1
|
Xie P, Wu M, Wang H, Zhang B, Zhang Z, Yan J, Yu M, Yu Q, Zhao Y, Huang D, Xu M, Xu W, Li H, Xu Y, Xiao Y, Guo L. GOLM1 dictates acquired Lenvatinib resistance by a GOLM1-CSN5 positive feedback loop upon EGFR signaling activation in hepatocellular carcinoma. Oncogene 2024; 43:3108-3120. [PMID: 39251847 DOI: 10.1038/s41388-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Lenvatinib is a multiple receptor tyrosine kinases inhibitor (TKI) authorized for first-line treatment of hepatocellular carcinoma (HCC). However, Lenvatinib resistance is common in HCC clinical treatment, highlighting the urgent need to understand mechanisms of resistance. Here, we identified Golgi membrane protein 1 (GOLM1), a type II transmembrane protein originally located in the Golgi apparatus, as a novel regulator of Lenvatinib resistance. We found GOLM1 was overexpressed in Lenvatinib resistant human HCC cell lines, blood and HCC samples. Additionally, GOLM1 overexpression contributes to Lenvatinib resistance and HCC progression in vitro and in vivo. Mechanistically, GOLM1 upregulates CSN5 expression through EGFR-STAT3 pathway. Reversely, CSN5 deubiquitinates and stabilizes GOLM1 protein by inhibiting ubiquitin-proteasome pathway of GOLM1. Furthermore, clinical specimens of HCC showed a positive correlation between the activation of the GOLM1-EGFR-STAT3-CSN5 axis. Finally, GOLM1 knockdown was found to act in synergy with Lenvatinib in subcutaneous and orthotopic mouse model. Overall, these findings identify a mechanism of resistance to Lenvatinib treatment for HCC, highlight an effective predictive biomarker of Lenvatinib response in HCC and show that targeting GOLM1 may improve the clinical benefit of Lenvatinib.
Collapse
Affiliation(s)
- Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Mengyuan Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Hui Wang
- Department of Molecular Biology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, PR China
| | - Bo Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Zihao Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jiuliang Yan
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Mincheng Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Qiang Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Yufei Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, 330000, PR China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Wenxin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Hui Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Translational Research Center, Shanghai, 200031, PR China.
| | - Yongfeng Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| | - Yongsheng Xiao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| | - Lei Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
2
|
Bai W, Li B, Wu P, Li X, Huang X, Shi N, Yang C, Hu F, Xie X. The first structure of human Golm1 coiled coil domain reveals an unexpected tetramer and highlights its structural diversity. Int J Biol Macromol 2024; 275:133624. [PMID: 38964685 DOI: 10.1016/j.ijbiomac.2024.133624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Golgi membrane protein 1 (Golm1), a transmembrane protein with diverse subcellular localizations, has garnered significant attention in recent years due to its strong association with the development and progression of liver diseases and numerous cancers. Interestingly, although Golm1 is a membrane protein, the C-terminal of Golm1, which contains a coiled coil domain and a flexible acid region, can also be detected in the plasma of patients with various liver diseases. Notably, the coiled coil domain of serum Golm1 is postulated to play a pivotal role in physiological and pathological functions. However, little is currently known about the structure of this coiled coil domain and the full-length protein, which may limit our understanding of Golm1. Therefore, this study aims to address this gap in knowledge and reports the first crystal structure of the coiled coil domain of Golm1 at a resolution of 2.28 Å. Meanwhile, we have also confirmed that the Golm1 coiled coil domain in solution can form tetramer. Our results reveal that Golm1 can form a novel tetrameric structure that differs from the previous reported dimeric structure Golm1 could assemble, which may provide novel insights into the diversity of physiological functions and pathological roles.
Collapse
Affiliation(s)
- Wenfeng Bai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Bowen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Pei Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinzhu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaochen Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ning Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Congcong Yang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Fen Hu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Department of Etiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350002, China.
| | - Xi Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
3
|
Guo DZ, Huang A, Wang YP, Cao Y, Fan J, Yang XR, Zhou J. Development of an Eight-gene Prognostic Model for Overall Survival Prediction in Patients with Hepatocellular Carcinoma. J Clin Transl Hepatol 2021; 9:898-908. [PMID: 34966653 PMCID: PMC8666363 DOI: 10.14218/jcth.2020.00152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/27/2021] [Accepted: 04/11/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND AIMS The overall survival (OS) of hepatocellular carcinoma (HCC) remains dismal. Bioinformatic analysis of transcriptome data could identify patients with poor OS and may facilitate clinical decision. This study aimed to develop a prognostic gene model for HCC. METHODS GSE14520 was retrieved as a training set to identify differential expressed genes (DEGs) between tumor and adjacent liver tissues in HCC patients with different OS. A DEG-based prognostic model was then constructed and the TCGA-LIHC and ICGC-LIRI datasets were used to validate the model. The area under the receiver operating characteristic curve (AUC) and hazard ratio (HR) of the model for OS were calculated. A model-based nomogram was established and verified. RESULTS In the training set, differential expression analysis identified 80 genes dysregulated in oxidation-reduction and metabolism regulation. After univariate Cox and LASSO regression, eight genes (LPCAT1, DHRS1, SORBS2, ALDH5A1, SULT1C2, SPP1, HEY1 and GOLM1) were selected to build the prognostic model. The AUC for 1-, 3- and 5-year OS were 0.779, 0.736, 0.754 in training set and 0.693, 0.689, 0.693 in the TCGA-LIHC validation set, respectively. The AUC for 1- and 3-year OS were 0.767 and 0.705 in the ICGC-LIRI validation set. Multivariate analysis confirmed the model was an independent prognostic factor (training set: HR=4.422, p<0.001; TCGA-LIHC validation set: HR=2.561, p<0.001; ICGC-LIRI validation set: HR=3.931, p<0.001). Furthermore, a nomogram combining the model and AJCC stage was established and validated, showing increased OS predictive efficacy compared with the prognostic model (p=0.035) or AJCC stage (p<0.001). CONCLUSIONS Our eight-gene prognostic model and the related nomogram represent as reliable prognostic tools for OS prediction in HCC patients.
Collapse
Affiliation(s)
- De-Zhen Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Peng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Correspondence to: Jian Zhou and Xin-Rong Yang, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-2118-1117 (JZ), https://orcid.org/0000-0002-2716-9338 (XRY). Tel: +86-21-64041990, Fax: +86-21-64037181, E-mail: (JZ) or (XRY)
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Correspondence to: Jian Zhou and Xin-Rong Yang, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai 200032, China. ORCID: https://orcid.org/0000-0002-2118-1117 (JZ), https://orcid.org/0000-0002-2716-9338 (XRY). Tel: +86-21-64041990, Fax: +86-21-64037181, E-mail: (JZ) or (XRY)
| |
Collapse
|
4
|
Liu Y, Hu X, Liu S, Zhou S, Chen Z, Jin H. Golgi Phosphoprotein 73: The Driver of Epithelial-Mesenchymal Transition in Cancer. Front Oncol 2021; 11:783860. [PMID: 34950590 PMCID: PMC8688837 DOI: 10.3389/fonc.2021.783860] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Golgi phosphoprotein 73 (GP73, also termed as GOLM1 or GOLPH2) is a glycosylated protein residing on cis-Golgi cisternae and highly expressed in various types of cancer tissues. Since GP73 is a secretory protein and detectable in serum derived from cancer patients, it has been regarded as a novel serum biomarker for the diagnosis of different cancers, especially hepatocellular carcinoma (HCC). However, the functional roles of GP73 in cancer development are still poorly understood. In recent years, it has been discovered that GP73 acts as a multifunctional protein-facilitating cancer progression, and strikingly, it has been identified as a leading factor promoting epithelial-mesenchymal transition (EMT) of cancer cells and causing cancer metastasis. In this review, we have overviewed the latest findings of the functional roles of GP73 in elevating cancer progression, especially in facilitating EMT and cancer metastasis through modulating expression, transactivation, and trafficking of EMT-related proteins. In addition, unsolved research fields of GP73 have been lightened, which might be helpful to elucidate the regulatory mechanisms of GP73 on EMT and provide potential approaches in therapeutics against cancer metastasis.
Collapse
Affiliation(s)
- Yiming Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinyang Hu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Shiyao Liu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Dang Y, Yu J, Zhao S, Jin L, Cao X, Wang Q. GOLM1 Drives Colorectal Cancer Metastasis by Regulating Myeloid-derived Suppressor Cells. J Cancer 2021; 12:7158-7166. [PMID: 34729117 PMCID: PMC8558645 DOI: 10.7150/jca.61567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer (CRC) is the most common digestive neoplasms worldwide, metastasis and recurrence still account for the leading cause for the high mortality rate, but the exact mechanisms remain unclear. More and more evidence has indicated that the deregulation of GOLM1 plays a crucial role in cancer progression. Here, we reported a novel role of GOLM1 in promoting CRC metastasis. In this study, the expression of GOLM1 was detected in human CRC cohort. The function of GOLM1 in CRC metastasis was analyzed by in vivo cecum orthotopic model. We found that the expression of GOLM1 was significantly increased in CRC tissues than adjacent nontumor. Overexpression GOLM1 can promote CRC immune escape and metastasis by recruiting of myeloid-derived suppressor cells (MDSCs) at the same time. PF-04136309, a small molecule and specific inhibitor of CCR2 can largely suppressed GOLM1-mediated CRC metastasis. These results suggest that GOLM1 can promote CRC metastasis and is a prognostic biomarker in human CRC.
Collapse
Affiliation(s)
- Yunzhi Dang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710086, China
| | | | | | | | | | | |
Collapse
|
6
|
Barek MA, Aziz MA, Jafrin S, Islam MS. Association of GOLPH2 gene polymorphisms (rs10868366 and rs7019241) with the risk of Alzheimer's disease: Evidence from a meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Shen JG, Shen J, Teng RY, Wang LB, Zhao WH, Wang QC. High GP73 Expression Correlates with Poor Response to Neoadjuvant Chemotherapy and Survival in Gastric Cancer: A Tissue Microarray Study. Pathol Oncol Res 2021; 27:603838. [PMID: 34257562 PMCID: PMC8262201 DOI: 10.3389/pore.2021.603838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/26/2021] [Indexed: 02/05/2023]
Abstract
Golgi protein 73 (GP73) is a type II Golgi transmembrane protein which is overexpressed in several cancers, however, its role in gastric cancer is still unclear. The aim of this study is to investigate if high GP73 expression is associated with pathological tumor response to neoadjuvant chemotherapy and prognosis for patients with gastric cancer. A total of 348 patients with gastric cancer, who had undergone surgery between 1999 and 2011 were retrospectively reviewed, GP73 expression was examined in tumor tissues using tissue microarray and the correlations between its expression and pathological response to neoadjuvant chemotherapy as well as patients prognosis were analyzed. We found that GP73 expression was not associated with clinicopathologic features including tumor size, differentiation and TNM stage. High expression of GP73 was associated with less pathological tumor response to neoadjuvant chemotherapy and poor survival in gastric cancer, multivariate analysis showed GP73 expression was an independent predictive factor for pathological response to neoadjuvant chemotherapy and for prognosis in patients with gastric cancer. Our results suggest that GP73 expression correlates with the effect of neoadjuvant chemotherapy and is a promising biomarker to identify patients with poor prognosis.
Collapse
Affiliation(s)
- Jian Guo Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Yue Teng
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Bo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen He Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qin Chuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Liewen H, Markuly N, Läubli H, Liu Y, Matter MS, Liewen N, Renner C, Zippelius A, Stenner F. Therapeutic Targeting of Golgi Phosphoprotein 2 (GOLPH2) with Armed Antibodies: A Preclinical Study of Anti-GOLPH2 Antibody Drug Conjugates in Lung and Colorectal Cancer Models of Patient Derived Xenografts (PDX). Target Oncol 2020; 14:577-590. [PMID: 31541350 DOI: 10.1007/s11523-019-00667-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Golgi phosphoprotein 2 (GOLPH2) has been shown to be involved in chronic inflammatory processes and carcinogenesis. GOLPH2 is prominently overexpressed in hepatocellular carcinoma, melanoma, glioblastoma, prostate, lung, and colorectal cancer. With a low and tightly regulated expression in non-malignant tissues, GOLPH2 has been proposed as an attractive target for cancer therapy. However, GOLPH2 is predominantly located intracellularly and when situated outside of the cell it is proteolytically cleaved and shed from the cell surface. Until now, GOLPH2 has been regarded as an "undruggable" target. OBJECTIVE We sought to create antibodies that specifically bind to GOLPH2 overexpressing tumor cells. PATIENTS AND METHODS Antibodies binding to membranous GOLPH2 despite shedding of the protein were generated from a scFV library screening. These antibodies target the part of GOLPH2 that remains at the cell surface after proteolytic cleavage. These antibodies were then tested in vitro and in vivo. RESULTS Two candidates (G2-1 and G2-2) showed target specific binding in vitro. Utilizing a tumor array (n = 128 tumors) with G2-2 and a reference antibody, a GOLPH2 expression scoring system was established. Rapid internalization of the antibodies was noted so this was exploited to deliver a toxic payload of pyrrolobenzodiazepine (PBD). In two patient-derived xenograft (PDX)-models, colorectal and lung cancer, the G2-2 antibody drug conjugate (ADC) displayed high efficacy with significant tumor responses (P = 0.001; P = 0.013) and improved survival (P = 0.0001; P = 0.0011) compared with controls. CONCLUSIONS Treatment with GOLPH2-directed antibodies induces durable responses in colorectal and lung cancer models. With a robust companion assay for GOLPH2 positivity at hand our findings prepare for the translation into a clinical trial.
Collapse
Affiliation(s)
- Heike Liewen
- Cureab GmbH, Benkenstrasse 254c, Technologiezentrum, 4108, Witterswil, Switzerland
| | - Norbert Markuly
- Cureab GmbH, Benkenstrasse 254c, Technologiezentrum, 4108, Witterswil, Switzerland
| | - Heinz Läubli
- Medical Oncology, University Hospital Basel & Laboratory Cancer Immunology, Department Biomedicine, University Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Yang Liu
- Medical Oncology, University Hospital Basel & Laboratory Cancer Immunology, Department Biomedicine, University Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Nora Liewen
- University of Cologne, Albertus-Magnus-Platz, 50923, Cologne, Germany
| | - Christoph Renner
- Medical Oncology, University Hospital Basel & Laboratory Cancer Immunology, Department Biomedicine, University Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Alfred Zippelius
- Medical Oncology, University Hospital Basel & Laboratory Cancer Immunology, Department Biomedicine, University Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Frank Stenner
- Medical Oncology, University Hospital Basel & Laboratory Cancer Immunology, Department Biomedicine, University Basel, Petersgraben 4, 4031, Basel, Switzerland.
| |
Collapse
|
9
|
Xia Y, Zhang Y, Shen M, Xu H, Li Z, He N. Golgi protein 73 and its diagnostic value in liver diseases. Cell Prolif 2019; 52:e12538. [PMID: 30341783 PMCID: PMC6496820 DOI: 10.1111/cpr.12538] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Golgi protein 73 (GP73, also referred to as Golph 2) with 400 amino acids is a 73 kDa transmembrane glycoprotein typically found in the cis-Golg complex. It is primarily expressed in epithelial cells, which has been found upregulated in hepatocytes in patients suffering from both viral and non-viral liver diseases. GP73 has drawn increasing attention for its potential application in the diagnosis of liver diseases such as hepatitis, liver cirrhosis and liver cancer. Herein, we reviewed the discovery history of GP73 and summarized studies by many groups around the world, aiming at understanding its structure, expression, function, detection methods and the relationship between GP73 and liver diseases in various settings.
Collapse
Affiliation(s)
- Yanyan Xia
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yuanying Zhang
- Department of Molecular BiologyJiangsu Cancer HospitalNanjingChina
| | - Mengjiao Shen
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Hongpan Xu
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zhiyang Li
- Center of Laboratory MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Nongyue He
- State Key Laboratory of BioelectronicsSoutheast UniversityNanjingChina
| |
Collapse
|
10
|
Abstract
The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a "metabolic heart" or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.
Collapse
|
11
|
Teerlink CC, Huff C, Stevens J, Yu Y, Holmen SL, Silvis MR, Trombetti K, Zhao H, Grossman D, Farnham JM, Wen J, Facelli JC, Thomas A, Babst M, Florell SR, Meyer L, Zone JJ, Leachman S, Cannon-Albright LA. A Nonsynonymous Variant in the GOLM1 Gene in Cutaneous Malignant Melanoma. J Natl Cancer Inst 2018; 110:1380-1385. [PMID: 29659923 PMCID: PMC6292789 DOI: 10.1093/jnci/djy058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
Background Statistically significant linkage of melanoma to chromosome 9q21 was previously reported in a Danish pedigree resource and independently confirmed in Utah high-risk pedigrees, indicating strong evidence that this region contains a melanoma predisposition gene. Methods Whole-exome sequencing of pairs of related melanoma case subjects from two pedigrees with evidence of 9q21 linkage was performed to identify the responsible predisposition gene. Candidate variants were tested for association with melanoma in an independent set of 454 unrelated familial melanoma case subjects and 396 unrelated cancer-free control subjects from Utah, and 1534 melanoma case subjects and 1146 noncancer control subjects from Texas (MD Anderson) via a two-sided Fisher exact test. Results A rare nonsynonymous variant in Golgi Membrane Protein 1 (GOLM1), rs149739829, shared in two hypothesized predisposition carriers in one linked pedigree was observed. Segregation of this variant in additional affected relatives of the index carriers was confirmed. A statistically significant excess of carriers of the variant was observed among Utah case subjects and control subjects (odds ratio [OR] = 9.81, 95% confidence interval [CI] = 8.35 to 11.26, P < .001) and statistically significantly confirmed in Texas case subjects and control subjects (OR = 2.45, 95% CI = 1.65 to 3.25, P = .02). Conclusion These findings support GOLM1 as a candidate melanoma predisposition gene.
Collapse
Affiliation(s)
- Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeff Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT
| | - Mark R Silvis
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Kirby Trombetti
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Hua Zhao
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT
| | - James M Farnham
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Jingran Wen
- Utah Department of Health, Salt Lake City, UT
| | - Julio C Facelli
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT
| | - Alun Thomas
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Markus Babst
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT
- Department of Biology, University of Utah, Salt Lake City, UT
| | - Scott R Florell
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT
| | - Laurence Meyer
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT
| | - John J Zone
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT
| | - Sancy Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
12
|
Liang R, Liu Z, Piao X, Zuo M, Zhang J, Liu Z, Li Y, Lin Y. Research progress on GP73 in malignant tumors. Onco Targets Ther 2018; 11:7417-7421. [PMID: 30425529 PMCID: PMC6204869 DOI: 10.2147/ott.s181239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant cancer is one of the most serious diseases that currently endanger human health. As most tumors are diagnosed at an advanced stage, the current treatments show poor therapeutic efficacy, and the patients have poor prognosis. However, a 5-year survival rate higher than 80% could be achieved if tumors are diagnosed at an early stage. Therefore, early diagnosis and treatment play important roles in the prevention and treatment of malignant tumors, and serum tumor markers are important for the early diagnosis of malignant cancers. Recent studies have shown that GP73, a transmembrane protein, has greater diagnostic value in primary liver cancer than in other types of cancers, and research on the regulation of GP73 expression has unveiled broad prospects in anticancer targeted therapy. Thus, GP73, as a new tumor marker, deserves further study.
Collapse
Affiliation(s)
- Rong Liang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Ziyu Liu
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Xuemin Piao
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Mingtang Zuo
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Jinyan Zhang
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Zhihui Liu
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Yongqiang Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| | - Yan Lin
- Department of Medical Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China,
| |
Collapse
|
13
|
Li H, Yang LL, Xiao Y, Deng WW, Chen L, Wu L, Zhang WF, Sun ZJ. Overexpression of Golgi Phosphoprotein 2 Is Associated With Poor Prognosis in Oral Squamous Cell Carcinoma. Am J Clin Pathol 2018; 150:74-83. [PMID: 29788173 DOI: 10.1093/ajcp/aqy029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The aims of this study were to investigate the relationship between Golgi phosphoprotein 2 (GOLPH2) and oral squamous cell carcinoma (OSCC) and explore the clinical significance of GOLPH2 in OSCC. METHODS Tissue microarrays from human OSCC samples were stained for GOLPH2 expression and clinicopathologic features. Kaplan-Meier analysis was used to compare the survival of patients with high GOLPH2 expression and patients with low GOLPH2 expression. RESULTS We found GOLPH2 is highly expressed in OSCC tissue, and the GOLPH2 expression in metastatic lymph nodes is higher than in tumor tissue. Our data indicate that patients with higher GOLPH2 expression have poor overall survival compared with those with lower GOLPH2 expression. This study demonstrated that GOLPH2 was associated with CD44, SOX2, Slug, B7-H3, B7-H4, TIM3, and VISTA. CONCLUSIONS These findings suggest GOLPH2 is a potential marker for estimating the patient's prognosis and may be a target for molecular-targeted therapy against OSCC.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Xu R, Ji J, Zhang X, Han M, Zhang C, Xu Y, Wei Y, Wang S, Huang B, Chen A, Zhang D, Zhang Q, Li W, Jiang Z, Wang J, Li X. PDGFA/PDGFRα-regulated GOLM1 promotes human glioma progression through activation of AKT. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:193. [PMID: 29282077 PMCID: PMC5745991 DOI: 10.1186/s13046-017-0665-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Golgi Membrane Protein 1 (GOLM1), a protein involved in the trafficking of proteins through the Golgi apparatus, has been shown to be oncogenic in a variety of human cancers. Here, we examined the role of GOLM1 in the development of human glioma. METHODS qRT-PCR, immunohistochemistry, and western blot analysis were performed to evaluate GOLM1 levels in cell lines and a cohort of primary human glioma and non-neoplastic brain tissue samples. Glioma cell lines were modified with lentiviral constructs expressing short hairpin RNAs targeting GOLM1 or overexpressing the protein to assess function in proliferation, viability, and migration and invasion in vitro using EdU, CCK8, clone-forming, Transwell assays, 3D tumor spheroid invasion assay and in vivo in orthotopic implantations. Protein lysates were used to screen a membrane-based antibody array to identify kinases mediated by GOLM1. Specific inhibitors of PDGFRα (AG1296) and AKT (MK-2206) were used to examine the regulation of PDGFA/PDGFRα on GOLM1 and the underlying pathway respectively. RESULTS qRT-PCR, immunohistochemistry and western blot analysis revealed GOLM1 expression to be elevated in glioma tissues and cell lines. Silencing of GOLM1 attenuated proliferation, migration, and invasion of U251, A172 and P3#GBM (primary glioma) cells, while overexpression of GOLM1 enhanced malignant behavior of U87MG cells. We further demonstrated that activation of AKT is the driving force of GOLM1-promoted glioma progression. The last finding of this research belongs to the regulation of PDGFA/PDGFRα on GOLM1, while GOLM1 was also a key element of PDGFA/PDGFRα-mediated activation of AKT, as well as the progression of glioma cells. CONCLUSIONS PDGFA/PDGFRα-regulated GOLM1 promotes glioma progression possibly through activation of a key signaling kinase, AKT. GOLM1 interference may therefore provide a novel therapeutic target and improve the efficacy of glioma treatment, particularly in the case of the proneural molecular subtype of human glioma.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.,Department of Neurosurgery, Jining No.1 People's Hospital, Jiankang Road, Jining, 272011, China
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China. .,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
15
|
GP73 regulates Hepatic Steatosis by enhancing SCAP-SREBPs interaction. Sci Rep 2017; 7:14932. [PMID: 29097707 PMCID: PMC5668365 DOI: 10.1038/s41598-017-06500-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Elevated Golgi phosphoprotein 2 (GP73, also known as GOLPH2 or GOLM1) expression in serum and liver, which can be induced by viral infection and cytokine treatments, is intimately connected with liver disease, including acute hepatitis, cirrhosis and hepatocellular carcinoma (HCC). However, its pathogenic roles in hepatic diseases have never been clarified in detail. Here, we showed that the upregulated GP73 is indispensable for SREBPs activation and lipogenesis. Notably, GP73 overexpression enhanced SCAP-SREBPs binding and its Golgi trafficking even under cholesterol sufficiency. Consistent with these functional findings, GP73 blockage could alleviate tunicamycin-induced liver steatosis by reducing SREBPs activation. A significant positive correlation of GP73 with genes in lipid metabolism pathway was also identified in liver cancer based on data from The Cancer Genome Atlas (TCGA) dataset. Our findings revealed previously unrecognized role of GP73 in lipid metabolism.
Collapse
|
16
|
Zhang Y, Hu W, Wang L, Han B, Lin R, Wei N. Association of GOLPH2 expression with survival in non-small-cell lung cancer: clinical implications and biological validation. Biomark Med 2017; 11:967-977. [PMID: 28880107 DOI: 10.2217/bmm-2017-0199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM We investigated the role of GOLPH2 in non-small-cell lung cancer (NSCLC). METHODS We analyzed the relationship between the expression of GOLPH2 and the clinical pathological characteristics of patients with NSCLC. The function of GOLPH2 in NSCLC cell lines was also explored through overexpression and knockdown studies. RESULTS The positive expression rate of GOLPH2 protein in NSCLC tissue was higher than that of normal lung tissue. We found that positive GOLPH2 expression was closely associated with unfavorable features of patients with NSCLC. The GOLPH2 expression was an independent predictor of the prognosis of patients with NSCLC. That GOLPH2 can promote the proliferation and invasion of NSCLC cells. CONCLUSION The GOLPH2 is a novel marker for NSCLC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wenteng Hu
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Liwei Wang
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Biao Han
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ruijiang Lin
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ning Wei
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
17
|
Donizy P, Kaczorowski M, Biecek P, Halon A, Szkudlarek T, Matkowski R. Golgi-Related Proteins GOLPH2 (GP73/GOLM1) and GOLPH3 (GOPP1/MIDAS) in Cutaneous Melanoma: Patterns of Expression and Prognostic Significance. Int J Mol Sci 2016; 17:E1619. [PMID: 27706081 PMCID: PMC5085652 DOI: 10.3390/ijms17101619] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
GOLPH2 and GOLPH3 are Golgi-related proteins associated with aggressiveness and progression of a number of cancers. Their prognostic significance in melanoma has not yet been analyzed. We performed immunohistochemical analysis for GOLPH2 and GOLPH3 in 20 normal skin, 30 benign nevi and 100 primary melanoma tissue samples and evaluated their expression in three compartments: cancer cells, tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs). High levels of both proteins in melanoma cells were associated with characteristics of aggressive disease, and shorter disease-free survival (DFS) and cancer-specific overall survival (CSOS). On the contrary, increased numbers of GOLPH2-positive and GOLPH3-positive TAMs were observed in thinner, non-ulcerated tumors, with brisk lymphocytic reaction and absent lymphangioinvasion. Distant metastases were not observed among patients with high numbers of GOLPH2-positive TAMs. Increased expression of either protein in TAMs was related to prolonged CSOS and DFS. Similarly, GOLPH3-expressing CAFs were more frequent in thin melanomas with low mitotic rate, without ulceration and lymphangioinvasion. Moreover, increased GOLPH3-positive CAFs correlated with the absence of regional or distant metastases, and with longer CSOS and DFS. GOLPH2 expression was not observed in CAFs. Our results suggest that GOLPH2 and GOLPH3 play a role in melanoma progression and are potential targets for molecular-based therapies.
Collapse
Affiliation(s)
- Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Maciej Kaczorowski
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Teresa Szkudlarek
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
| | - Rafal Matkowski
- Department of Oncology, Wroclaw Medical University; pl. Hirszfelda 12, 53-413 Wroclaw, Poland.
- Lower Silesian Cancer Center, Hirszfelda 12, 53-413 Wroclaw, Poland.
| |
Collapse
|