1
|
Okon E, Gaweł-Bęben K, Jarzab A, Koch W, Kukula-Koch W, Wawruszak A. Therapeutic Potential of 1,8-Dihydroanthraquinone Derivatives for Breast Cancer. Int J Mol Sci 2023; 24:15789. [PMID: 37958772 PMCID: PMC10648492 DOI: 10.3390/ijms242115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. In recent years, significant progress has been made in BC therapy. However, serious side effects resulting from the use of standard chemotherapeutic drugs, as well as the phenomenon of multidrug resistance (MDR), limit the effectiveness of approved therapies. Advanced research in the BC area is necessary to create more effective and safer forms of therapy to improve the outlook for individuals diagnosed with this aggressive neoplasm. For decades, plants and natural products with anticancer properties have been successfully utilized in treating various medical conditions. Anthraquinone derivatives are tricyclic secondary metabolites of natural origin that have been identified in plants, lichens, and fungi. They represent a few botanical families, e.g., Rhamnaceae, Rubiaceae, Fabaceae, Polygonaceae, and others. The review comprehensively covers and analyzes the most recent advances in the anticancer activity of 1,8-dihydroanthraquinone derivatives (emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion) applied both individually, or in combination with other chemotherapeutic agents, in in vitro and in vivo BC models. The application of nanoparticles for in vitro and in vivo evidence in the context of 1,8-dihydroanthraquinone derivatives was also described.
Collapse
Affiliation(s)
- Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland;
| | - Agata Jarzab
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (E.O.); (A.J.)
| |
Collapse
|
2
|
Park J, Lee S, Yoon H, Kang E, Cho S. Anti-migration and anti-invasion effects of LY-290181 on breast cancer cell lines through the inhibition of Twist1. BMB Rep 2023; 56:410-415. [PMID: 37357535 PMCID: PMC10390291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/04/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
Breast cancer has become the most common cancer among women worldwide. Among breast cancers, metastatic breast cancer is associated with the highest mortality rate. Twist1, one of the epithelial-mesenchymal transition-regulating transcription factors, is known to promote the intravasation of breast cancer cells into metastatic sites. Therefore, targeting Twist1 to develop anti-cancer drugs might be a valuable strategy. In this study, LY-290181 dose-dependently inhibited migration, invasion, and multicellular tumor spheroid invasion in breast cancer cell lines. These anti-cancer effects of LY-290181 were mediated through the down-regulation of Twist1 protein levels. LY-290181 inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways. Therefore, our findings suggest that LY-290181 may serve as a basis for future research and development of an anti-cancer agent targeting metastatic cancers. [BMB Reports 2023; 56(7): 410-415].
Collapse
Affiliation(s)
- Jiyoung Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Sewoong Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Haelim Yoon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Eunjeong Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
3
|
Huang A, Hu A, Li L, Ma C, Yang T, Gao H, Zhu C, Cai Z, Qiu X, Xu J, Shen J, Zhong L, Chen G. Effect of Zn 2+ on emodin molecules studied by time-resolved fluorescence spectroscopy and quantum chemical calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122217. [PMID: 36529043 DOI: 10.1016/j.saa.2022.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Emodin is a natural drug for treating neurodegenerative diseases and plays a vital role in the mitigation of nerve damage. Metal ions can modify the drug properties of emodin, where Zn2+ can synergize with the emodin molecule and enhance the drug effect of emodin. Besides, complex changes can be observed in the fluorescence intensity and fluorescence lifetime of the emodin molecule as the concentration of Zn2+ increases. Herein, the synergistic effects of ligand structural in Zn(II)-Emodin complexes and the electronic effects of metal elements on the antioxidant properties of the complexes are discussed in detail based on UV-vis absorption spectroscopy, fluorescence spectroscopy, time-correlated single photon counting (TCSPC) technique and quantum chemical calculations at the B3LYP/6-31G(d) level. The experimental results confirm that Zn2+ can coordinate with the hydroxyl groups on the emodin to make the molecule structure more rigid, thus inhibiting the non-radiative processes such as high-frequency vibrations of the emodin molecule in solution. The suppression of non-radiative processes leads to an increase in the average fluorescence lifetime of the emodin molecule, and finally results in the enhanced fluorescence intensity. The chemical softness of Zn(II)-Emodin is then confirmed to be higher than that of emodin by Gaussian calculations, indicating its higher chemical reactivity and lower stability. The stronger electron donating ability of Zn(II)-Emodin compared to emodin may explain the higher antioxidant activity of Zn(II)-Emodin, which gives it a stronger pharmacological activity. The results of this study show that emodin can well complex with Zn2+ to remove excess Zn2+ in human body and the resulting complex has better antioxidant properties, which helps to understand the role of Zn2+ in drug-metal coordination and provides guidance for the design of new drugs.
Collapse
Affiliation(s)
- Anlan Huang
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Anqi Hu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Lei Li
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Chaoqun Ma
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Taiqun Yang
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Hui Gao
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Chun Zhu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Zicheng Cai
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Xiaoqian Qiu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Jinzeng Xu
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Jialu Shen
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Lvyuan Zhong
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Lihu Avenue 1800, 214122 Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, 214122 Wuxi, China.
| |
Collapse
|
4
|
Kim JY, Jung CW, Lee WS, Jeong HJ, Park MJ, Jang WI, Kim EH. Emodin coupled with high LET neutron beam-a novel approach to treat on glioblastoma. JOURNAL OF RADIATION RESEARCH 2022; 63:817-827. [PMID: 36253116 PMCID: PMC9726713 DOI: 10.1093/jrr/rrac061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The primary motivation of this investigative study is trying to find an alternative treatment that can be used to slow down or treat glioblastoma due to the witnessed toxic side effects of the current drugs coupled with limited effectiveness in overall treatment. Consequently, a Chinese plant extract emodin proves to play a critical role in this investigative study since results from the Western blot and the other accompanying assays for anti-cancer effects indicate that it cannot work a lot to suppress cell migration and possible invasion, but rather emodin can be combined with radiation to give desired outcomes. Our result shows that the kind of radiation which acts well with emodin is neutron radiation rather than gamma radiation. Emodin significantly enhanced the radiosensitivity of LN18 and LN428 cells to γ-rays through MTT assay and cell counting. Accordingly, exposure to neutron radiation in the presence of emodin induced apoptotic cell death and autophagic cell death to a significantly higher extent, and suppressed cell migration and invasiveness more robustly. These effects are presumably due to the ability of emodin to amplify the effective dose from neutron radiation more efficiently. Thus, the study below is one such trial towards new interventional discovery and development in relation to glioblastoma treatment.
Collapse
Affiliation(s)
| | | | | | - Hyeon-Jeong Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- School of Biomedical Science, Korea University, 145 Anam-ro Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myung-Jin Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Won Il Jang
- Corresponding author. Eun Ho Kim, Department of Biochemistry, School of Medicine, Daegu Catholic University, 33 17gil, Duryugongwon-ro, Nam-gu, Daegu, Korea. Tel: 82536504480; E-mail address: . Won Il Jang, Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea. Tel: 8229704480; E-mail address:
| | - Eun Ho Kim
- Corresponding author. Eun Ho Kim, Department of Biochemistry, School of Medicine, Daegu Catholic University, 33 17gil, Duryugongwon-ro, Nam-gu, Daegu, Korea. Tel: 82536504480; E-mail address: . Won Il Jang, Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea. Tel: 8229704480; E-mail address:
| |
Collapse
|
5
|
Balakrishnan V, Ganapathy S, Veerasamy V, Duraisamy R, Jawaharlal S, Lakshmanan V. Nerolidol assists Cisplatin to induce early apoptosis in human laryngeal carcinoma Hep 2 cells through ROS and mitochondrial-mediated pathway: An in vitro and in silico view. J Food Biochem 2022; 46:e14465. [PMID: 36226832 DOI: 10.1111/jfbc.14465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 01/14/2023]
Abstract
The objective of this study was to examine Nerolidol (NER) and Cisplatin (CIS) performed against human laryngeal carcinoma (Hep 2) cells. We evaluated the effect of NER, CIS, and NER + CIS on cell viability, cell migration, oxidative stress, mitochondrial membrane depolarization, nuclear condensation, apoptotic induction, and DNA damage in Hep 2 cells. We used the MTT assay to assess the cytotoxicity effect of NER and CIS on Hep 2 cells in terms of morphological alterations. Present results demonstrated that IC50 values of NER and CIS have potential cytotoxicity against Hep 2 cells. NER effectively inhibited cell viability, increased reactive oxygen species generation, apoptotic induction, and DNA damage in Hep 2 cells. In addition, the docking study evaluated the structural binding interaction of NER with PI3K/Akt and PCNA protein. Furthermore, NER with PI3K/Akt, PCNA has a higher crucial score and affinity. Present results infer that NER could be used to target signaling molecules in anticancer studies. PRACTICAL APPLICATIONS: Nerolidol is a dietary phytochemical with high biological activity that can find in a variety of plants. Many researchers focused on Nerolidol to treat various diseases including cancer. However, there is no studies exist on laryngeal cancer. This study uses Nerolidol and Cisplatin to generate oxidative stress and stimulate apoptosis and DNA damage in human laryngeal cancer cells. Based on present findings, Nerolidol could be a choice of anticancer medication, either alone or in combination against oral squamous cell carcinomas in both in vitro and in vivo experimental systems.
Collapse
Affiliation(s)
- Vaitheeswari Balakrishnan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Sindhu Ganapathy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India.,Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Ramachandhiran Duraisamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Saranya Jawaharlal
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Vennila Lakshmanan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| |
Collapse
|
6
|
Cell Metabolomics Reveals the Potential Mechanism of Aloe Emodin and Emodin Inhibiting Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232213738. [PMID: 36430215 PMCID: PMC9694700 DOI: 10.3390/ijms232213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Metastasis is one of the main obstacles for the treatment and prognosis of breast cancer. In this study, the effects and possible mechanisms of aloe emodin (AE) and emodin (EMD) for inhibiting breast cancer metastasis were investigated via cell metabolomics. First, a co-culture model of MCF-7 and HUVEC cells was established and compared with a traditional single culture of MCF-7 cells. The results showed that HUVEC cells could promote the development of cancer cells to a malignant phenotype. Moreover, AE and EMD could inhibit adhesion, invasion, and angiogenesis and induce anoikis of MCF-7 cells in co-culture model. Then, the potential mechanisms behind AE and EMD inhibition of MCF-7 cell metastasis were explored using a metabolomics method based on UPLC-Q-TOF/MS multivariate statistical analysis. Consequently, 27 and 13 biomarkers were identified in AE and EMD groups, respectively, including polyamine metabolism, methionine cycle, TCA cycle, glutathione metabolism, purine metabolism, and aspartate synthesis. The typical metabolites were quantitatively analyzed, and the results showed that the inhibitory effect of AE was significantly better than EMD. All results confirmed that AE and EMD could inhibit metastasis of breast cancer cells through different pathways. Our study provides an overall view of the underlying mechanisms of AE and EMD against breast cancer metastasis.
Collapse
|
7
|
Goda MS, Elhady SS, Nafie MS, Bogari HA, Malatani RT, Hareeri RH, Badr JM, Donia MS. Phragmanthera austroarabica A.G.Mill. and J.A.Nyberg Triggers Apoptosis in MDA-MB-231 Cells In Vitro and In Vivo Assays: Simultaneous Determination of Selected Constituents. Metabolites 2022; 12:metabo12100921. [PMID: 36295823 PMCID: PMC9611470 DOI: 10.3390/metabo12100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Phragmanthera austroarabica (Loranthaceae), a semi-parasitic plant, is well known for its high content of polyphenols that are responsible for its antioxidant and anti-inflammatory activities. Gallic acid, catechin, and methyl gallate are bioactive metabolites of common occurrence in the family of Loranthaceae. Herein, the concentrations of these bioactive metabolites were assessed using high-performance thin layer chromatography (HPTLC). Methyl gallate, catechin, and gallic acid were scanned at 280 nm. Their concentrations were assessed as 14.5, 6.5 and 43.6 mg/g of plant dry extract, respectively. Phragmanthera austroarabica extract as well as the three pure compounds were evaluated regarding the cytotoxic activity. The plant extract exhibited promising cytotoxic activity against MDA-MB-231 breast cells with the IC50 value of 19.8 μg/mL while the tested pure compounds displayed IC50 values in the range of 21.26–29.6 μg/mL. For apoptosis investigation, P. austroarabica induced apoptotic cell death by 111-fold change and necrosis by 9.31-fold change. It also activated the proapoptotic genes markers and inhibited the antiapoptotic gene, validating the apoptosis mechanism. Moreover, in vivo studies revealed a significant reduction in the breast tumor volume and weight in solid Ehrlich carcinoma (SEC) mice. The treatment of SEC mice with P. austroarabica extract improved both hematological and biochemical parameters with amelioration in the liver and kidney histopathology to near normal. Taken together, P. austroarabica extract exhibited promising anti-cancer activity through an apoptosis-induction.
Collapse
Affiliation(s)
- Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Hanin A. Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raina T. Malatani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Marwa S. Donia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
8
|
Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, AL-Yasari IH. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules 2022; 27:5452. [PMID: 36080219 PMCID: PMC9458090 DOI: 10.3390/molecules27175452] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is still one of the most widespread diseases globally, it is considered a vital health challenge worldwide and one of the main barriers to long life expectancy. Due to the potential toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative treatments is a top priority. Plant-derived natural products have high potential in cancer treatment due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of natural product or natural products with chemotherapeutic drugs was provided. This review should provide a strong platform for researchers and clinicians to improve basic and clinical research in the development of alternative anticancer medicines.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Aya O. Azzam
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 964, Iraq
| |
Collapse
|
9
|
Yalçınkaya S, Yalçın Azarkan S, Karahan Çakmakçı AG. Determination of the effect of L. plantarum AB6-25, L. plantarum MK55 and S. boulardii T8-3C microorganisms on colon, cervix, and breast cancer cell lines: Molecular docking, and molecular dynamics study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
11
|
Xu L, Liu Y, Chen Y, Zhu R, Li S, Zhang S, Zhang J, Xie HQ, Zhao B. Emodin inhibits U87 glioblastoma cells migration by activating aryl hydrocarbon receptor (AhR) signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113357. [PMID: 35272197 DOI: 10.1016/j.ecoenv.2022.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated receptor to mediates the biological reactions of many environmental and natural compounds, which is highly expressed in glioblastoma. Although it has been reported that AhR agonist emodin can suppress some kinds of tumors, its inhibitory effect on glioblastoma migration and its relationship with AhR remain unclear. Based on the complexity of tumor pathogenesis and the tissue specificity of AhR, we hope can further understand the effect of emodin on glioblastoma and explore its mechanism. We found that the inhibitory effect of emodin on the migration of U87 glioblastoma cells increased with time, and the cell migration ability was inhibited by about 25% after 36 h exposure. In this process, emodin promoted the expression of the tumor suppressor IL24 by activating the AhR signaling pathway. Reducing the expression of AhR or IL24 by interfering RNA could block or relieve the inhibitory effect of emodin on the U87 cells migration, which indicates the inhibition of emodin on the migration of glioblastoma is mediated by the AhR-IL24 axis. Our data proved the AhR-IL24 signal axis is an important pathway for emodin to inhibit the migration of glioblastoma, and the AhR signaling pathway can be used as a key target to research the regulation effect and its mechanism of compounds on glioblastoma migration.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Siqi Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Songyan Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
12
|
Cipriani C, Pacheco MP, Kishk A, Wachich M, Abankwa D, Schaffner-Reckinger E, Sauter T. Bruceine D Identified as a Drug Candidate against Breast Cancer by a Novel Drug Selection Pipeline and Cell Viability Assay. Pharmaceuticals (Basel) 2022; 15:179. [PMID: 35215292 PMCID: PMC8875459 DOI: 10.3390/ph15020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
The multi-target effects of natural products allow us to fight complex diseases like cancer on multiple fronts. Unlike docking techniques, network-based approaches such as genome-scale metabolic modelling can capture multi-target effects. However, the incompleteness of natural product target information reduces the prediction accuracy of in silico gene knockout strategies. Here, we present a drug selection workflow based on context-specific genome-scale metabolic models, built from the expression data of cancer cells treated with natural products, to predict cell viability. The workflow comprises four steps: first, in silico single-drug and drug combination predictions; second, the assessment of the effects of natural products on cancer metabolism via the computation of a dissimilarity score between the treated and control models; third, the identification of natural products with similar effects to the approved drugs; and fourth, the identification of drugs with the predicted effects in pathways of interest, such as the androgen and estrogen pathway. Out of the initial 101 natural products, nine candidates were tested in a 2D cell viability assay. Bruceine D, emodin, and scutellarein showed a dose-dependent inhibition of MCF-7 and Hs 578T cell proliferation with IC50 values between 0.7 to 65 μM, depending on the drug and cell line. Bruceine D, extracted from Brucea javanica seeds, showed the highest potency.
Collapse
Affiliation(s)
- Claudia Cipriani
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maria Pires Pacheco
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Ali Kishk
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| | - Maryem Wachich
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Elisabeth Schaffner-Reckinger
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (M.W.); (D.A.); (E.S.-R.)
| | - Thomas Sauter
- Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg; (C.C.); (M.P.P.); (A.K.)
| |
Collapse
|
13
|
Antiangiogenic Phytochemicals Constituent of Diet as Promising Candidates for Chemoprevention of Cancer. Antioxidants (Basel) 2022; 11:antiox11020302. [PMID: 35204185 PMCID: PMC8868078 DOI: 10.3390/antiox11020302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the extensive knowledge on cancer nature acquired over the last years, the high incidence of this disease evidences a need for new approaches that complement the clinical intervention of tumors. Interestingly, many types of cancer are closely related to dietary habits associated with the Western lifestyle, such as low fruit and vegetable intake. Recent advances around the old-conceived term of chemoprevention highlight the important role of phytochemicals as good candidates for the prevention or treatment of cancer. The potential to inhibit angiogenesis exhibited by many natural compounds constituent of plant foods makes them especially interesting for their use as chemopreventive agents. Here, we review the antitumoral potential, with a focus on the antiangiogenic effects, of phenolic and polyphenolic compounds, such as quercetin or myricetin; terpenoids, such as ursolic acid or kahweol; and anthraquinones from Aloe vera, in different in vitro and in vivo assays, and the available clinical data. Although clinical trials have failed to assess the preventive role of many of these compounds, encouraging preclinical data support the efficacy of phytochemicals constituent of diet in the prevention and treatment of cancer, but a deeper understanding of their mechanisms of action and better designed clinical trials are urgently needed.
Collapse
|
14
|
Emodin ameliorates antioxidant capacity and exerts neuroprotective effect via PKM2-mediated Nrf2 transactivation. Food Chem Toxicol 2021; 160:112790. [PMID: 34971761 DOI: 10.1016/j.fct.2021.112790] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022]
Abstract
Pyruvate kinase M2 (PKM2) is overexpressed in neuronal cells. However, there are few studies on the involvement of PKM2 modulators in neurodegenerative diseases. Emodin, a dominating anthraquinone derivative extracting from the rhizome of rhubarb, has received expanding consideration due to its pharmacological properties. Our data reveal that emodin could resist hydrogen peroxide- or 6-hydroxydopamine-mediated mitochondrial fission and apoptosis in PC12 cells (a neuron-like rat pheochromocytoma cell line). Notably, emodin at nontoxic concentrations significantly inhibits PKM2 activity and promotes dissociation of tetrameric PKM2 into dimers in cells. The PKM2 dimerization enhances the interaction of PKM2 and NFE2-related factor 2 (Nrf2), which further triggers the activation of the Nrf2/ARE pathway to upregulate a panel of cytoprotective genes. Modulating the PKM2/Nrf2/ARE axis by emodin unveils a novel mechanism for understanding the pharmacological functions of emodin. Our findings indicate that emodin is a potential candidate for the treatment of oxidative stress-related neurodegenerative disorders.
Collapse
|
15
|
Lee HS, Lee IH, Kang K, Park SI, Kwon TW, Lee DY. A Network Pharmacology Analysis of the Systems-Perspective Anticancer Mechanisms of the Herbal Drug FDY2004 for Breast Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a malignant tumor with high incidence, prevalence, and mortality rates in women. In recent years, herbal drugs have been assessed as anticancer therapy against breast cancer, owing to their promising therapeutic effects and reduced toxicity. However, their pharmacological mechanisms have not been fully explored at the systemic level. Here, we conducted a network pharmacology analysis of the systems-perspective molecular mechanisms of FDY2004, an anticancer herbal formula that consists of Moutan Radicis Cortex, Persicae Semen , and Rhei Radix et Rhizoma, against breast cancer. We determined that FDY2004 may contain 28 active compounds that exert pharmacological effects by targeting 113 breast cancer-related human genes/proteins. Based on the gene ontology terms, the FDY2004 targets were involved in modulating biological processes such as cell growth, cell proliferation, and apoptosis. Pathway enrichment analysis identified various breast cancer-associated pathways that may mediate the anticancer activity of FDY2004, including the PI3K-Akt, MAPK, TNF, HIF-1, focal adhesion, estrogen, ErbB, NF-kappa B, p53, and VEGF signaling pathways. Thus, our analysis offers novel insights into the anticancer properties of herbal drugs for breast cancer treatment from a systemic perspective.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - In-Hee Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, 173 Ogeum-ro, Songpa-gu, Seoul 05641, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, 87 Ogeum-ro, Songpa-gu, Seoul 05542, Republic of Korea
- Forest Hospital, 129 Ogeum-ro, Songpa-gu, Seoul 05549, Republic of Korea
| |
Collapse
|
16
|
Zou T, Lan M, Liu F, Li L, Cai T, Tian H, Cai Y. Emodin-loaded polymer-lipid hybrid nanoparticles enhance the sensitivity of breast cancer to doxorubicin by inhibiting epithelial–mesenchymal transition. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00093-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The role of epithelial–mesenchymal transition (EMT) involved in breast cancer metastasis and chemoresistance has been increasingly recognized. However, it is necessary to search for more effective strategies to inhibit EMT thereby increase the sensitivity of breast cancer cells to chemotherapy drugs. Emodin has a potential in overcoming tumor drug resistance and restraining the development of EMT, but the poor internalization into breast cancer cells limited the application.
Results
MCF-7/ADR cells have more EMT characteristics than MCF-7 cell. EMT in MCF-7/ADR cells promotes the development of drug resistance via apoptosis resistance and facilitating the expression of P-gp. The anti-cancer effect of DOX enhanced by the decreasing of drug resistance protein P-gp and apoptosis-related proteins after EMT inhibited in MCF-7/ADR cells. E-PLNs increase the cellular uptake of EMO and restore DOX sensitivity in MCF-7/ADR cells by inhibiting EMT.
Conclusion
E-PLNs inhibit EMT to enhance the sensitivity of breast cancer to DOX. The combination of E-PLNs and DOX can improve the efficacy of DOX in the treatment of breast cancer, which provides a new method to prevent or delay clinical drug resistance.
Collapse
|
17
|
Mahendran R, Lim SK, Ong KC, Chua KH, Chai HC. Natural-derived compounds and their mechanisms in potential autosomal dominant polycystic kidney disease (ADPKD) treatment. Clin Exp Nephrol 2021; 25:1163-1172. [PMID: 34254206 DOI: 10.1007/s10157-021-02111-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic kidney disorder that impairs renal functions progressively leading to kidney failure. The disease affects between 1:400 and 1:1000 ratio of the people worldwide. It is caused by the mutated PKD1 and PKD2 genes which encode for the defective polycystins. Polycystins mimic the receptor protein or protein channel and mediate aberrant cell signaling that causes cystic development in the renal parenchyma. The cystic development is driven by the increased cyclic AMP stimulating fluid secretion and infinite cell growth. In recent years, natural product-derived small molecules or drugs targeting specific signaling pathways have caught attention in the drug discovery discipline. The advantages of natural products over synthetic drugs enthusiast researchers to utilize the medicinal benefits in various diseases including ADPKD. CONCLUSION Overall, this review discusses some of the previously studied and reported natural products and their mechanisms of action which may potentially be redirected into ADPKD.
Collapse
Affiliation(s)
- Rhubaniya Mahendran
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Bi X, Lou P, Song Y, Sheng X, Liu R, Deng M, Yang X, Li G, Yuan S, Zhang H, Jiao B, Zhang B, Xue L, Liu Z, Plikus MV, Ren F, Gao S, Zhao L, Yu Z. Msi1 promotes breast cancer metastasis by regulating invadopodia-mediated extracellular matrix degradation via the Timp3-Mmp9 pathway. Oncogene 2021; 40:4832-4845. [PMID: 34155343 DOI: 10.1038/s41388-021-01873-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
Metastasis is the main cause of death in breast cancer patients. The initial step of metastasis is invadopodia-mediated extracellular matrix (ECM) degradation, which enables local breast tumor cells to invade surrounding tissues. However, the molecular mechanism underlying invadopodia-mediated metastasis remains largely unknown. Here we found that the RNA-binding protein Musashi1 (Msi1) exhibited elevated expression in invasive breast tumors and promoted lung metastasis of mammary cancer cells. Suppression of Msi1 reduced invadopodia formation in mammary cancer cells. Furthermore, Msi1 deficiency decreased the expression and activity of Mmp9, an important enzyme in ECM degradation. Mechanistically, Msi1 directly suppressed Timp3, an endogenous inhibitor of Mmp9. In clinical breast cancer specimens, TIMP3 and MSI1 levels were significantly inversely correlated both in normal breast tissue and breast cancer tissues and associated with overall survival in breast cancer patients. Taken together, our findings demonstrate that the MSI1-TIMP3-MMP9 cascade is critical for invadopodia-mediated onset of metastasis in breast cancer, providing novel insights into a promising therapeutic strategy for breast cancer metastasis.
Collapse
Affiliation(s)
- Xueyun Bi
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengbo Lou
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock and Research Center for Animal Genetic Resources of Mongolia Plateau College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaole Sheng
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruiqi Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Min Deng
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xu Yang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guilin Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shukai Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Honglei Zhang
- Center for Scientific Research, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bing Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lixiang Xue
- Medical Research Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shan Gao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Zhengquan Yu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
19
|
Tuli HS, Aggarwal V, Tuorkey M, Aggarwal D, Parashar NC, Varol M, Savla R, Kaur G, Mittal S, Sak K. Emodin: A metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Toxicol In Vitro 2021; 73:105142. [PMID: 33722736 DOI: 10.1016/j.tiv.2021.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
|
20
|
Polymeric Lipid Hybrid Nanoparticles as a Delivery System Enhance the Antitumor Effect of Emodin in Vitro and in Vivo. J Pharm Sci 2021; 110:2986-2996. [PMID: 33864779 DOI: 10.1016/j.xphs.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023]
Abstract
This study aimed to evaluate the therapeutic efficacy of Emodin-loaded polymer lipid hybrid nanoparticles (E-PLNs) for breast cancer. The size, Zeta potential, surface morphology, encapsulation efficiency, stability, in vitro drug release of E-PLNs prepared by the nanoprecipitation method were characterized. The uptake, in-vitro cytotoxicities and apoptosis of free drug, E-PLNs were investigated against MCF-7 cells. The efficacy of E-PLNs in tumor bearing nude mice has also been studied.The average particle size of the experimentally prepared E-PLNs was (122.7±1.79) nm, and the encapsulation rate was 72.8%. Compared with free Emodin (EMO), E-PLNs showed greater toxicity to MCF-7 cells by promoting the uptake of EMO, and can promote the early apoptosis of MCF-7 cells. In addition to the morphological changes of apoptotic cells, the ratio of Bax/Bcl-2 was significantly increased, which indicated that E-PLNs can induce apoptosis in MCF-7 cells to achieve anticancer effect. Finally, E-PLNs significantly inhibited tumor growth by more than 60%, which may be related to its passive targeting effect on tumor site. Our results suggest that E-PLNs have shown good anti-breast cancer effect than free EMO. Moreover, the effect of E-PLNs on MCF-7 cells is mainly related to the induction of apoptosis.
Collapse
|
21
|
Manogaran P, Umapathy D, Karthikeyan M, Venkatachalam K, Singaravelu A. Dietary Phytochemicals as a Potential Source for Targeting Cancer Stem Cells. Cancer Invest 2021; 39:349-368. [PMID: 33688788 DOI: 10.1080/07357907.2021.1894569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment is composed of various types of cells that lead to tumor heterogeneity. In the middle of these populations, cancer stem cells play a vital role in the initiation and progression of cancer cells and are capable of self-renewal and differentiation processes. These cancer stem cells are resistant to conventional therapy such as chemotherapy and radiotherapy. To eradicate the cancer stem cells in the tumor environment, various natural product has been found in recent years. In this review, we have selected some of the natural products based on anticancer potential including targeting cancer cells and cancer stem cells. Further, this review explains the molecular mechanism of action of these natural products in various cancer stem cells. Therefore, targeting a multi-drug resistant cancer stem cell by natural products is a novel method to reduce drug resistance and adverse effect during conventional therapy.
Collapse
Affiliation(s)
- Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Devan Umapathy
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | | | - Karthikkumar Venkatachalam
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anbu Singaravelu
- Department of PG and Research Department of Biochemistry, Sacred Heart College (Autonomous), Tirupattur, Tamilnadu, India
| |
Collapse
|
22
|
Sakalli-Tecim E, Uyar-Arpaci P, Guray NT. Identification of Potential Therapeutic Genes and Pathways in Phytoestrogen Emodin Treated Breast Cancer Cell Lines via Network Biology Approaches. Nutr Cancer 2021; 74:592-604. [PMID: 33645356 DOI: 10.1080/01635581.2021.1889622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phytoestrogens have been investigated for their potential anti-tumorigenic effects in various cancers including breast cancer. Emodin being a phytoestrogen shows anti-carcinogenic properties especially in estrogen receptor positive (ER+) breast cancers. The aim of this study is to identify the molecular mechanism and related biological pathways in both (ER+) MCF-7 and (ER-) MDA-MB-231 breast cancer cell lines upon Emodin treatment via microarray analysis in order to find out therapeutic biomarkers. In both cell lines, first differentially expressed genes were identified, then gene ontology and functional pathway enrichment analyses were performed. Genes regulated through multiple pathways were studied together with literature and a gene cluster was determined for each cell line. Further GeneMANIA and STRING databases were used to study the interactions within the related gene clusters. The results showed that, the genes which are related to cell cycle were significantly regulated in both cell lines. Also, Forkhead Box O1-related genes were found to be prominent in MCF-7 cells. In MDA-MB-231 cells, spindle attachment checkpoint mechanism-related genes were regulated, remarkably. As a result, novel gene regulations reported in this study in response to Emodin will give more information about its metabolism and antiproliferative effect, especially in ER + cells.
Collapse
Affiliation(s)
- Elif Sakalli-Tecim
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | | | - N Tulin Guray
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
23
|
Zhang N, Wang J, Sheng A, Huang S, Tang Y, Ma S, Hong G. Emodin Inhibits the Proliferation of MCF-7 Human Breast Cancer Cells Through Activation of Aryl Hydrocarbon Receptor (AhR). Front Pharmacol 2021; 11:622046. [PMID: 33542691 PMCID: PMC7850984 DOI: 10.3389/fphar.2020.622046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Natural products have proved to be a promising source for the development of potential anticancer drugs. Emodin, a natural compound from Rheum palmatum, is used to treat several types of cancers, including lung, liver, and pancreatic. However, there are few reports regarding its use in the treatment of breast cancer. Thus, the therapeutic effect and mechanism of emodin on MCF-7 human breast cancer cells were investigated in this study. Morphological observations and cell viability were evaluated to determine the anti-proliferation activity of emodin. Network pharmacology and molecular docking were performed to screen the potential targets. Western blot analysis was used to explore a potential antitumor mechanism. The results showed that emodin (50–100 μmol/L) could significantly inhibit the proliferation of MCF-7 cells in a time and dose-dependent manner. Furthermore, virtual screening studies indicated that emodin was a potent aryl hydrocarbon receptor (AhR) agonist in chemotherapy for breast cancer. Finally, when MCF-7 cells were treated with emodin (100 μmol/L) for 24 h, the AhR and cytochrome P450 1A1 (CYP1A1) protein expression levels were significantly upregulated compared with the control group. Our study indicated that emodin exhibited promising antitumor activity in MCF-7 cells, likely through activation of the AhR-CYP1A1 signaling pathway. These findings lay a foundation for the application of emodin in breast cancer treatment.
Collapse
Affiliation(s)
- Ning Zhang
- Life and Health College, Anhui Science and Technology University, Fengyang, China.,School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China.,Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jiawen Wang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Aimin Sheng
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Shuo Huang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Yanyan Tang
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Shitang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
24
|
Cui Y, Chen LJ, Huang T, Ying JQ, Li J. The pharmacology, toxicology and therapeutic potential of anthraquinone derivative emodin. Chin J Nat Med 2020; 18:425-435. [PMID: 32503734 DOI: 10.1016/s1875-5364(20)30050-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a derived anthraquinone compound extracted from roots and barks of pharmaceutical plants, including Rheum palmatum, Aloe vera, Giant knotweed, Polygonum multiflorum and Polygonum cuspidatum. The review aims to provide a scientific summary of emodin in pharmacological activities and toxicity in order to identify the therapeutic potential for its use in human specific organs as a new medicine. Based on the fundamental properties, such as anticancer, anti-inflammatory, antioxidant, antibacterial, antivirs, anti-diabetes, immunosuppressive and osteogenesis promotion, emodin is expected to become an effective preventive and therapeutic drug of cancer, myocardial infarction, atherosclerosis, diabetes, acute pancreatitis, asthma, periodontitis, fatty livers and neurodegenerative diseases. This article intends to provide a novel insight for further development of emodin, hoping to reveal the potential of emodin and necessity of further studies in this field.
Collapse
Affiliation(s)
- Ya Cui
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Liu-Jing Chen
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Tu Huang
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China
| | - Jian-Qiong Ying
- West China Hospital of Clinical Medicine, Sichuan University, Chengdu 610041, China
| | - Juan Li
- State Key laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of orthodontics, West China School of Stomatology Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Chen R, Huang L, Hu K. Natural products remodel cancer-associated fibroblasts in desmoplastic tumors. Acta Pharm Sin B 2020; 10:2140-2155. [PMID: 33304782 PMCID: PMC7714988 DOI: 10.1016/j.apsb.2020.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Desmoplastic tumors have an abundance of stromal cells and the extracellular matrix which usually result in therapeutic resistance. Current treatment prescriptions for desmoplastic tumors are usually not sufficient to eliminate the malignancy. Recently, through modulating cancer-associated fibroblasts (CAFs) which are the most abundant cell type among all stromal cells, natural products have improved chemotherapies and the delivery of nanomedicines to the tumor cells, showing promising ability to improve treatment effects on desmoplastic tumors. In this review, we discussed the latest advances in inhibiting desmoplastic tumors by modeling CAFs using natural products, highlighting the potential therapeutic abilities of natural products in targeting CAFs for cancer treatment.
Collapse
Affiliation(s)
- Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
26
|
Bhattacharjee M, Upadhyay P, Sarker S, Basu A, Das S, Ghosh A, Ghosh S, Adhikary A. Combinatorial therapy of Thymoquinone and Emodin synergistically enhances apoptosis, attenuates cell migration and reduces stemness efficiently in breast cancer. Biochim Biophys Acta Gen Subj 2020; 1864:129695. [PMID: 32735937 DOI: 10.1016/j.bbagen.2020.129695] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Breast cancer intimidates the contemporary medical advances, attempting to revolutionize cancer therapeutics. While patients suffering an advanced breast cancer are dependent on mono drugs, yet the build out of resistance leading to treatment fails has become inevitable. METHODS Cell viability Assay with MTT revealed the "IC50" concentrations of the drugs in both cancer as well as PBMC. Cell cycle arrest, flow cytometric ROS analysis & apoptosis evaluation pointed out the efficacy of the dual drug. Wound Healing, Transwell Migration & Immunocytochemistry indicated anti-migratory potential of TQ-Emo while expression patterns of Cl-Cas3, p53, Bax, Bcl2 & the stemness markers further vouched the potential of the combinatorial drug. Furthermore, validation of tumor inhibitory effect was earned by an ex-ovo xenograft model. RESULTS Dual dosage enhanced apoptosis through ROS generation, anti- migratory effect by targeting FAK &Integrins, displaying effective stemness control by assessing regulatory proteins- Oct4, Sox2, Nanog, ALDH1/2. Ex-ovo xenograft model validated tumor regression. Our study thereby deals with devastating effects of cancer drug resistance while trying to abate enhanced migratory potential & stemness, utilizing the synergism of the combinable therapy. CONCLUSION TQ/Emo inhibited breast cancer proliferation synergistically while enhancing cytotoxicity, inducing apoptosis on MCF-7 cells while curbing migration & stemness. GENERAL SIGNIFICANCE Employment of the combinatorial phytochemicals, Thymoquinone & Emodin attempted to achieve deliverables like reduced cellular toxicity, drug resistance, anti-migratory potency & stemness. Besides, decreased p-FAK expression or regression in Mammosphere & tumor size in ex-ovo xenograft model is indicative of the better anti-tumorigenic potential of the dual formulation.
Collapse
Affiliation(s)
- Mousumi Bhattacharjee
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata, 700106, India
| | - Priyanka Upadhyay
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata, 700106, India
| | - Sushmita Sarker
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata, 700106, India
| | - Arijita Basu
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
| | - Shaswati Das
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata, 700106, India
| | - Avijit Ghosh
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata, 700106, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Major Arterial Road (South-East), Action Area II, Newtown, Kolkata, West Bengal 700135, India
| | - Arghya Adhikary
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector III, Salt Lake City, Kolkata, 700106, India.
| |
Collapse
|
27
|
Moradi M, Gholipour H, Sepehri H, Attari F, Delphi L, Arefian E, Moridi Farimani M. Flavonoid calycopterin triggers apoptosis in triple-negative and ER-positive human breast cancer cells through activating different patterns of gene expression. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2145-2156. [PMID: 32617603 DOI: 10.1007/s00210-020-01917-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cause of death related to cancer in women, and several studies proved that flavonoids could induce apoptosis in this cancer through different pathways. Calycopterin is a flavonoid which was shown to induce preferential antiproliferative effects on some cancers; however, no information is available on its effect on breast cancer. Therefore, in this paper, the apoptotic effect of calycopterin and its underlying mechanism in two different breast cancer cells, MDA-MB-231 and MCF7 cell lines were investigated. MTT assay showed that calycopterin reduced the proliferation of both cancer lines with no adverse effect on normal cells. The clonogenic assay showed that calycopterin treatments decreased the colony numbers and sizes, and wound healing assay demonstrated the inhibition of migration in both cancer cells. Cell cycle and annexin/PI analyses indicated that calycopterin augmented sub-G1 population and annexin/PI-positive cells. Gene expression revealed that Bax/Bcl2 increased in the MDA-MB-231 cell line, while no change was observed in that of the MCF7 line. Expression of gene caspase-8 was augmented in both lines, although increased expression of caspase-3 was found just in MDA-MB-231 cells. Our results validated the apoptotic effect of calycopterin on both breast cancer lines with more potency on triple-negative ones.
Collapse
Affiliation(s)
- Mehrnaz Moradi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hajar Gholipour
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Houri Sepehri
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
28
|
Li H, Xu F, Gao G, Gao X, Wu B, Zheng C, Wang P, Li Z, Hua H, Li D. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol 2020; 34:101564. [PMID: 32403079 PMCID: PMC7218030 DOI: 10.1016/j.redox.2020.101564] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) is considered as a novel second-messenger molecule associated with the modulation of various physiological and pathological processes. In the field of antitumor research, endogenous H2S induces angiogenesis, accelerates the cell cycle and inhibits apoptosis, which results in promoting oncogenesis eventually. Interestingly, high concentrations of exogenous H2S liberated from donors suppress the growth of various tumors via inducing cellular acidification and modulating several signaling pathways involved in cell cycle regulation, proliferation, apoptosis and metastasis. The selective release of certain concentrations of H2S from H2S donors in the target has been considered as an alternative tumor therapy strategy. Triple-negative breast cancer (TNBC), an aggressive subtype with less than one year median survival time, is known to account for approximately 15–20% of all breast cancers. Due to the lack of approved targeted therapy, the clinical treatment of TNBC is still hindered by metastasis as well as recurrence. Significant efforts have been spent on developing novel treatments of TNBC, and remarkable progress in the control of TNBC by H2S donors and their derivatives have been made in recent years. This review summarizes various pathways involved in antitumor and anti-metastasis effects of H2S donors and their derivatives on TNBC, which provides novel insights for TNBC treatment.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Gang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Bo Wu
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Building 75, Charlestown, MA, 02129, United States
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
29
|
Li C, Qin Y, Zhong Y, Qin Y, Wei Y, Li L, Xie Y. Fentanyl inhibits the progression of gastric cancer through the suppression of MMP-9 via the PI3K/Akt signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:118. [PMID: 32175411 PMCID: PMC7049026 DOI: 10.21037/atm.2019.12.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fentanyl is a drug commonly used for perioperative and postoperative analgesia. Previous studies have confirmed that fentanyl can affect the progression of gastric cancer; however, this effect has not yet been elucidated. The purpose of our study was thus to investigate the role of fentanyl in gastric cancer and clarify its potential mechanisms. METHODS A CCK-8 assay was used to determine the proliferation of MGC-803 cells, while Transwell assay and wound healing assay were used to determine the invasion and migration abilities, respectively. Apoptosis and the cell cycle were assessed by flow cytometry, and the ultrastructure of the cells was examined with a transmission electron microscope. The mRNA expression levels of serine-threonine protein kinase 1 (Akt-1), matrix metalloproteinase-9 (MMP-9), and death-associated protein kinase 1 (DAPK1) were evaluated by real-time (RT) quantitative PCR. The protein expression of p-Akt, MMP-9, and caspase-9 was detected by western blot analysis. To study the interaction of fentanyl with the phosphatidylinositol-3-kinase (PI3K)/Akt/MMP-9 pathway, PI3K inhibitor (LY294002) and MMP-9 inhibitor (SB-3CT) were used to treat the MGC-803 cells. RESULTS Findings indicated that fentanyl inhibits the proliferation, invasion, and migration of MGC-803 cells. Specifically, fentanyl inhibits the expression of MMP-9 and enhances the expression of apoptosis-promoting factors such as caspase-9 and DAPK1 through the PI3K/Akt signaling pathway. Cell cycle arrest was observed in the G0/G1 phase. Furthermore, the inhibition of PI3K/Akt/MMP-9 by LY294002 and SB-3CT enhanced the anticancer effects of fentanyl. CONCLUSIONS Fentanyl inhibits the proliferation, invasion and migration of gastric cancer cells by inhibiting the PI3K/Akt/MMP-9 pathway, which could be very useful for gastric cancer treatment.
Collapse
Affiliation(s)
- Chunlai Li
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi Qin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yinying Qin
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | | |
Collapse
|
30
|
Höhn P, Braumann C, Freiburger M, Koplin G, Dubiel W, Luu AM. Anti-tumorigenic Effects of Emodin and Its' Homologue BTB14431 on Vascularized Colonic Cancer in a Rat Model. Asian Pac J Cancer Prev 2020; 21:205-210. [PMID: 31983185 PMCID: PMC7294024 DOI: 10.31557/apjcp.2020.21.1.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE New drugs for cancer treatment are being sought worldwide. Therapeutic agents derived from natural substances can provide cost-efficient options. We evaluated the effect of emodin, an active natural anthraquinone derivate, and it's in-silico homologue the novel substance BTB14431 in vivo. METHOD CC-531 colon cancer cells were implanted intraperitoneal (ip) and subcutaneous (sc) in 100 WAG/Rij rats. 28 days after tumor cell implantation, solid cancers were treated for 7 days by varying doses of BTB14431 (0.3 mg/kg body weight; 1.7 mg/kg) or emodin (2.5 mg/kg; 5 mg/kg). Treatment was applied either via an intravenous (iv) port catheter or by ip injection. Saline solution served as control. 21 days after final dose all animals were euthanized and ip tumor weight, sc tumor weight and animal body weight (bw) were determined by autopsy. Significant lower total tumor weight occurred after iv treatment with low dose BTB14431 (6.8 g; 90% confidence interval (CI) 5.3 - 8.2 g; p ≤ 0.01) and also low and high concentrations of emodin (9.4 g; CI 7.9 - 10.7 g; p ≤ 0.01 and 8.3 g; CI 7.6 - 9.3; p ≤ 0.01). Iv treatment by high dose BTB14431 did not lead to a decline in tumor weight. High dose ip treatment by emodin led to a lower overall (11.1 g; CI 10.1 - 13.8 g; p ≤ 0.01) and ip tumor weight (8.6 g; CI 6 - 10.4 g; p ≤ 0.01). Sc tumor weight was not affected. All other ip treatments did not result in changes of combined, ip or sc tumor weight. Bw decreased during iv treatment in all animals and increased after treatment was completed. Regain of bw was stronger in animals receiving low dose emodin. CONCLUSION Our study shows promising anti-cancer properties of BTB14431 and supports the evidence regarding emodin as a natural antitumorigenic agent. Optimal dosing of iv emodin and especially BTB 14431 for maximal efficacy remains unclear and should be a subject of further research. <br />.
Collapse
Affiliation(s)
- Philipp Höhn
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Chris Braumann
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Maria Freiburger
- Private veterinary practice of Maria Freiburger, Lehesten, Germany
| | - Gerold Koplin
- Clinic for Minimal Invasive Surgery (MIC), Berlin, Germany
| | - Wolfgang Dubiel
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen 361102, China.,Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Minh Luu
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
32
|
Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. J Transl Med 2019; 17:90. [PMID: 30885207 PMCID: PMC6423780 DOI: 10.1186/s12967-019-1838-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hypercoagulation and neutrophilia are described in several cancers, however, whether they are involved in lung carcinogenesis is currently unknown. Emodin is the main bioactive component from Rheum palmatum and has many medicinal values, such as anti-inflammation and anticancer. This study is to investigate the contributions of neutrophils to the effects of emodin on hypercoagulation and carcinogenesis. METHODS The effects of emodin on neutrophil phenotypes were assessed by cell proliferation, morphological changes, phagocytosis and autophagy in vitro. The anti-coagulation and cancer-preventing actions of emodin were evaluated in the urethane-induced lung carcinogenic model. The expressions of Cit-H3 and PAD4 in lung sections were assessed by immunohistochemistry, CD66b+ neutrophils were distinguished by immunofluorescence, and cytokines and ROS were examined with ELISA. The neutrophils-regulating and hypercoagulation-improving efficacies of emodin were confirmed in a Lewis lung cancer allograft model. The related targets and pathways of emodin were predicted by network pharmacology. RESULTS In vitro, emodin at the dose of 20 µM had no effect on cell viability in HL-60N1 but increased ROS and decreased autophagy and thus induced apoptosis in HL-60N2 with the morphological changes. In the urethane-induced lung carcinogenic model, before lung carcinogenesis, urethane induced obvious hypercoagulation which was positively correlated with lung N2 neutrophils. There were the aggravated hypercoagulation and lung N2 neutrophils after lung carcinoma lesions. Emodin treatment resulted in the ameliorated hypercoagulation and lung carcinogenesis accompanied by the decreased N2 neutrophils (CD66b+) in the alveolar cavity. ELISA showed that there were more IFN-γ, IL-12 and ROS and less IL-6, TNF-α and TGF-β1 in the alveolar cavity in the emodin group than those in the control group. Immunohistochemical analysis showed that emodin treatment decreased Cit-H3 and PAD4 in lung sections. In the Lewis lung cancer allograft model, emodin inhibits tumor growth accompanied by the attenuated coagulation and intratumor N2 neutrophils. Network pharmacology indicated the multi-target roles of emodin in N2 neutrophil activation. CONCLUSIONS This study suggests a novel function of emodin, whereby it selectively suppresses N2 neutrophils to prevent hypercoagulation and lung carcinogenesis.
Collapse
|
33
|
Gu J, Cui CF, Yang L, Wang L, Jiang XH. Emodin Inhibits Colon Cancer Cell Invasion and Migration by Suppressing Epithelial-Mesenchymal Transition via the Wnt/β-Catenin Pathway. Oncol Res 2019; 27:193-202. [PMID: 29301594 PMCID: PMC7848449 DOI: 10.3727/096504018x15150662230295] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colon cancer (CC) is the third most common cancer worldwide. Emodin is an anthraquinone-active substance that has the ability to affect tumor progression. Our study aims to explore the effects and the relevant mechanism of emodin on the invasion and migration of CC in vitro and in vivo. In our study, we found that emodin inhibited the invasion and migration abilities of RKO cells and decreased the expression of matrix metalloproteinase-7 (MMP-7), MMP-9, and vascular endothelial growth factor (VEGF) in a dose-dependent manner. Further research suggested that emodin inhibited EMT by increasing the mRNA level of E-cadherin and decreasing the expression of N-cadherin, Snail, and β-catenin. Emodin also significantly inhibited the activation of the Wnt/β-catenin signaling pathway by downregulating the expression of related downstream target genes, including TCF4, cyclin D1, and c-Myc. A Wnt/β-catenin signaling pathway agonist abolished the effect of emodin on EMT and cell mobility, suggesting that emodin exerted its regulating role through the Wnt/β-catenin pathway. The CC xenograft model was established to study the antitumor efficiency of emodin in vivo. The in vivo study further demonstrated that emodin (40 mg/kg) suppressed tumor growth by inhibiting EMT via the Wnt/β-catenin signaling pathway in vivo. Taken together, we suggest that emodin inhibits the invasion and migration of CC cells in vitro and in vivo by blocking EMT, which is related with the inhibition of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Juan Gu
- *Department of Clinical Pharmacy, West China School of Pharmacy, Sichuan University, Sichuan, P.R. China
| | - Chang-fu Cui
- †Department of Neurology, Research Institute of China Weapons Industry, 521 Hospital, Shanxi, P.R. China
| | - Li Yang
- ‡Microbiological Laboratory, Xinyang Vocational and Technical College, Henan, P.R. China
| | - Ling Wang
- *Department of Clinical Pharmacy, West China School of Pharmacy, Sichuan University, Sichuan, P.R. China
| | - Xue-hua Jiang
- *Department of Clinical Pharmacy, West China School of Pharmacy, Sichuan University, Sichuan, P.R. China
| |
Collapse
|
34
|
Park S, Lim W, Song G. Chrysophanol selectively represses breast cancer cell growth by inducing reactive oxygen species production and endoplasmic reticulum stress via AKT and mitogen-activated protein kinase signal pathways. Toxicol Appl Pharmacol 2018; 360:201-211. [DOI: 10.1016/j.taap.2018.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
|
35
|
Casticin inhibits breast cancer cell migration and invasion by down-regulation of PI3K/Akt signaling pathway. Biosci Rep 2018; 38:BSR20180738. [PMID: 30401729 PMCID: PMC6265615 DOI: 10.1042/bsr20180738] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Casticin is one of the major active components isolated from Fructus viticis Increasing studies have revealed that casticin has potential anticancer activity in various cancer cells, but its effects on breast cancer cell migration and invasion are still not well known. Therefore, the ability of cell migration and invasion in the breast cancer MDA-MB-231 and 4T1 cells treated by casticin was investigated. The results indicated that casticin significantly inhibited cell migration and invasion in the cells exposed to 0.25 and 0.50 µM of casticin for 24 h. Casticin treatment reduced matrix metalloproteinase (MMP) 9 (MMP-9) activity and down-regulated MMP-9 mRNA and protein expression, but not MMP-2. Casticin treatment suppressed the nuclear translocation of transcription factors c-Jun and c-Fos, but not nuclear factor-κB (NF-κB), and decreased the phosphorylated level of Akt (p-Akt). Additionally, the transfection of Akt overexpression vector to MDA-MB-231 and 4T1 cells could up-regulate MMP-9 expression concomitantly with a marked increase in cell invasion, but casticin treatment reduced Akt, p-Akt, and MMP-9 protein levels and inhibited the ability of cell invasion in breast cancer cells. Additionally, casticin attenuated lung metastasis of mouse 4T1 breast cancer cells in the mice and down-regulated MMP-9 expression in the lung tissues of mice treated by casticin. These findings suggest that MMP-9 expression suppression by casticin may act through inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which in turn results in the inhibitory effects of casticin on cell migration and invasion in breast cancer cells. Therefore, casticin may have potential for use in the treatment of breast cancer invasion and metastasis.
Collapse
|
36
|
Ding QH, Ye CY, Chen EM, Zhang W, Wang XH. Emodin ameliorates cartilage degradation in osteoarthritis by inhibiting NF-κB and Wnt/β-catenin signaling in-vitro and in-vivo. Int Immunopharmacol 2018; 61:222-230. [PMID: 29890416 DOI: 10.1016/j.intimp.2018.05.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/20/2018] [Accepted: 05/25/2018] [Indexed: 11/25/2022]
Abstract
The overproduction of MMPs (matrix metalloproteinases) and members of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) protein family plays an important role in the pathogenesis of osteoarthritis (OA). The potential of selective MMPs or ADAMTS inhibitors as chemopreventive agents for OA has been demonstrated in several studies. In this study, we investigated the protective effects of emodin (1,3,8-trihydroxy-6-methylanthaquinone), isolated from the root of Rheum palmatum L., in the inhibition of MMP and ADAMTS expression in both rat chondrocytes and an animal model of OA. The expression of MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, aggrecan, and collagen II mRNA and protein in interleukin-1beta (IL-1β)-induced rat chondrocytes was followed by quantitative real-time PCR and western blot. The activation of the NF-κB and Wnt/β-catenin pathways by IL-1β was assessed by western blot. The in vivo effects of emodin were evaluated by intra-articular injection in rats in an experimental model of OA induced by anterior cruciate ligament transection. Emodin dose-dependently down-regulated the expression of MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5 at both the mRNA and protein level in IL-1β-stimulated rat chondrocytes. In addition, the IL-1β-induced activation of NF-κB and Wnt signals was attenuated by emodin, as determined by western blotting. The intra-articular injection of emodin in a rat OA model ameliorated OA progression, as determined in morphological and histological analyses in vivo. Taken together, our findings demonstrate that emodin is a promising therapeutic agent for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Qian-Hai Ding
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China.
| | - Chen-Yi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China
| | - Er-Man Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China
| | - Wei Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China
| | - Xiang-Hua Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009 Hangzhou, People's Republic of China
| |
Collapse
|
37
|
Drug Delivery System for Emodin Based on Mesoporous Silica SBA-15. NANOMATERIALS 2018; 8:nano8050322. [PMID: 29757198 PMCID: PMC5977336 DOI: 10.3390/nano8050322] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
In this study mesoporous silica SBA-15 was evaluated as a vehicle for the transport of cytotoxic natural product emodin (EO). SBA-15 was loaded with different quantities of EO (SBA-15|EO1–SBA-15|EO5: 8–36%) and characterized by traditional methods. Several parameters (stabilities) and the in vitro behavior on tumor cell lines (melanoma A375, B16 and B16F10) were investigated. SBA-15 suppresses EO release in extremely acidic milieu, pointing out that EO will not be discharged in the stomach. Furthermore, SBA-15 protects EO from photodecomposition. In vitro studies showed a dose dependent decrease of cellular viability which is directly correlated with an increasing amount of EO in SBA-15 for up to 27% of EO, while a constant activity for 32% and 36% of EO in SBA-15 was observed. Additionally, SBA-15 loaded with EO (SBA-15|EO3) does not disturb viability of peritoneal macrophages. SBA-15|EO3 causes inhibition of tumor cell proliferation and triggers apoptosis, connected with caspase activation, upregulation of Bax, as well as Bcl-2 and Bim downregulation along with amplification of poly-(ADP-ribose)-polymerase (PARP) cleavage fragment. Thus, the mesoporous SBA-15 is a promising carrier of the water-insoluble drug emodin.
Collapse
|
38
|
Song X, Zhou X, Qin Y, Yang J, Wang Y, Sun Z, Yu K, Zhang S, Liu S. Emodin inhibits epithelial‑mesenchymal transition and metastasis of triple negative breast cancer via antagonism of CC‑chemokine ligand 5 secreted from adipocytes. Int J Mol Med 2018; 42:579-588. [PMID: 29693154 DOI: 10.3892/ijmm.2018.3638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/21/2018] [Indexed: 11/06/2022] Open
Abstract
Triple negative breast cancer (TNBC) has the lowest survival rate of the breast cancer subtypes owing to its aggressive and metastatic behavior. It has been reported that peritumoral adipose tissue contributes to the cell invasiveness and dissemination of TNBC. Emodin is an active anthraquinone derivative isolated from Rheum palmatum, with anticancer properties that have been reported to inhibit lung metastasis in a nude mouse xenograft model. In the present study, the effects of emodin on human TNBC cells and adipocytes were investigated in vivo and in vitro. The TNBC cell lines MDA‑MB‑231 and MDA‑MB‑453 were co‑cultured with human adipocytes and treated with either emodin or epirubicin. Cell proliferation was assessed by MTT assay and migration and invasion were examined using a wound healing assay and a Transwell assay. interleukin‑8, CC‑chemokine ligand 5 (CCL5) and insulin‑like growth factor‑1 levels in the culture supernatants were detected by ELISA. The epithelial‑mesenchymal transition (EMT) or metastasis associated markers were determined by western blot analysis. Nude mice fed with a high fat and sugar diet were used investigate the in vivo effect of emodin. The results showed that emodin inhibited TNBC proliferation and invasion more efficiently than epirubicin when co‑cultured with adipocytes by downregulating the level of CCL5 in adipocyte supernatants; inhibiting the expression level of protein kinase B (AKT); and activating glycogen synthase kinase‑3i (GSK3) and β‑catenin. This led to the suppressed expression of EMT‑ and invasion‑associated markers, including vimentin, snail, matrix metalloproteinase (MMP)‑2 and MMP‑9, and upregulation of E‑cadherin, contributing to the inhibition of invasion. The in vivo assay showed that emodin inhibited tumor growth, and suppressed the lung and liver metastasis of TNBC cells by decreasing the secretion of CCL5 in mice fed a high fat and sugar diet more efficiently when compared with epirubicin. In conclusion, emodin inhibited the secretion of CCL5 from adipocytes, inhibited the EMT of TNBC cells, and inhibited tumor growth and lung and liver metastasis, which indicated a novel role of emodin in preventing the metastasis of TNBC.
Collapse
Affiliation(s)
- Xiaoyun Song
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiqiu Zhou
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yuenong Qin
- Department of General Surgery and Pharmacology Laboratory of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Jianfeng Yang
- Department of General Surgery and Pharmacology Laboratory of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yu Wang
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhenping Sun
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Kui Yu
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Shuai Zhang
- Department of General Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Sheng Liu
- Department of General Surgery and Pharmacology Laboratory of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
39
|
Xiong T, Liu XW, Huang XL, Xu XF, Xie WQ, Zhang SJ, Tu J. Tristetraprolin: A novel target of diallyl disulfide that inhibits the progression of breast cancer. Oncol Lett 2018; 15:7817-7827. [PMID: 29725473 PMCID: PMC5920483 DOI: 10.3892/ol.2018.8299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/09/2018] [Indexed: 02/07/2023] Open
Abstract
Diallyl disulfide (DADS), a volatile component of garlic oil, has various biological properties, including antioxidant, antiangiogenic and anticancer effects. The present study aimed to explore novel targets of DADS that may slow or stop the progression of breast cancer. First, xenograft tumor models were created by subcutaneously injecting MCF-7 and MDA-MB-231 breast cancer cells into nude mice. Subsequently, western blot analysis was performed to investigate the expression of tristetraprolin (TTP), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in the xenograft tumors, and cell cultures. Tablet cloning, Transwell and wound healing assays revealed that DADS treatment significantly inhibited the proliferation, invasion and migration of breast cancer cells. In addition, DADS treatment led to significant downregulation of uPA and MMP-9 protein expression, but significantly upregulated TTP expression in vivo and in vitro. Knocking down TTP expression using small interfering RNA reversed the aforementioned effects of DADS, which suggests TTP is a key target of DADS in inhibiting the progression of breast cancer.
Collapse
Affiliation(s)
- Ting Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Wang Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xue-Long Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiong-Feng Xu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei-Quan Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Su-Jun Zhang
- Experimental Animal Department, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Tu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
40
|
Abraham M, Augustine D, Rao RS, Sowmya SV, Haragannavar VC, Nambiar S, Prasad K, Awan KH, Patil S. Naturally Available Extracts Inhibiting Cancer Progression: A Systematic Review. J Evid Based Complementary Altern Med 2017; 22:870-878. [PMID: 29279018 PMCID: PMC5871319 DOI: 10.1177/2156587217744914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim. This systematic review is aimed at evaluating the literature on the efficacy of naturally available extracts that inhibit cancer. Methods. A literature search was performed to strengthening the reporting of observational studies in epidemiology analysis. Approximately 3000 research articles were initially selected. Of these articles, 200 were included, and 2800 were excluded. On further scrutiny, 150 of the 200 studies were reviews, seminars, and presentations, and 50 were original study articles. Among these articles, 20 studies were selected for the systematic review. Results. The predominant molecular pathways followed by natural extracts were nuclear factor kappa B ligand, suppression of the protein kinase B-Akt/P13K pathway (an intracellular signaling pathway important in regulating cell cycle), vascular endothelial growth factor downregulation, and tumor protein-P53 tumor suppressor upregulation. Conclusions. It is evident that natural extracts have the ability to inhibit cancer progression. Continued research in this field could facilitate the use of natural extracts with currently available anticancer agents.
Collapse
Affiliation(s)
- Marin Abraham
- 1 Department of Oral and Maxillofacial Pathology, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Dominic Augustine
- 1 Department of Oral and Maxillofacial Pathology, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Roopa S Rao
- 1 Department of Oral and Maxillofacial Pathology, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - S V Sowmya
- 1 Department of Oral and Maxillofacial Pathology, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Vanishri C Haragannavar
- 1 Department of Oral and Maxillofacial Pathology, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Shwetha Nambiar
- 1 Department of Oral and Maxillofacial Pathology, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kavitha Prasad
- 2 Department of Oral and Maxillofacial Surgery, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kamran Habib Awan
- 3 College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
| | - Shankargouda Patil
- 4 Department of Maxillofacial Surgery and Diagnostic Science, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
41
|
Qin H, Liu X, Li F, Miao L, Li T, Xu B, An X, Muth A, Thompson PR, Coonrod SA, Zhang X. PAD1 promotes epithelial-mesenchymal transition and metastasis in triple-negative breast cancer cells by regulating MEK1-ERK1/2-MMP2 signaling. Cancer Lett 2017; 409:30-41. [PMID: 28844713 DOI: 10.1016/j.canlet.2017.08.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
Peptidylargininedeiminase 1 (PAD1) catalyzes protein for citrullination, and this activity has been linked to the epidermal cornification. However, a role for PAD1 in tumorigenesis, including breast cancers has not been previously explored. Here we first showed that PAD1 is overexpressed in human triple negative breast cancer (TNBC). In cultured cells and xenograft mouse models, PAD1 depletion or inhibition reduced cell proliferation, suppressed epithelial-mesenchymal transition, and prevented metastasis of MDA-MB-231 cells. These changes were correlated with a dramatic decrease in MMP2/9 expression. Furthermore, ERK1/2 and P38 MAPK signaling pathways are activated upon PAD1 silencing. Treatment with MEK1/2 inhibitor in PAD1 knockdown cells significantly recovered MMP2 expression, while inhibiting P38 activation only slightly elevated MMP9 levels. We then showed that PAD1 interacts with and citrullinates MEK1 thereby disrupting MEK1-catalyzed ERK1/2 phosphorylation, thus leading to the MMP2 overexpression. Collectively, our data indicate that PAD1 appears to promote tumorigenesis by regulating MEK1-ERK1/2-MMP2 signaling in TNBC. These results also raise the possibility that PAD1 may function as an important new biomarker for TNBC tumors and suggest that PAD1-specific inhibitors could potentially be utilized to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Hao Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoqiu Liu
- Department of Microbiology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Fujun Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lixia Miao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tingting Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Boqun Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Aaron Muth
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, New York, 14853, USA
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
42
|
Lu J, Xu Y, Zhao Z, Ke X, Wei X, Kang J, Zong X, Mao H, Liu P. Emodin suppresses proliferation, migration and invasion in ovarian cancer cells by down regulating ILK in vitro and in vivo. Onco Targets Ther 2017; 10:3579-3589. [PMID: 28790850 PMCID: PMC5530856 DOI: 10.2147/ott.s138217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Although our previous studies have confirmed that 1, 3, 8-trihydroxy-6-methylant hraquinone (emodin) inhibits migration and invasion in epithelial ovarian cancer (EOC) cells, the underlying molecular mechanism remains unknown. Here, the aim was to investigate the effects of emodin on EOC cells and to study further the mechanism underlying this process, both in vitro and in vivo. MATERIALS AND METHODS Cell proliferation was evaluated by the methylthiazolyl tetrazolium assay. Cell migration and invasion abilities were tested using the transwell assay. The expression of integrin-linked kinase (ILK) and epithelial-mesenchymal transition (EMT)-associated factors were measured with western blotting. RESULTS Exogenous ILK enhanced the proliferation, migration and invasion properties of A2780 and SK-OV-3 cells. After treatment with emodin, the survival rate of cells was gradually reduced, including those of SK-OV-3/pLVX-ILK and A2780/pLVX-ILK cells, with increasing emodin concentrations. The migration and invasion abilities of A2780 and SK-OV-3 cells were effectively increased by the transfection of pLVX-ILK, which could be abrogated by following this with 48 hours of emodin treatment. Treatment with emodin significantly downregulated the expression of ILK and EMT-related proteins. So, emodin suppressed proliferation, migration and invasion in ovarian cancer cells by downregulating ILK in vitro. SK-OV-3/pLVX-Con and SK-OV-3/pLVX-ILK cells were used to generate xenografts in nude mice. Tumors grew more rapidly in the SK-OV-3/pLVX-ILK group compared with the control group, and this could be significantly inhibited by emodin. Also, the expression of E-cadherin was downregulated, while the expression of Slug, MMP-9 and Vimentin were upregulated in the SK-OV-3/pLVX-ILK group, and this could be reversed by following treatment with emodin. Emodin did not demonstrate target toxicity on hepatocytes, nephrocytes and cardiomyocytes. CONCLUSION Emodin suppresses proliferation, migration and invasion in ovarian cancer by targeting ILK.
Collapse
Affiliation(s)
- Jingjing Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong.,Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, People's Republic of China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Zhe Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Xiaoning Ke
- Department of Obstetrics and Gynecology, Handan Central Hospital, Handan, People's Republic of China
| | - Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Jia Kang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Xuan Zong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Hongluan Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Shandong
| |
Collapse
|
43
|
Stromal Fibroblasts from the Interface Zone of Triple Negative Breast Carcinomas Induced Epithelial-Mesenchymal Transition and its Inhibition by Emodin. PLoS One 2017; 12:e0164661. [PMID: 28060811 PMCID: PMC5218416 DOI: 10.1371/journal.pone.0164661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/28/2016] [Indexed: 12/31/2022] Open
Abstract
“Triple negative breast cancer” (TNBC) is associated with a higher rate and earlier time of recurrence and worse prognosis after recurrence. In this study, we aimed to examine the crosstalk between fibroblasts and TNBC cells. The fibroblasts were isolated from TNBC patients’ tissue in tumor burden zones, distal normal zones and interface zones. The fibroblasts were indicated as cancer-associated fibroblasts (CAFs), normal zone fibroblasts (NFs) and interface zone fibroblasts (INFs). Our study found that INFs grew significantly faster than NFs and CAFs in vitro. The epithelial BT20 cells cultured with the conditioned medium of INFs (INFs-CM) and CAFs (CAFs-CM) showed more spindle-like shape and cell scattering than cultured with the conditioned medium of NFs (NFs-CM). These results indicated that factors secreted by INFs-CM or CAFs-CM could induce the epithelial-mesenchymal transition (EMT) phenotype in BT20 cells. Using an in vitro co-culture model, INFs or CAFs induced EMT and promoted cancer cell migration in BT20 cells. Interestingly, we found that emodin inhibited INFs-CM or CAFs-CM-induced EMT programming and phenotype in BT20 cells. Previous studies reported that CAFs and INFs-secreted TGF-β promoted human breast cancer cell proliferation, here; our results indicated that TGF-β initiated EMT in BT20 cells. Pretreatment with emodin significantly suppressed the TGF-β-induced EMT and cell migration in BT20 cells. These results suggest that emodin may be used as a novel agent for the treatment of TNBC.
Collapse
|
44
|
Monisha BA, Kumar N, Tiku AB. Emodin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:47-73. [DOI: 10.1007/978-3-319-41334-1_3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Tang Q, Wu J, Zheng F, Chen Y, Hann SS. WITHDRAWN: Emodin increases expression of insulin-like growth factor binding protein 1 through activation of MEK/ERK/AMPKα and interaction of PPARγ and Sp1 in lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016:S0925-4439(16)30223-X. [PMID: 27615428 DOI: 10.1016/j.bbadis.2016.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Due to an error in the publishing process, this article has been withdrawn at the request of the editors. We wish to clarify that this is in no way related to the integrity of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Qing Tang
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120
| | - JingJing Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120
| | - Fang Zheng
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120
| | - YuQing Chen
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120
| | - Swei Sunny Hann
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, China, 510120.
| |
Collapse
|
46
|
Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Ni J. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother Res 2016; 30:1207-18. [PMID: 27188216 PMCID: PMC7168079 DOI: 10.1002/ptr.5631] [Citation(s) in RCA: 436] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/17/2016] [Accepted: 04/02/2016] [Indexed: 12/12/2022]
Abstract
Emodin is a natural anthraquinone derivative that occurs in many widely used Chinese medicinal herbs, such as Rheum palmatum, Polygonum cuspidatum and Polygonum multiflorum. Emodin has been used as a traditional Chinese medicine for over 2000 years and is still present in various herbal preparations. Emerging evidence indicates that emodin possesses a wide spectrum of pharmacological properties, including anticancer, hepatoprotective, antiinflammatory, antioxidant and antimicrobial activities. However, emodin could also lead to hepatotoxicity, kidney toxicity and reproductive toxicity, particularly in high doses and with long-term use. Pharmacokinetic studies have demonstrated that emodin has poor oral bioavailability in rats because of its extensive glucuronidation. This review aims to comprehensively summarize the pharmacology, toxicity and pharmacokinetics of emodin reported to date with an emphasis on its biological properties and mechanisms of action. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiaoxv Dong
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Jing Fu
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Xingbin Yin
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Sali Cao
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Xuechun Li
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Longfei Lin
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| | - Huyiligeqi
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
- Affiliated Hospital, Inner Mongolia University for NationalitiesTongliao028000PR China
| | - Jian Ni
- School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijing100102PR China
| |
Collapse
|
47
|
Lin W, Zhong M, Yin H, Chen Y, Cao Q, Wang C, Ling C. Emodin induces hepatocellular carcinoma cell apoptosis through MAPK and PI3K/AKT signaling pathways in vitro and in vivo. Oncol Rep 2016; 36:961-7. [DOI: 10.3892/or.2016.4861] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/02/2016] [Indexed: 11/06/2022] Open
|
48
|
Zheng Q, Xu Y, Lu J, Zhao J, Wei X, Liu P. Emodin Inhibits Migration and Invasion of Human Endometrial Stromal Cells by Facilitating the Mesenchymal-Epithelial Transition Through Targeting ILK. Reprod Sci 2016; 23:1526-1535. [PMID: 27130230 DOI: 10.1177/1933719116645192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To determine whether emodin facilitates the mesenchymal-epithelial transition (MET) of endometrial stromal cells (ESCs) as well as to explore the mechanism through which emodin favored the MET of ESCs. METHODS Cell viability was tested by methyl thiazolyl tetrazolium assay. Cell migration and invasion abilities were detected by transwell assays. Levels of integrin-linked kinase (ILK) and epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. RESULTS Upregulated ILK and increased abilities of migration and invasion were confirmed in the eutopic and ectopic ESCs (EuSCs and EcSCs), especially in the EcSCs. After treated with emodin, the expression of ILK was statistically downregulated in EcSCs, resulting in the MET and decreased migration and invasion abilities of EcSCs. Additionally, silencing of the ILK gene in EcSCs also achieved the above-mentioned effects, which were strengthened by emodin. Furthermore, exogenous expression of ILK in control ESCs (CSCs) resulted in the EMT and increased abilities of migration and invasion of CSCs, which can be abrogated by emodin. Besides, exogenous expression of ILK also abrogated the effects of emodin on CSCs. CONCLUSION Emodin inhibits the migration and invasion abilities of human ESCs by facilitating the MET through targeting ILK.
Collapse
Affiliation(s)
- Qiaomei Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jingjing Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
49
|
Flores-López LA, Martínez-Hernández MG, Viedma-Rodríguez R, Díaz-Flores M, Baiza-Gutman LA. High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell Oncol (Dordr) 2016; 39:365-78. [PMID: 27106722 DOI: 10.1007/s13402-016-0282-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that type 2 diabetes is associated with an increased risk to develop breast cancer. This risk has been attributed to hyperglycemia, hyperinsulinemia and chronic inflammation. As yet, however, the mechanisms underlying this association are poorly understood. Here, we studied the effect of high glucose and insulin on breast cancer-derived cell proliferation, migration, epithelial-mesenchymal transition (EMT) and invasiveness, as well as its relationship to reactive oxygen species (ROS) production and the plasminogen activation system. METHODS MDA-MB-231 cell proliferation, migration and invasion were assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), scratch-wound and matrigel transwell assays, respectively. ROS production was determined using 2' 7'-dichlorodihydrofluorescein diacetate. The expression of E-cadherin, vimentin, fibronectin, urokinase plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1) were assessed using qRT-PCR and/or Western blotting assays, respectively. uPA activity was determined using gel zymography. RESULTS We found that high glucose stimulated MDA-MB-231 cell proliferation, migration and invasion, together with an increased expression of mesenchymal markers (i.e., vimentin and fibronectin). These effects were further enhanced by the simultaneous administration of insulin. In both cases, the invasion and growth responses were found to be associated with an increased expression of uPA, uPAR and PAI-1, as well as an increase in active uPA. An osmolality effect of high glucose was excluded by using mannitol at an equimolar concentration. We also found that all changes induced by high glucose and insulin were attenuated by the anti-oxidant N-acetylcysteine (NAC) and, thus, depended on ROS production. CONCLUSIONS From our data we conclude that hyperglycemia and hyperinsulinemia can promote breast cancer cell proliferation, migration and invasion. We found that these features were associated with increased expression of the mesenchymal markers vimentin and fibronectin, as well as increased uPA expression and activation through a mechanism mediated by ROS.
Collapse
Affiliation(s)
- Luis Antonio Flores-López
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, Tlalnepantla, Estado de México, CP, 54090, México
| | - María Guadalupe Martínez-Hernández
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, Tlalnepantla, Estado de México, CP, 54090, México
| | - Rubí Viedma-Rodríguez
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, Tlalnepantla, Estado de México, CP, 54090, México
| | - Margarita Díaz-Flores
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del, Cuauhtémoc, DF, 06720, México
| | - Luis Arturo Baiza-Gutman
- Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Ixtacala, Tlalnepantla, Estado de México, CP, 54090, México.
| |
Collapse
|
50
|
Aleskandarany MA, Sonbul SN, Mukherjee A, Rakha EA. Molecular Mechanisms Underlying Lymphovascular Invasion in Invasive Breast Cancer. Pathobiology 2015; 82:113-23. [DOI: 10.1159/000433583] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|