhou LQ, Zhou Q, Yuan YW, Li SH, Zhang HT. DNA-methylation-mediated silencing of miR-7-5p promotes gastric cancer stem cell invasion via increasing Smo and Hes1. J Cell Physiol 2019; 235:2643-2654. [PMID: 31517391 DOI: 10.1002/jcp.29168] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/26/2019] [Indexed: 01/30/2023]
Abstract
Cancer stem cells are undifferentiated cancer cells that have self-renewal ability, a high tumorigenic activity, and a multilineage differentiation potential. MicroRNAs play a critical role in regulating gene expression during carcinogenesis. Here, we investigated the role of miR-7 and the mechanism by which it is dysregulated in gastric cancer stem cells (GCSCs). The stem cell marker, CD44, was used to sort GCSCs by fluorescence-activated cell sorting. We found that CD44 (+) cells have higher invasiveness and form more number of sphere colonies than CD44 (-) cells. Quantitative real-time polymerase chain reaction (PCR) revealed that the miR-7-5p expression was remarkably downregulated in GCSCs but was significantly increased in the methionine-deprived medium. The downregulation of miR-7-5p results from the increased DNA methylation in the promoter region using the methylation-specific PCR. Overexpression of miR-7-5p reduced the formation of colony and decreased the invasion of GCSCs through targeting Smo and Hes1 and subsequent repressing Notch and Hedgehog signaling pathways in vitro. Notably, upregulating miR-7-5p inhibited the growth of tumor in the xenograft model. Hence, these data demonstrated that miR-7-5p represses GCSC invasion through inhibition of Smo and Hes1, which provides a potential therapeutic target of gastric cancer treatment.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shi-Hao Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hou-Ting Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Blosse A, Levy M, Robe C, Staedel C, Copie-Bergman C, Lehours P. Deregulation of miRNA in Helicobacter pylori-Induced Gastric MALT Lymphoma: From Mice to Human. J Clin Med 2019; 8:jcm8060845. [PMID: 31200531 PMCID: PMC6616415 DOI: 10.3390/jcm8060845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric MALT lymphoma (GML) is directly caused by Helicobacter pylori infection but occurs only in a small number of infected subjects. Mechanisms underlying the initiation and progression of GML remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs that are now considered as major players in inflammation and carcinogenesis, acting as oncogenes or tumor suppressors. Previous laboratory studies have shown in a GML mouse model that overexpression of a distinct set of five miRNAs (miR-21a, miR-135b, miR-142a, miR-150, miR-155) could play a critical role in the pathogenesis of GML. Our goal was to compare the miRNA expression profile obtained in the GML mouse model to that in human GML (11 cases of GML compared to 17 cases of gastritis control population). RTqPCR on the five dysregulated miRNAs in the GML mouse model and PCR array followed by RTqPCR confirmation showed that four miRNAs were up-regulated (miR-150, miR-155, miR-196a, miR-138) and two miRNAs down-regulated (miR-153, miR-7) in the stomachs of GML patients vs. gastritis control population. The analysis of their validated targets allowed us to postulate that these miRNAs (except miR-138) could act synergistically in a common signaling cascade promoting lymphomagenesis and could be involved in the pathogenesis of GML.
Collapse
Affiliation(s)
- Alice Blosse
- INSERM, Université Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33000 Bordeaux, France.
| | - Michael Levy
- EC2M3: Department of Academic Research (EA7375), Université Paris Est Créteil (UPEC), Val de Marne, 94000 Créteil, France.
- Department of Gastroenterology, Henri Mondor Hospital, APHP, 94000 Créteil, France.
| | | | - Cathy Staedel
- INSERM U1212, ARNA Laboratory, Université de Bordeaux, 33000 Bordeaux, France.
| | - Christiane Copie-Bergman
- Department of Pathology, Henri Mondor Hospital, APHP, INSERM U955, Equipe 9, Université Paris-Est, 94000 Créteil, France.
| | - Philippe Lehours
- INSERM, Université Bordeaux, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33000 Bordeaux, France.
- French National Reference Center for Campylobacters & Helicobacters, 33000 Bordeaux, France.
| |
Collapse
|
27
|
Chen ZL, Qin L, Peng XB, Hu Y, Liu B. INHBA gene silencing inhibits gastric cancer cell migration and invasion by impeding activation of the TGF-β signaling pathway. J Cell Physiol 2019; 234:18065-18074. [PMID: 30963572 DOI: 10.1002/jcp.28439] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 11/08/2022]
Abstract
Gastric cancer (GC) is the fourth largest cancer in the world, with a 5-year survival rate of <30%. Thus, this study intends to investigate the effects of inhibin βA (INHBA) gene silencing on the migration and invasion of GC cells via the transforming growth factor-β (TGF-β) signaling pathway. Initially, this study determined the expression of INHBA and the TGF-β signaling pathway-related genes in GC tissues. After that, to assess the effect of INHBA silencing on GC progression, GC cells were transfected with short hairpin RNAs that targeted INHBA in order to detect the expression of INHBA and the TGF-β signaling pathway-related genes, as well as cell migration, invasion, and proliferation abilities. Finally, a tumor xenograft model in nude mice was constructed to verify the effect that the silencing of INHBA had on tumor growth. Highly expressed INHBA and activated TGF-β signaling pathways were observed in GC tissues. In response to shINHBA-1 and shINHBA-2, the TGF-β signaling pathway was inhibited in GC cells, whereas the GC cell migration, invasion, proliferation, and tumor growth were significantly dampened. On the basis of the observations and findings of this study, INHBA gene silencing inhibited the progression of GC by inactivating the TGF-β signaling pathway, which provides a potential target in the treatment of GC.
Collapse
Affiliation(s)
- Zong-Lin Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lu Qin
- Department of Intestinal Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Xu-Bin Peng
- Department of Neurosurgery, The Cancer Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Yu Hu
- Center for Experimental Medical Research, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
28
|
Zhang C, Wang T, Wu H, Zhang L, Li K, Wang F, Chen Y, Jin J, Hua D. HEF1 regulates differentiation through the Wnt5a/β-catenin signaling pathway in human gastric cancer. Biochem Biophys Res Commun 2019; 509:201-208. [DOI: 10.1016/j.bbrc.2018.12.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
|
29
|
Said R, Garcia-Mayea Y, Trabelsi N, Setti Boubaker N, Mir C, Blel A, Ati N, Paciucci R, Hernández-Losa J, Rammeh S, Derouiche A, Chebil M, LLeonart ME, Ouerhani S. Expression patterns and bioinformatic analysis of miR-1260a and miR-1274a in Prostate Cancer Tunisian patients. Mol Biol Rep 2018; 45:2345-2358. [PMID: 30250996 DOI: 10.1007/s11033-018-4399-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Currently, microRNAs (miRs) represent great biomarkers in cancer due to their stability and their potential role in diagnosis, prognosis and therapy. This study aims to evaluate the expression levels of miRs-1260 and -1274a in prostate cancer (PC) samples and to identify their eventual targets by using bioinformatic analysis. In this project, we evaluated the expression status of miRs-1260 and -1274a in 86 PC patients and 19 controls by using real-time quantitative PCR and 2-ΔΔCt method. Moreover, we retrieved validated and predicted targets of miRs from several datasets by using the "multiMir" R/Bioconductor package. We have found that miRs-1260 and -1274a were over-expressed in PC patients compared to controls (p < 1 × 10-5). Moreover ROC curve for miRs-1260 and 1274a showed a good performance to distinguish between controls group and PC samples with an area under the ROC curve of 0.897 and 0.784 respectively. However, no significant association could be shown between these two miRs and clinical parameters such as PSA levels, Gleason score, tumor stage, D'Amico classification, lymph node metastasis statues, tumor recurrence, metastasis status and progression after a minimum of 5 years follow-up. Finally, a bioinformatic analysis revealed the association between these two miRs and several targets implicated in prostate cancer initiation pathways.
Collapse
Affiliation(s)
- Rahma Said
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Pathology Department, Vall d'Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035, Barcelona, Spain
| | - Nesrine Trabelsi
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| | - Nouha Setti Boubaker
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Pathology Department, Vall d'Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035, Barcelona, Spain
| | - Ahlem Blel
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Nidhal Ati
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Rosanna Paciucci
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Hernández-Losa
- Biomedical Research in Cancer Stem Cells Group, Pathology Department, Vall d'Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035, Barcelona, Spain
| | - Soumaya Rammeh
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Amine Derouiche
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Mohamed Chebil
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Pathology Department, Vall d'Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035, Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Slah Ouerhani
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia.
| |
Collapse
|
30
|
Dietrich P, Kuphal S, Spruss T, Hellerbrand C, Bosserhoff AK. MicroRNA-622 is a novel mediator of tumorigenicity in melanoma by targeting Kirsten rat sarcoma. Pigment Cell Melanoma Res 2018; 31:614-629. [PMID: 29495114 DOI: 10.1111/pcmr.12698] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022]
Abstract
The network of molecular players is similar when comparing neural crest-derived, actively migrating melanoblasts to melanoma cells. However, melanoblasts are sensitive to differentiation-initiating signals at their target site (epidermis), while melanoma cells maintain migratory and undifferentiated features. We aimed at identifying downregulated genes in melanoma that are particularly upregulated in melanoblasts. Loss of such genes could contribute to stabilization of a dedifferentiated, malignant phenotype in melanoma. We determined that microRNA-622 (miR-622) expression was strongly downregulated in melanoma cells and tissues compared to melanocytes and melanoblast-related cells. miR-622 expression correlated with survival of patients with melanoma. miR-622 re-expression inhibited clonogenicity, proliferation, and migration in melanoma. Inhibition of miR-622 in melanocytes induced enhanced migration. Kirsten rat sarcoma (KRAS) was identified as a major functional target of miR-622 in melanoma. We conclude that miR-622 is a novel tumor suppressor in melanoma and identify the miR-622-KRAS axis as potential therapeutic target.
Collapse
Affiliation(s)
- Peter Dietrich
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thilo Spruss
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
31
|
Chen W, Yu Y, Yang N, Zhu J, Li K, Li R, Su W, Luo L, Hu L, Chen G, Deng H. Effects of Yangzheng Sanjie Decoction-containing serum mediated by microRNA-7 on cell proliferation and apoptosis in gastric cancer. Oncol Lett 2018; 15:3621-3629. [PMID: 29467883 PMCID: PMC5796316 DOI: 10.3892/ol.2018.7757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of cancer and a leading cause of cancer-associated mortality. MicroRNAs (miRNAs/miRs) are demonstrated to function as oncomiRs or tumor-suppressor-miRs in GC. miR-7 has been identified to be a tumor suppressor of GC by targeting epidermal growth factor receptor (EGFR). In our previous study, Yangzheng Sanjie Decoction (YZSJD), a traditional Chinese formula, was identified to be effective in alleviating the symptoms and even postponing turnover of precancerous lesions. To elucidate the mechanism of YZSJD, the present study evaluated the effects of YZSJD of the GC MKN-45 cell line and investigated the underlying molecular mechanisms using YZSJD-containing serum (YCS). The expression of miR-7 in GC, normal and adjacent tissue samples was examined. The results demonstrated that YCS inhibited proliferation by inducing cell cycle arrest at the S phase, and significantly induced apoptosis compared with the control group. miR-7 was significantly downregulated in GC tissues compared with the matched ones. Using reverse transcription-quantitative polymerase chain reaction and western blot analysis, the expression of miR-7 was inversely associated with EGFR. This indicates that YCS inhibits proliferation and induces apoptosis of GC cells mediated by miR-7 targeting EGFR, which may be one of the mechanisms whereby YZSJD exerts its effects on GC.
Collapse
Affiliation(s)
- Wanqun Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China.,Discipline of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China.,Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yaya Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China.,Discipline of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Naikun Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Jingli Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Ke Li
- Pharmaceutical Research Institute, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Ruocun Li
- Pharmaceutical Research Institute, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Wenqiao Su
- Pharmaceutical Research Institute, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, P.R. China
| | - Lina Luo
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China.,Discipline of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ling Hu
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Gengxin Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China.,Discipline of Integrated Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Haixia Deng
- Academy of Chinese Medical Sciences, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
32
|
Liu B, Ding JF, Luo J, Lu L, Yang F, Tan XD. Seven protective miRNA signatures for prognosis of cervical cancer. Oncotarget 2018; 7:56690-56698. [PMID: 27447860 PMCID: PMC5302945 DOI: 10.18632/oncotarget.10678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 01/16/2023] Open
Abstract
Cervical cancer is the second cause of cancer death in females in their 20s and 30s, but there were limited studies about its prognosis. This study aims to identify miRNA related to prognosis and study their functions. TCGA data of patients with cervical cancer were used to build univariate Cox's model with single clinical parameter or miRNA expression level. Multivariate Cox's model was built using both clinical information and miRNA expression levels. At last, STRING was used to enrich gene ontology or pathway for validated targets of significant miRNAs, and visualize the interactions among them. Using univariate Cox's model with clinical parameters, we found that two clinical parameters, tobacco use and clinical stage, and seven miRNAs were highly correlated with the survival status. Only using the expression level of miRNA signatures, the model could separate patients into high-risk and low-risk groups successfully. An optimal feature-selected model was proposed based on two clinical parameters and seven miRNAs. Functional analysis of these seven miRNAs showed they were associated to various pathways related to cancer, including MAPK, VEGF and P53 pathways. These results helped the research of identifying targets for targeted therapy which could potentially allow tailoring of treatment for cervical cancer patients.
Collapse
Affiliation(s)
- Bei Liu
- School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Jin-Feng Ding
- Department of Anesthesiology, Taizhou Hospital, Taizhou, 317000, China
| | - Jian Luo
- Department of Geriatric Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Lu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Science, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Fen Yang
- Department of Nursing, Hubei University of Chinese Medicine, Wuhan, 430063, China
| | - Xiao-Dong Tan
- School of Public Health, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
33
|
miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget 2018; 7:53558-53570. [PMID: 27448964 PMCID: PMC5288205 DOI: 10.18632/oncotarget.10669] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets for various therapy-resistant tumors. However, the association between miRNA and BRAF inhibitor resistance in melanoma remains to be elucidated. We used microarray analysis to comprehensively study the miRNA expression profiling of vemurafenib resistant (VemR) A375 melanoma cells in relation to parental A375 melanoma cells. MicroRNA-7 (miR-7) was identified to be the most significantly down-regulated miRNA in VemR A375 melanoma cells. We also found that miR-7 was down-regulated in Mel-CVR cells (vemurafenib resistant Mel-CV melanoma cells). Reestablishment of miR-7 expression could reverse the resistance of both cells to vemurafenib. We showed that epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R) and CRAF were over-expressed in VemR A375 melanoma cells. Introduction of miR-7 mimics could markedly decrease the expressions of EGFR, IGF-1R and CRAF and further suppressed the activation of MAPK and PI3K/AKT pathway in VemR A375 melanoma cells. Furthermore, tumor growth was inhibited in an in vivo murine VemR A375 melanoma tumor model transfected with miR-7 mimics. Collectively, our study demonstrated that miR-7 could reverse the resistance to BRAF inhibitors in certain vemurafenib resistant melanoma cell lines. It could advance the field and provide the basis for further studies in BRAF inhibitor resistance in melanoma.
Collapse
|
34
|
Clark RJ, Craig MP, Agrawal S, Kadakia M. microRNA involvement in the onset and progression of Barrett's esophagus: a systematic review. Oncotarget 2018; 9:8179-8196. [PMID: 29487725 PMCID: PMC5814292 DOI: 10.18632/oncotarget.24145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that develops from Barrett's esophagus (BE), an intestinal metaplasia of the distal esophagus. microRNAs (miRNAs), short non-coding regulatory RNAs, are frequently dysregulated in BE and are thought to play key roles in the onset of BE and its progression to EAC. miRNAs thus have potential diagnostic and prognostic value and are increasingly being used as cancer biomarkers. This review summarizes the current literature related to miRNAs that are dysregulated in BE within the context of Hedgehog, Notch, MAPK, NF kappa-B, Wnt and epithelial-mesenchymal transition (EMT) signaling which are thought to drive BE onset and progression. This comprehensive analysis of miRNAs and their associated signaling in the regulation of BE provides an overview of vital discoveries in this field and highlights gaps in our understanding of BE pathophysiology that warrant further investigation.
Collapse
Affiliation(s)
- Reilly J Clark
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | | | - Madhavi Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
35
|
Xin Z, Ma Q, Ren S, Wang G, Li F. The understanding of circular RNAs as special triggers in carcinogenesis. Brief Funct Genomics 2017; 16:80-86. [PMID: 26874353 DOI: 10.1093/bfgp/elw001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a large type of noncoding RNAs characterized by their circular shape resulting from covalently closed continuous loops. They are known to regulate gene expression in mammals. These tissue-specific transcripts are largely generated from exonic or intronic sequences of their host genes. Although several models of circRNA biogenesis have been proposed, the understanding of their origin is far from complete. Unlike other noncoding RNAs, circRNAs are widely expressed, highly conserved and stable in cytoplasm, which confer special functionalities to them. They are known to serve as microRNA (miRNA) sponges, regulators of alternative splicing, transcription factors and encode for proteins. The expression of circRNAs is associated with several pathological states and may potentially serve as novel diagnostic or predictive biomarkers. CircRNAs are known to regulate the expression of numerous cancer-related miRNAs. The circRNA-miRNA-mRNA axis is a known regulatory pattern of several cancer-associated pathways, with both agonist and antagonist effects on carcinogenesis. In consideration of their potential clinical relevance, circRNAs are at the center of ongoing research initiatives on cancer prevention and treatment. In this review, we discuss the current understanding of circRNAs and the prospects for their potential clinical application in the management of cancer patients.
Collapse
Affiliation(s)
- Zhuoyuan Xin
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Qin Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangchun Ren
- The Key Laboratory for Bionics Engineering, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China; The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, China; The Key Laboratory for Bionics Engineering, Ministry of Education, China, Jilin University, Changchun, China
| |
Collapse
|
36
|
Jeong D, Ham J, Park S, Lee S, Lee H, Kang HS, Kim SJ. MicroRNA-7-5p mediates the signaling of hepatocyte growth factor to suppress oncogenes in the MCF-10A mammary epithelial cell. Sci Rep 2017; 7:15425. [PMID: 29133945 PMCID: PMC5684415 DOI: 10.1038/s41598-017-15846-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
MicroRNA-7 (miR-7) is a non-coding RNA of 23-nucleotides that has been shown to act as a tumor suppressor in various cancers including breast cancer. Although there have been copious studies on the action mechanisms of miR-7, little is known about how the miR is controlled in the mammary cell. In this study, we performed a genome-wide expression analysis in miR-7-transfected MCF-10A breast cell line to explore the upstream regulators of miR-7. Analysis of the dysregulated target gene pool predicted hepatocyte growth factor (HGF) as the most plausible upstream regulator of miR-7. MiR-7 was upregulated in MCF-10A cells by HGF, and subsequently downregulated upon treatment with siRNA against HGF. However, the expression of HGF did not significantly change through either an upregulation or downregulation of miR-7 expression, suggesting that HGF acts upstream of miR-7. In addition, the target genes of miR-7, such as EGFR, KLF4, FAK, PAK1 and SET8, which are all known oncogenes, were downregulated in HGF-treated MCF-10A; in contrast, knocking down HGF recovered their expression. These results indicate that miR-7 mediates the activity of HGF to suppress oncogenic proteins, which inhibits the development of normal cells, at least MCF-10A, into cancerous cells.
Collapse
Affiliation(s)
- Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
37
|
Yang X, Xiong Q, Wu Y, Li S, Ge F. Quantitative Proteomics Reveals the Regulatory Networks of Circular RNA CDR1as in Hepatocellular Carcinoma Cells. J Proteome Res 2017; 16:3891-3902. [PMID: 28892615 DOI: 10.1021/acs.jproteome.7b00519] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs), a class of widespread endogenous RNAs, play crucial roles in diverse biological processes and are potential biomarkers in diverse human diseases and cancers. Cerebellar-degeneration-related protein 1 antisense RNA (CDR1as), an oncogenic circRNA, is involved in human tumorigenesis and is dysregulated in hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying CDR1as functions in HCC remain unclear. Here we explored the functions of CDR1as and searched for CDR1as-regulated proteins in HCC cells. A quantitative proteomics strategy was employed to globally identify CDR1as-regulated proteins in HCC cells. In total, we identified 330 differentially expressed proteins (DEPs) upon enhanced CDR1as expression in HepG2 cells, indicating that they could be proteins regulated by CDR1as. Bioinformatic analysis revealed that many DEPs were involved in cell proliferation and the cell cycle. Further functional studies of epidermal growth factor receptor (EGFR) found that CDR1as exerts its effects on cell proliferation at least in part through the regulation of EGFR expression. We further confirmed that CDR1as could inhibit the expression of microRNA-7 (miR-7). EGFR is a validated target of miR-7; therefore, CDR1as may exert its function by regulating EGFR expression via targeting miR-7 in HCC cells. Taken together, we revealed novel functions and underlying mechanisms of CDR1as in HCC cells. This study serves as the first proteome-wide analysis of a circRNA-regulated protein in cells and provides a reliable and highly efficient method for globally identifying circRNA-regulated proteins.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qian Xiong
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Ying Wu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Siting Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| |
Collapse
|
38
|
Wang Y, Wang Q, Song J. Inhibition of autophagy potentiates the proliferation inhibition activity of microRNA-7 in human hepatocellular carcinoma cells. Oncol Lett 2017; 14:3566-3572. [PMID: 28927113 PMCID: PMC5588049 DOI: 10.3892/ol.2017.6573] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are important molecules that are able to regulate multiple cellular processes in cancer cells. miR-7 has been previously identified as a tumor suppressive miRNA in several types of cancer. The aim of the present study was to investigate whether miR-7 is able to regulate autophagy in hepatocellular carcinoma (HCC) cells. It was identified that miR-7 was significantly downregulated in tumor tissues compared with adjacent normal tissues. Overexpression of miR-7 inhibited cell proliferative activity, which was partially reversed by miR-7 inhibitor. In addition, overexpression of miR-7 significantly induced an increasen in autophagic activity, and luciferase activity assay and western blot analysis identified that mammalian target of rapamycin (mTOR) was a direct target of miR-7. In addition, inhibition of autophagy by 3-methyladenine resulted in a marked enhancement of the proliferation inhibition effect of miR-7. In conclusion, miR-7 was identified to induce proliferation inhibition and autophagy in HCC cells by targeting mTOR, and inhibition of autophagy may be utilized to enhance the antitumor activity of miR-7.
Collapse
Affiliation(s)
- Yanna Wang
- Department of Infectious Diseases, Yantai Hospital For Infectious Diseases, Yantai, Shandong 264001, P.R. China
| | - Qiaoling Wang
- Department of Infectious Diseases, Yantai Hospital For Infectious Diseases, Yantai, Shandong 264001, P.R. China
| | - Jiqing Song
- Nursing Department of Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| |
Collapse
|
39
|
Gu DN, Jiang MJ, Mei Z, Dai JJ, Dai CY, Fang C, Huang Q, Tian L. microRNA-7 impairs autophagy-derived pools of glucose to suppress pancreatic cancer progression. Cancer Lett 2017; 400:69-78. [PMID: 28450156 DOI: 10.1016/j.canlet.2017.04.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/22/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer commonly addicts to aerobic glycolysis, and abnormally activates autophagy to adapt the stringent metabolic microenvironment. microRNA-7 (miR-7) was supposed to modulate various gastrointestinal cancer progression. We wonder whether miR-7 could destroy the reprogrammed metabolic homeostasis in pancreatic cancer via modulating the level of autophagy, and further affect tumor proliferation and survival. Herein, we first reported that pancreatic cancer could take advantage of autophagy as a survival strategy to provide essential glucose required for glycolysis metabolism. Of note, under the stressful tumor microenvironment, miR-7 could repress autophagy through up-regulation of LKB1-AMPK-mTOR signaling, and directly targeting the stages of autophagy induction and vesicle elongation to reduce the supply of intracellular glucose to glycolysis metabolism. Furthermore, miR-7 inhibited pancreatic cancer cell proliferation and metastasis in vitro and in vivo. Consistently, lentivirus-mediated miR-7 effectively reduced the growth of patient-derived xenograft by interfering glycolysis via inhibition of autophagy. Together, these data suggested miR-7 might function as an important regulator to impair autophagy-derived pools of glucose to suppress pancreatic cancer progress. Hence, miR-7 might be a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Dian-Na Gu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhu Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Juan-Juan Dai
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chen-Yun Dai
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chi Fang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; The Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
40
|
Xu N, Lian YJ, Dai X, Wang YJ. miR-7 Increases Cisplatin Sensitivity of Gastric Cancer Cells Through Suppressing mTOR. Technol Cancer Res Treat 2017; 16:1022-1030. [PMID: 28693382 PMCID: PMC5762063 DOI: 10.1177/1533034617717863] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs have been reported to play an important role in diverse biological processes and cancer progression. MicroRNA-7 has been observed to be downregulated in human gastric cancer tissues, but the function of microRNA-7 in gastric cancer has not been well investigated. In this study, we demonstrate that the expression of microRNA-7 was significantly downregulated in 30 pairs of human gastric cancer tissues compared to adjacent normal tissues. Enforced expression of microRNA-7 inhibited cell proliferation and migration abilities of gastric cancer cells, BGC823 and SGC7901. Furthermore, microRNA-7 targeted mTOR in gastric cancer cells. In human clinical specimens, mTOR was higher expressed in gastric cancer tissues compared with adjacent normal tissues. More interestingly, microRNA-7 also sensitizes gastric cancer cells to cisplatin (CDDP) by targeting mTOR. Collectively, our results demonstrate that microRNA-7 is a tumor suppressor microRNA and indicate its potential application for the treatment of human gastric cancer in future.
Collapse
Affiliation(s)
- Ning Xu
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yan-Jun Lian
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Xiang Dai
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yuan-Jie Wang
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, China
| |
Collapse
|
41
|
Ning T, Zhang H, Wang X, Li S, Zhang L, Deng T, Zhou L, Liu R, Wang X, Bai M, Ge S, Li H, Huang D, Ying G, Ba Y. miR-370 regulates cell proliferation and migration by targeting EGFR in gastric cancer. Oncol Rep 2017; 38:384-392. [DOI: 10.3892/or.2017.5660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/30/2016] [Indexed: 11/06/2022] Open
|
42
|
Ning T, Peng Z, Li S, Qu Y, Zhang H, Duan J, Wang X, Yang H, Liu R, Deng T, Bai M, Wang Y, Si Y, Zhang L, Wang X, Ge S, Zhou L, Ying G, Ba Y. miR-455 inhibits cell proliferation and migration via negative regulation of EGFR in human gastric cancer. Oncol Rep 2017; 38:175-182. [DOI: 10.3892/or.2017.5657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/24/2016] [Indexed: 11/05/2022] Open
|
43
|
Feng S, Wang Y, Zhang R, Yang G, Liang Z, Wang Z, Zhang G. Curcumin exerts its antitumor activity through regulation of miR-7/Skp2/p21 in nasopharyngeal carcinoma cells. Onco Targets Ther 2017; 10:2377-2388. [PMID: 28496336 PMCID: PMC5422505 DOI: 10.2147/ott.s130055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Curcumin, a natural polyphenol compound, exhibits tumor suppressive activity in a wide spectrum of cancers, including nasopharyngeal carcinoma cells. However, the exact molecular mechanisms governing this tumor suppressive activity remain elusive. Multiple studies have revealed that miRNAs are critically involved in tumorigenesis, indicating that targeting miRNAs could be a therapeutic strategy for treating human cancer. In the current study, we set out to determine whether curcumin regulates miR-7 expression in nasopharyngeal carcinoma cells. We found that curcumin inhibited cell growth, induced apoptosis, retarded cell migration and invasion, and triggered cell cycle arrest in the human nasopharyngeal carcinoma cell lines CNE1 and CNE2. Importantly, we observed that curcumin upregulated the expression of miR-7 and subsequently inhibited Skp2, a direct miR-7 target. Our results identified that upregulation of miR-7 by curcumin could benefit nasopharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Shaoyan Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou.,Department of Otolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai
| | - Yu Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou
| | | | - Guangwei Yang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Zibin Liang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou
| | - Gehua Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou
| |
Collapse
|
44
|
Suárez-Arriaga MC, Torres J, Camorlinga-Ponce M, Gómez-Delgado A, Piña-Sánchez P, Valdez-Salazar HA, Ribas-Aparicio RM, Fuentes-Pananá EM, Ruiz-Tachiquín ME. A proposed method for the relative quantification of levels of circulating microRNAs in the plasma of gastric cancer patients. Oncol Lett 2017; 13:3109-3117. [PMID: 28521416 PMCID: PMC5431292 DOI: 10.3892/ol.2017.5816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common type of malignancy and the third leading cause of cancer-associated mortality worldwide. It is necessary to identify novel methods aimed at improving the early diagnosis and treatment of GC. MicroRNA expression profiles in the plasma of patients with GC have demonstrated a potential use in the opportune diagnosis of this neoplasm. However, there are currently no standardized targets for use in the normalization of microRNA Cq values for different neoplasms. The present study tested two normalization approaches while analyzing plasma derived from patients with GC and non-atrophic gastritis. The first method utilized a panel of small nucleolar RNAs (snoRNAs) and a small nuclear RNA (snRNA) provided by a commercial array. The second normalization approach involved the use of hsa-miR-18a-5p and hsa-miR-29a-3p, which were identified by a stability analysis of the samples being tested. The results revealed that the snoRNAs and snRNA were not expressed in all samples tested. Only the stable microRNAs allowed a narrow distribution of the data and enabled the identification of specific downregulation of hsa-miR-200c-3p and hsa-miR-26b-5p in patients with GC. hsa-miR-200c-3p and hsa-miR-26b-5p have been previously linked to cancer, and a Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that these microRNAs were associated with cell adhesion, cell cycle and cancer pathways.
Collapse
Affiliation(s)
- Mayra-Cecilia Suárez-Arriaga
- Medical Research Unit in Human Genetics, Pediatrics Hospital 'Dr Silvestre Frenk Freud', XXI Century National Medical Center, Mexican Institute of Social Security, 06720 Mexico City, Mexico.,Department of Microbiology, National School of Biological Sciences, National Polytechnic Institute, 11340 Mexico City, Mexico
| | - Javier Torres
- Medical Research Unit in Infectious and Parasitic Diseases, Pediatrics Hospital 'Dr Silvestre Frenk Freud', XXI Century National Medical Center, Mexican Institute of Social Security, 06720 Mexico City, Mexico
| | - Margarita Camorlinga-Ponce
- Medical Research Unit in Infectious and Parasitic Diseases, Pediatrics Hospital 'Dr Silvestre Frenk Freud', XXI Century National Medical Center, Mexican Institute of Social Security, 06720 Mexico City, Mexico
| | - Alejandro Gómez-Delgado
- Medical Research Unit in Infectious and Parasitic Diseases, Pediatrics Hospital 'Dr Silvestre Frenk Freud', XXI Century National Medical Center, Mexican Institute of Social Security, 06720 Mexico City, Mexico
| | - Patricia Piña-Sánchez
- Medical Research Unit in Oncological Diseases, Oncology Hospital, XXI Century National Medical Center, Mexican Institute of Social Security, 06720 Mexico City, Mexico
| | - Hilda-Alicia Valdez-Salazar
- Medical Research Unit in Infectious and Parasitic Diseases, Pediatrics Hospital 'Dr Silvestre Frenk Freud', XXI Century National Medical Center, Mexican Institute of Social Security, 06720 Mexico City, Mexico
| | - Rosa-María Ribas-Aparicio
- Department of Microbiology, National School of Biological Sciences, National Polytechnic Institute, 11340 Mexico City, Mexico
| | - Ezequiel M Fuentes-Pananá
- Virology and Cancer Research Unit, Children's Hospital of Mexico 'Federico Gómez', 06720 Mexico City, Mexico
| | - Martha-Eugenia Ruiz-Tachiquín
- Medical Research Unit in Human Genetics, Pediatrics Hospital 'Dr Silvestre Frenk Freud', XXI Century National Medical Center, Mexican Institute of Social Security, 06720 Mexico City, Mexico
| |
Collapse
|
45
|
Significance of microRNA 21 in gastric cancer. Clin Res Hepatol Gastroenterol 2016; 40:538-545. [PMID: 27179559 DOI: 10.1016/j.clinre.2016.02.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Despite promising developments of treatment, the mortality due to gastric cancer remains high and the mechanisms of gastric cancer initiation and the development also remains elusive. It has been reported that patients with positive serologic tests for H. pylori have a higher risk of the development of gastric cancer. microRNAs (miRNAs) are short non-coding RNA molecules consisting of 21-25 nucleotides (nt) in length. The miRNAs silence their cognate target genes by inhibiting mRNA translation or degrading the mRNA molecules by binding to their 3'-untranslated (UTR) regions and plays a very important role in cancer biology. Recent evidences indicate that miR-21 is overexpressed in tumour tissue, including gastric cancer and plays a vital role in tumour cell proliferation, apoptosis, invasion and angiogenesis. Elevated levels of miR-21 is associated with downregulation of tumour suppressor genes, such as programmed cell death 4 (PDCD4), tissue inhibitor of metalloproteinase 3, phosphatase and tensin homolog (PTEN), tropomyosin 1, ras homolog gene family member B, and maspin. Silencing of miR-21 through the use of a miR-21 inhibitor affected cancer cell viability, induced cell cycle arrest and increased chemosensitivity to anticancer agents indicating that miR-21 functions as an oncogene. Although an increased expression level of miR-21 has been observed in gastric cancer, studies related to the role of miR-21 in gastric cancer progression is very limited. The main thrust of this mini review is to explain the potency of miR-21 as a prognostic and/or diagnostic biomarker and as a new target for clinical therapeutic for interventions of gastric cancer progression.
Collapse
|
46
|
Ji S, Zhang B, Kong Y, Ma F, Hua Y. miR-326 Inhibits Gastric Cancer Cell Growth Through Downregulating NOB1. Oncol Res 2016; 25:853-861. [PMID: 27733214 PMCID: PMC7841105 DOI: 10.3727/096504016x14759582767486] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in the development and progression of human cancers, including gastric cancer (GC). The discovery of miRNAs may provide a new and powerful tool for studying the mechanism, diagnosis, and treatment of GC. In this study, we aimed to investigate the role of miR-326 in the development and progression of GC. Quantitative PCR (qPCR) was used to measure the expression level of miR-326 in GC tissues and cell lines. We found that miR-326 was significantly downregulated during GC. In addition, overexpression of miR-326 inhibited GC cell proliferation. Fluorescence-activated cell sorting (FACS) further showed that miR-326 significantly induced GC cell G2/M arrest. Subsequent dual-luciferase reporter assay identified one of the proto-oncogene NOB1 as a direct target of miR-326, and NOB1 can save growth inhibition caused by miR-326. We also confirmed that the growth inhibition caused by miR-326 is associated with AKT pathway activation. Taken together, our results indicate that miR-326 could serve as a potential diagnostic biomarker and therapeutic option for GC in the near future.
Collapse
|
47
|
Liu HT, Gao P. The roles of microRNAs related with progression and metastasis in human cancers. Tumour Biol 2016; 37:10.1007/s13277-016-5436-9. [PMID: 27714675 DOI: 10.1007/s13277-016-5436-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023] Open
Abstract
Metastasis is an important factor in predicting the prognosis of the patients with cancers and contributes to high cancer-related mortality. Recent studies indicated that microRNAs (miRNAs) played a functional role in the initiation and progression of human malignancies. MicroRNAs are small non-coding RNAs of about 22 nucleotides in length that can induce messenger RNA (mRNA) degradation or repress mRNA translation by binding to the 3' untranslated region (3'-UTR) of their target genes. Overwhelming reports indicated that miRNAs could regulate cancer invasion and metastasis via epithelial-to-mesenchymal transition (EMT)-related and/or non-EMT-related mechanisms. In this review, we concentrate on the underlying mechanisms of miRNAs in regulating cancer progression and metastasis.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
- Department of Pathology, School of Basic Medicine, Shandong University, Jinan, People's Republic of China
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
48
|
Gui F, Hong Z, You Z, Wu H, Zhang Y. MiR-21 inhibitor suppressed the progression of retinoblastoma via the modulation of PTEN/PI3K/AKT pathway. Cell Biol Int 2016; 40:1294-1302. [PMID: 27600360 DOI: 10.1002/cbin.10678] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Fu Gui
- Department of Ophthalmology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| | - Zhengdong Hong
- Department of Urology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| | - Zhipeng You
- Department of Ophthalmology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| | - Hongxi Wu
- Department of Ophthalmology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| | - Yulan Zhang
- Department of Ophthalmology; The Second Affiliated Hospital of Nanchang University; Nanchang Jiangxi Province 330006 China
| |
Collapse
|
49
|
Chen WQ, Hu L, Chen GX, Deng HX. Role of microRNA-7 in digestive system malignancy. World J Gastrointest Oncol 2016; 8:121-127. [PMID: 26798443 PMCID: PMC4714141 DOI: 10.4251/wjgo.v8.i1.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 02/05/2023] Open
Abstract
There are several malignancies of the digestive system (including gastric, pancreatic and colorectal cancers, and hepatocellular carcinoma), which are the most common types of cancer and a major cause of death worldwide. MicroRNA (miR)-7 is abundant in the pancreas, playing an important role in pancreatic development and endocrine function. Expression of miR-7 is downregulated in digestive system malignancies compared with normal tissue. Although there are contrasting results for miR-7 expression, almost all research reveals that miR-7 is a tumor suppressor, by targeting various genes in specific pathways. Moreover, miR-7 can target different genes simultaneously in different malignancies of the digestive system. By acting on many cytokines, miR-7 is also involved in many gastrointestinal inflammatory diseases as a significant carcinogenic factor. Consequently, miR-7 might be a biomarker or therapeutic target gene in digestive system malignancies.
Collapse
|
50
|
Zou X, Zhong J, Li J, Su Z, Chen Y, Deng W, Li Y, Lu S, Lin Y, Luo L, Li Z, Cai Z, Tang A. miR-362-3p targets nemo-like kinase and functions as a tumor suppressor in renal cancer cells. Mol Med Rep 2016; 13:994-1002. [PMID: 26647877 DOI: 10.3892/mmr.2015.4632] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 10/21/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to exhibit abnormal expression patterns in various types of human cancer. The aim of the present study was to identify a novel tumor suppressor microRNA (miR) and investigate its physiological function and mechanism in renal cell carcinoma (RCC). The expression levels of miRNA (miR)‑362‑3p expres were measured in 47 pairs of RCC and adjacent normal tissue samples, using reverse transcription-quantitative polymerase chain reaction analysis. In addition, miR‑362‑3p was transfected into renal cancer cells to investigate its role in the regulation of cell proliferation, migration, invasion, apoptosis and cell cycle. Identification of the target gene of miR‑362‑3p was performed using luciferase reporter assays and western blot analyses. The results demonstrated that the expression levels of miR‑362‑3p were downregulated in the RCC tissue samples, compared with the adjacent normal tissue samples. The upregulation of miR‑362‑3p using a synthesized mimic suppressed the proliferation, migration and invasion of the renal cancer cells, and induced cell apoptosis and G1 phase arrest. Further experiments demonstrated that the overexpression of miR‑362‑3p resulted in decrease expression levels of nemo-like kinase. These results suggested that miR-362-3p functions as a tumor suppressor in RCC, and may serve as a potential molecular target in the treatment of RCC.
Collapse
Affiliation(s)
- Xiaowen Zou
- National‑Regional Key Technology Engineering Laboratory for Clinical Application of Cancer Genomics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jianhua Zhong
- National‑Regional Key Technology Engineering Laboratory for Clinical Application of Cancer Genomics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Jiaqiang Li
- Department of Pediatric Urinary Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Zhengming Su
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong 515063, P.R. China
| | - Yan Chen
- National‑Regional Key Technology Engineering Laboratory for Clinical Application of Cancer Genomics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Wanxin Deng
- National‑Regional Key Technology Engineering Laboratory for Clinical Application of Cancer Genomics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Yuchi Li
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong 515063, P.R. China
| | - Siheng Lu
- Department of Clinical Medicine, Shantou University Medical College, Shantou, Guangdong 515063, P.R. China
| | - Youcheng Lin
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Liya Luo
- National‑Regional Key Technology Engineering Laboratory for Clinical Application of Cancer Genomics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zesong Li
- National‑Regional Key Technology Engineering Laboratory for Clinical Application of Cancer Genomics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhiming Cai
- National‑Regional Key Technology Engineering Laboratory for Clinical Application of Cancer Genomics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Aifa Tang
- National‑Regional Key Technology Engineering Laboratory for Clinical Application of Cancer Genomics, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|