1
|
Mariana SM, Brenda RP, Heriberto PG, Cristina L, David B, Guadalupe ÁL. GPER1 activation by estrogenic compounds in the inflammatory profile of breast cancer cells. J Steroid Biochem Mol Biol 2025; 245:106639. [PMID: 39571822 DOI: 10.1016/j.jsbmb.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Breast cancer (BC) is the most frequent female neoplasm worldwide. Its establishment and development have been related to inflammatory cytokine expression. Steroid hormones such as estradiol (E2) can regulate proinflammatory cytokine secretion through interaction with its nuclear receptors. However, little is known regarding the activation of its membrane estrogen receptor (GPER1) and the inflammatory cytokine environment in BC. We have studied the synthesis and biological effects of molecules analogs to E2 for hormone replacement therapy (HRT), such as pentolame. Nevertheless, its interaction with GPER1 and the modulation of inflammatory cytokines in different BC types has been barely studied and deserves deeper investigation. In this research, the role of GPER1 in the proliferation and modulation of inflammatory cytokines involved in carcinogenesis and metastatic processes in different BC cell lines was assessed by binding to various compounds. To achieve this goal, the presence of GPER1 was identified in different BC cell lines. Subsequently, cell proliferation after exposure to E2, pentolame and GPER1 agonist, G1, was subsequently determined alone or in combination with the GPER1 antagonist, G15. Finally, the pro-inflammatory cytokine secretion derived from the supernatants of BC cells exposed to the previous treatments was also assessed. Interestingly, GPER1 activation or inhibition has significant effects on the cytokine regulation associated with invasion in BC. Notably, pentolame did not induce cell proliferation or increase the proinflammatory cytokine expression compared to E2 in BC cell lines. In addition, pentolame did not induce the presence of the cell adhesion molecule PECAM-1. In contrast, E2 treatment weakly induced the expression of PECAM-1 in MCF-7 and HCC1937 cells, and G1 treatment showed this effect only in MCF-7 cells. The results suggest that GPER1 might be a significant inflammatory modulator with angiogenic-related effects in BC cells. In addition, pentolame might represent an HRT alternative in patients with BC predisposition.
Collapse
Affiliation(s)
- Segovia-Mendoza Mariana
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Reyes-Plata Brenda
- Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México,Ciudad de México, Mexico
| | - Prado-Garcia Heriberto
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas" Calzada de Tlalpan 4502, Col. Sección XVI, Ciudad de México 14080, Mexico
| | - Lemini Cristina
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Barrera David
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Ciudad de México 14080, Mexico
| | - Ángeles-López Guadalupe
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Yamaguchi-Tanaka M, Takagi K, Sato A, Yamazaki Y, Miyashita M, Masamune A, Suzuki T. Regulation of Stromal Cells by Sex Steroid Hormones in the Breast Cancer Microenvironment. Cancers (Basel) 2024; 16:4043. [PMID: 39682229 DOI: 10.3390/cancers16234043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer is a prevalent hormone-dependent malignancy, and estrogens/estrogen receptor (ER) signaling are pivotal therapeutic targets in ER-positive breast cancers, where endocrine therapy has significantly improved treatment efficacy. However, the emergence of both de novo and acquired resistance to these therapies continues to pose challenges. Additionally, androgens are produced locally in breast carcinoma tissues by androgen-producing enzymes, and the androgen receptor (AR) is commonly expressed in breast cancer cells. Intratumoral androgens play a significant role in breast cancer progression and are closely linked to resistance to endocrine treatments. The tumor microenvironment, consisting of tumor cells, immune cells, fibroblasts, extracellular matrix, and blood vessels, is crucial for tumor progression. Stromal cells influence tumor progression through direct interactions with cancer cells, the secretion of soluble factors, and modulation of tumor immunity. Estrogen and androgen signaling in breast cancer cells affects the tumor microenvironment, and the expression of hormone receptors correlates with the diversity of the stromal cell profile. Notably, various stromal cells also express ER or AR, which impacts breast cancer development. This review describes how sex steroid hormones, particularly estrogens and androgens, affect stromal cells in the breast cancer microenvironment. We summarize recent findings focusing on the effects of ER/AR signaling in breast cancer cells on stromal cells, as well as the direct effects of ER/AR signaling in stromal cells.
Collapse
Affiliation(s)
- Mio Yamaguchi-Tanaka
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Atsushi Masamune
- Personalized Medicine Center, Tohoku University Hospital, Sendai 980-8574, Japan
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Bao R, Qu H, Li B, Cheng K, Miao Y, Wang J. The role of metabolic reprogramming in immune escape of triple-negative breast cancer. Front Immunol 2024; 15:1424237. [PMID: 39192979 PMCID: PMC11347331 DOI: 10.3389/fimmu.2024.1424237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has become a thorny problem in the treatment of breast cancer because of its high invasiveness, metastasis and recurrence. Although immunotherapy has made important progress in TNBC, immune escape caused by many factors, especially metabolic reprogramming, is still the bottleneck of TNBC immunotherapy. Regrettably, the mechanisms responsible for immune escape remain poorly understood. Exploring the mechanism of TNBC immune escape at the metabolic level provides a target and direction for follow-up targeting or immunotherapy. In this review, we focus on the mechanism that TNBC affects immune cells and interstitial cells through hypoxia, glucose metabolism, lipid metabolism and amino acid metabolism, and changes tumor metabolism and tumor microenvironment. This will help to find new targets and strategies for TNBC immunotherapy.
Collapse
Affiliation(s)
- Ruochen Bao
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Hongtao Qu
- Emergency Department of Yantai Mountain Hospital, Yantai, China
| | - Baifeng Li
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Kai Cheng
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Yandong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 Medical College of Binzhou Medical University, Yantai, China
| | - Jiangtao Wang
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Yan S, Ji J, Zhang Z, Imam M, Chen H, Zhang D, Wang J. Targeting the crosstalk between estrogen receptors and membrane growth factor receptors in breast cancer treatment: Advances and opportunities. Biomed Pharmacother 2024; 175:116615. [PMID: 38663101 DOI: 10.1016/j.biopha.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Estrogens play a critical role in the initiation and progression of breast cancer. Estrogen receptor (ER)α, ERβ, and G protein-coupled estrogen receptor are the primary receptors for estrogen in breast cancer. These receptors are mainly activated by binding with estrogens. The crosstalk between ERs and membrane growth factor receptors creates additional pathways that amplify the effects of their ligands and promote tumor growth. This crosstalk may cause endocrine therapy resistance in ERα-positive breast cancer. Furthermore, this may explain the resistance to anti-human epidermal growth factor receptor-2 (HER2) treatment in ERα-/HER2-positive breast cancer and chemotherapy resistance in triple-negative breast cancer. Accordingly, it is necessary to understand the complex crosstalk between ERs and growth factor receptors. In this review, we delineate the crosstalk between ERs and membrane growth factor receptors in breast cancer. Moreover, this review highlights the current progress in clinical treatment and discusses how pharmaceuticals target the crosstalk. Lastly, we discuss the current challenges and propose potential solutions regarding the implications of targeting crosstalk via pharmacological inhibition. Overall, the present review provides a landscape of the crosstalk between ERs and membrane growth factor receptors in breast cancer, along with valuable insights for future studies and clinical treatments using a chemotherapy-sparing regimen to improve patient quality of life.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Jiale Ji
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Zhijie Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Murshid Imam
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Hong Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Duo Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jinpeng Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| |
Collapse
|
5
|
Alencar AKN, Swan KF, Pridjian G, Lindsey SH, Bayer CL. Connecting G protein-coupled estrogen receptor biomolecular mechanisms with the pathophysiology of preeclampsia: a review. Reprod Biol Endocrinol 2023; 21:60. [PMID: 37393260 DOI: 10.1186/s12958-023-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Throughout the course of pregnancy, small maternal spiral arteries that are in contact with fetal tissue undergo structural remodeling, lose smooth muscle cells, and become less responsive to vasoconstrictors. Additionally, placental extravillous trophoblasts invade the maternal decidua to establish an interaction between the fetal placental villi with the maternal blood supply. When successful, this process enables the transport of oxygen, nutrients, and signaling molecules but an insufficiency leads to placental ischemia. In response, the placenta releases vasoactive factors that enter the maternal circulation and promote maternal cardiorenal dysfunction, a hallmark of preeclampsia (PE), the leading cause of maternal and fetal death. An underexplored mechanism in the development of PE is the impact of membrane-initiated estrogen signaling via the G protein-coupled estrogen receptor (GPER). Recent evidence indicates that GPER activation is associated with normal trophoblast invasion, placental angiogenesis/hypoxia, and regulation of uteroplacental vasodilation, and these mechanisms could explain part of the estrogen-induced control of uterine remodeling and placental development in pregnancy. CONCLUSION Although the relevance of GPER in PE remains speculative, this review provides a summary of our current understanding on how GPER stimulation regulates some of the features of normal pregnancy and a potential link between its signaling network and uteroplacental dysfunction in PE. Synthesis of this information will facilitate the development of innovative treatment options.
Collapse
Affiliation(s)
| | - Kenneth F Swan
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Gabriella Pridjian
- Department of Obstetrics & Gynecology, Tulane University, New Orleans, LA, 70112, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, 70112, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, 500 Lindy Boggs Center, New Orleans, LA, 70118, USA.
| |
Collapse
|
6
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
7
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
8
|
Paredes F, Williams HC, Suster I, Tejos M, Fuentealba R, Bogan B, Holden CM, San Martin A. Metabolic regulation of the proteasome under hypoxia by Poldip2 controls fibrotic signaling in vascular smooth muscle cells. Free Radic Biol Med 2023; 195:283-297. [PMID: 36596387 PMCID: PMC10268434 DOI: 10.1016/j.freeradbiomed.2022.12.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
The polymerase delta interacting protein 2 (Poldip2) is a nuclear-encoded mitochondrial protein required for oxidative metabolism. Under hypoxia, Poldip2 expression is repressed by an unknown mechanism. Therefore, low levels of Poldip2 are required to maintain glycolytic metabolism. The Cellular Communication Network Factor 2 (CCN2, Connective tissue growth factor, CTGF) is a profibrogenic molecule highly expressed in cancer and vascular inflammation in advanced atherosclerosis. Because CCN2 is upregulated under hypoxia and is associated with glycolytic metabolism, we hypothesize that Poldip2 downregulation is responsible for the upregulation of profibrotic signaling under hypoxia. Here, we report that Poldip2 is repressed under hypoxia by a mechanism that requires the activation of the enhancer of zeste homolog 2 repressive complex (EZH2) downstream from the Cyclin-Dependent Kinase 2 (CDK2). Importantly, we found that Poldip2 repression is required for CCN2 expression downstream of metabolic inhibition of the ubiquitin-proteasome system (UPS)-dependent stabilization of the serum response factor. Pharmacological or gene expression inhibition of CDK2 under hypoxia reverses Poldip2 downregulation, the inhibition of the UPS, and the expression of CCN2, collagen, and fibronectin. Thus, our findings connect cell cycle regulation and proteasome activity to mitochondrial function and fibrotic responses under hypoxia.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Izabela Suster
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Macarena Tejos
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Roberto Fuentealba
- Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, 3460000, Chile
| | - Bethany Bogan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Claire M Holden
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Arterburn JB, Prossnitz ER. G Protein-Coupled Estrogen Receptor GPER: Molecular Pharmacology and Therapeutic Applications. Annu Rev Pharmacol Toxicol 2023; 63:295-320. [PMID: 36662583 PMCID: PMC10153636 DOI: 10.1146/annurev-pharmtox-031122-121944] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and β), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein-coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.
Collapse
Affiliation(s)
- Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
| | - Eric R Prossnitz
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
10
|
Cheng W, Xiao X, Liao Y, Cao Q, Wang C, Li X, Jia Y. Conducive target range of breast cancer: Hypoxic tumor microenvironment. Front Oncol 2022; 12:978276. [PMID: 36226050 PMCID: PMC9550190 DOI: 10.3389/fonc.2022.978276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a kind of malignant tumor disease that poses a serious threat to human health. Its biological characteristics of rapid proliferation and delayed angiogenesis, lead to intratumoral hypoxia as a common finding in breast cancer. HIF as a transcription factor, mediate a series of reactions in the hypoxic microenvironment, including metabolic reprogramming, tumor angiogenesis, tumor cell proliferation and metastasis and other important physiological and pathological processes, as well as gene instability under hypoxia. In addition, in the immune microenvironment of hypoxia, both innate and acquired immunity of tumor cells undergo subtle changes to support tumor and inhibit immune activity. Thus, the elucidation of tumor microenvironment hypoxia provides a promising target for the resistance and limited efficacy of current breast cancer therapies. We also summarize the hypoxic mechanisms of breast cancer treatment related drug resistance, as well as the current status and prospects of latest related drugs targeted HIF inhibitors.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingqing Cao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Xiaojiang Li, ; Yingjie Jia,
| |
Collapse
|
11
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
12
|
Sex-Based Differences in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:499-533. [PMID: 34664253 DOI: 10.1007/978-3-030-73119-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Cancers are heterogeneous multifactorial diseases consisting of a major public health issue worldwide. Sex disparities are evidenced in cancer incidence, mortality, expression of prognosis factor, response to treatment, and survival. For both sexes, an interplay of intrinsic and environmental factors influences cancer cells and tumor microenvironment (TME) components. The TME cumulates both supportive and communicative functions, contributing to cancer development, progression, and metastasis dissemination. The frontline topics of this chapter are focused on the contribution of sex, via steroid hormones, such as estrogens and androgens, on the following components of the TME: cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), blood and lymphatic endothelial cells, and immunity/inflammatory system.
Collapse
|
13
|
Ziani L, Buart S, Chouaib S, Thiery J. Hypoxia increases melanoma-associated fibroblasts immunosuppressive potential and inhibitory effect on T cell-mediated cytotoxicity. Oncoimmunology 2021; 10:1950953. [PMID: 34367731 PMCID: PMC8312612 DOI: 10.1080/2162402x.2021.1950953] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) and hypoxia are central players in the complex process of tumor cell-stroma interaction and are involved in the alteration of the anti-tumor immune response by impacting both cancer and immune cell populations. However, even if their independent immunomodulatory properties are now well documented, whether the interaction between these two components of the tumor microenvironment can affect CAFs ability to alter the anti-tumor immune response is still poorly defined. In this study, we provide evidence that hypoxia increases melanoma-associated fibroblasts expression and/or secretion of several immunosuppressive factors (including TGF-β, IL6, IL10, VEGF and PD-L1). Moreover, we demonstrate that hypoxic CAF secretome exerts a more profound effect on T cell-mediated cytotoxicity than its normoxic counterpart. Together, our data suggest that the crosstalk between hypoxia and CAFs is probably an important determinant in the complex immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Linda Ziani
- INSERM, UMR 1186 “Human Tumor Immunology and Cancer Immunotherapy”, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine, University Paris Saclay, France
| | - Stéphanie Buart
- INSERM, UMR 1186 “Human Tumor Immunology and Cancer Immunotherapy”, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine, University Paris Saclay, France
| | - Salem Chouaib
- INSERM, UMR 1186 “Human Tumor Immunology and Cancer Immunotherapy”, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine, University Paris Saclay, France
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jerome Thiery
- INSERM, UMR 1186 “Human Tumor Immunology and Cancer Immunotherapy”, Villejuif, France
- Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine, University Paris Saclay, France
| |
Collapse
|
14
|
Chen W, Shen L, Jiang J, Zhang L, Zhang Z, Pan J, Ni C, Chen Z. Antiangiogenic therapy reverses the immunosuppressive breast cancer microenvironment. Biomark Res 2021; 9:59. [PMID: 34294146 PMCID: PMC8296533 DOI: 10.1186/s40364-021-00312-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor angiogenesis induces local hypoxia and recruits immunosuppressive cells, whereas hypoxia subsequently promotes tumor angiogenesis. Immunotherapy efficacy depends on the accumulation and activity of tumor-infiltrating immune cells (TIICs). Antangiogenic therapy could improve local perfusion, relieve tumor microenvironment (TME) hypoxia, and reverse the immunosuppressive state. Combining antiangiogenic therapy with immunotherapy might represent a promising option for the treatment of breast cancer. This article discusses the immunosuppressive characteristics of the breast cancer TME and outlines the interaction between the tumor vasculature and the immune system. Combining antiangiogenic therapy with immunotherapy could interrupt abnormal tumor vasculature-immunosuppression crosstalk, increase effector immune cell infiltration, improve immunotherapy effectiveness, and reduce the risk of immune-related adverse events. In addition, we summarize the preclinical research and ongoing clinical research related to the combination of antiangiogenic therapy with immunotherapy, discuss the underlying mechanisms, and provide a view for future developments. The combination of antiangiogenic therapy and immunotherapy could be a potential therapeutic strategy for treatment of breast cancer to promote tumor vasculature normalization and increase the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Chao Ni
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China. .,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China. .,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
15
|
Jiang W, Li M, Tan J, Feng M, Zheng J, Chen D, Liu Z, Yan B, Wang G, Xu S, Xiao W, Gao Y, Zhuo S, Yan J. A Nomogram Based on a Collagen Feature Support Vector Machine for Predicting the Treatment Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients. Ann Surg Oncol 2021; 28:6408-6421. [PMID: 34148136 DOI: 10.1245/s10434-021-10218-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The relationship between collagen features (CFs) in the tumor microenvironment and the treatment response to neoadjuvant chemoradiotherapy (nCRT) is still unknown. This study aimed to develop and validate a perdition model based on the CFs and clinicopathological characteristics to predict the treatment response to nCRT among locally advanced rectal cancer (LARC) patients. METHODS In this multicenter, retrospective analysis, 428 patients were included and randomly divided into a training cohort (299 patients) and validation cohort (129 patients) [7:3 ratio]. A total of 11 CFs were extracted from a multiphoton image of pretreatment biopsy, and a support vector machine (SVM) was then used to construct a CFs-SVM classifier. A prediction model was developed and presented with a nomogram using multivariable analysis. Further validation of the nomogram was performed in the validation cohort. RESULTS The CFs-SVM classifier, which integrated collagen area, straightness, and crosslink density, was significantly associated with treatment response. Predictors contained in the nomogram included the CFs-SVM classifier and clinicopathological characteristics by multivariable analysis. The CFs nomogram demonstrated good discrimination, with area under the receiver operating characteristic curves (AUROCs) of 0.834 in the training cohort and 0.854 in the validation cohort. Decision curve analysis indicated that the CFs nomogram was clinically useful. Moreover, compared with the traditional clinicopathological model, the CFs nomogram showed more powerful discrimination in determining the response to nCRT. CONCLUSIONS The CFs-SVM classifier based on CFs in the tumor microenvironment is associated with treatment response, and the CFs nomogram integrating the CFs-SVM classifier and clinicopathological characteristics is useful for individualized prediction of the treatment response to nCRT among LARC patients.
Collapse
Affiliation(s)
- Wei Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.,School of Science, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Min Li
- Department of Radiation Oncology, Sun Yat sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jie Tan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mingyuan Feng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jixiang Zheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Dexin Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhangyuanzhu Liu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Botao Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Guangxing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Shuoyu Xu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.,Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Weiwei Xiao
- Department of Radiation Oncology, Sun Yat sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yuanhong Gao
- Department of Radiation Oncology, Sun Yat sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China.
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, Fujian, People's Republic of China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Zhang R, Zong J, Peng Y, Shi J, Du X, Liu H, Shen Y, Cao J, Jia B, Liu F, Zhang J. GPR30 knockdown weakens the capacity of CAF in promoting prostate cancer cell invasion via reducing macrophage infiltration and M2 polarization. J Cell Biochem 2021; 122:1173-1191. [PMID: 33938030 DOI: 10.1002/jcb.29938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/27/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
Cancer-associated fibroblasts (CAFs) can promote the development and metastasis of prostate cancer partly by mediating tumor-associated inflammation. An increasing amount of studies have focused on the functional interactions between CAFs and immune cells in the tumor microenvironment (TME). We previously reported that G protein-coupled receptor 30 (GPR30) was highly expressed in prostate CAFs and plays a crucial role in prostate stromal cell activation. However, the effect and underlying mechanism of GPR30 expression in prostate CAFs affecting the interaction between CAFs and tumor-associated macrophages (TAMs) need further elucidation. Here, we found that, compared with CAF-shControl, CAF-shGPR30 inhibited macrophage migration through transwell migration assays, which should be attributed to the decreased expression of C-X-C motif chemokine ligand 12 (CXCL12). In addition, macrophages treated with a culture medium of CAF-shGPR30 exhibited attenuated M2 polarization with downregulated M2-like markers expression. Moreover, macrophages stimulated with a culture medium of CAF-shGPR30 were less efficient in promoting activation of fibroblast cells and invasion of PCa cells. Finally, cocultured CAF-shGPR30 and macrophages suppressed PCa cell invasion compared to cocultured CAF-shControl and macrophages by decreasing interleukin-6 (IL-6) secretion, and this effect could be abrogated with rescue expression of IL-6. Our results pinpoint the function of GPR30 in prostate CAFs on regulating the CAF-TAM interaction in the TME and provide new insights into PCa therapies via regulating TME.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiaojiao Zong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiandang Shi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Xiaoling Du
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Haitao Liu
- Shanghai First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Yongmei Shen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Jiasong Cao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Bona Jia
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, China
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Pepermans RA, Sharma G, Prossnitz ER. G Protein-Coupled Estrogen Receptor in Cancer and Stromal Cells: Functions and Novel Therapeutic Perspectives. Cells 2021; 10:cells10030672. [PMID: 33802978 PMCID: PMC8002620 DOI: 10.3390/cells10030672] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Estrogen is involved in numerous physiological and pathophysiological systems. Its role in driving estrogen receptor-expressing breast cancers is well established, but it also has important roles in a number of other cancers, acting both on tumor cells directly as well as in the function of multiple cells of the tumor microenvironment, including fibroblasts, immune cells, and adipocytes, which can greatly impact carcinogenesis. One of its receptors, the G protein-coupled estrogen receptor (GPER), has gained much interest over the last decade in both health and disease. Increasing evidence shows that GPER contributes to clinically observed endocrine therapy resistance in breast cancer while also playing a complex role in a number of other cancers. Recent discoveries regarding the targeting of GPER in combination with immune checkpoint inhibition, particularly in melanoma, have led to the initiation of the first Phase I clinical trial for the GPER-selective agonist G-1. Furthermore, its functions in metabolism and corresponding pathophysiological states, such as obesity and diabetes, are becoming more evident and suggest additional therapeutic value in targeting GPER for both cancer and other diseases. Here, we highlight the roles of GPER in several cancers, as well as in metabolism and immune regulation, and discuss the therapeutic value of targeting this estrogen receptor as a potential treatment for cancer as well as contributing metabolic and inflammatory diseases and conditions.
Collapse
Affiliation(s)
- Richard A. Pepermans
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (R.A.P.); (G.S.)
| | - Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (R.A.P.); (G.S.)
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Eric R. Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (R.A.P.); (G.S.)
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Correspondence: ; Tel.: +1-505-272-5647
| |
Collapse
|
18
|
Vella V, De Francesco EM, Lappano R, Muoio MG, Manzella L, Maggiolini M, Belfiore A. Microenvironmental Determinants of Breast Cancer Metastasis: Focus on the Crucial Interplay Between Estrogen and Insulin/Insulin-Like Growth Factor Signaling. Front Cell Dev Biol 2020; 8:608412. [PMID: 33364239 PMCID: PMC7753049 DOI: 10.3389/fcell.2020.608412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The development and progression of the great majority of breast cancers (BCs) are mainly dependent on the biological action elicited by estrogens through the classical estrogen receptor (ER), as well as the alternate receptor named G-protein–coupled estrogen receptor (GPER). In addition to estrogens, other hormones and growth factors, including the insulin and insulin-like growth factor system (IIGFs), play a role in BC. IIGFs cooperates with estrogen signaling to generate a multilevel cross-communication that ultimately facilitates the transition toward aggressive and life-threatening BC phenotypes. In this regard, the majority of BC deaths are correlated with the formation of metastatic lesions at distant sites. A thorough scrutiny of the biological and biochemical events orchestrating metastasis formation and dissemination has shown that virtually all cell types within the tumor microenvironment work closely with BC cells to seed cancerous units at distant sites. By establishing an intricate scheme of paracrine interactions that lead to the expression of genes involved in metastasis initiation, progression, and virulence, the cross-talk between BC cells and the surrounding microenvironmental components does dictate tumor fate and patients’ prognosis. Following (i) a description of the main microenvironmental events prompting BC metastases and (ii) a concise overview of estrogen and the IIGFs signaling and their major regulatory functions in BC, here we provide a comprehensive analysis of the most recent findings on the role of these transduction pathways toward metastatic dissemination. In particular, we focused our attention on the main microenvironmental targets of the estrogen-IIGFs interplay, and we recapitulated relevant molecular nodes that orientate shared biological responses fostering the metastatic program. On the basis of available studies, we propose that a functional cross-talk between estrogens and IIGFs, by affecting the BC microenvironment, may contribute to the metastatic process and may be regarded as a novel target for combination therapies aimed at preventing the metastatic evolution.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Livia Manzella
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico Vittorio Emanuele, Catania, Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| |
Collapse
|
19
|
Lee YT, Tan YJ, Falasca M, Oon CE. Cancer-Associated Fibroblasts: Epigenetic Regulation and Therapeutic Intervention in Breast Cancer. Cancers (Basel) 2020; 12:E2949. [PMID: 33066013 PMCID: PMC7600259 DOI: 10.3390/cancers12102949] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Cancer-associated fibroblasts (CAFs) are a heterogeneous population of cells in the solid tumour microenvironment. These cells are positively linked to breast cancer progression. Breast CAFs can be categorised into distinct subtypes according to their roles in breast carcinogenesis. Epigenetic modifications change gene expression patterns as a consequence of altered chromatin configuration and DNA accessibility to transcriptional machinery, without affecting the primary structure of DNA. Epigenetic dysregulation in breast CAFs may enhance breast cancer cell survival and ultimately lead to therapeutic resistance. A growing body of evidence has described epigenetic modulators that target histones, DNA, and miRNA as a promising approach to treat cancer. This review aims to summarise the current findings on the mechanisms involved in the epigenetic regulation in breast CAFs and discusses the potential therapeutic strategies via targeting these factors.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia; (Y.T.L.); (Y.J.T.)
| |
Collapse
|
20
|
Molina L, Bustamante F, Ortloff A, Ramos I, Ehrenfeld P, Figueroa CD. Continuous Exposure of Breast Cancer Cells to Tamoxifen Upregulates GPER-1 and Increases Cell Proliferation. Front Endocrinol (Lausanne) 2020; 11:563165. [PMID: 33117280 PMCID: PMC7561417 DOI: 10.3389/fendo.2020.563165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
GPER-1 is a novel membrane sited G protein-coupled estrogen receptor. Clinical studies have shown that patients suffering an estrogen receptor α (ERα)/GPER-1 positive, breast cancer have a lower survival rate than those who have developed ERα-positive/GPER-1 negative tumors. Moreover, absence of GPER-1 improves the prognosis of patients treated with tamoxifen, the most used selective estrogen receptor modulator to treat ERα-positive breast cancer. MCF-7 breast cancer cells were continuously treated with 1,000 nM tamoxifen for 7 days to investigate its effect on GPER-1 protein expression, cell proliferation and intracellular [Ca2+]i mobilization, a key signaling pathway. Breast cancer cells continuously treated with tamoxifen, exhibited a robust [Ca2+]i mobilization after stimulation with 1,000 nM tamoxifen, a response that was blunted by preincubation of cells with G15, a commercial GPER-1 antagonist. Continuously treated cells also displayed a high [Ca2+]i mobilization in response to a commercial GPER-1 agonist (G1) and to estrogen, in a magnitude that doubled the response observed in untreated cells and was almost completely abolished by G15. Proliferation of cells continuously treated with tamoxifen and stimulated with 2,000 nM tamoxifen, was also higher than that observed in untreated cells in a degree that was approximately 90% attributable to GPER-1. Finally, prolonged tamoxifen treatment did not increase ERα expression, but did overexpress the kinin B1 receptor, another GPCR, which we have previously shown is highly expressed in breast tumors and increases proliferation of breast cancer cells. Although we cannot fully extrapolate the results obtained in vitro to the patients, our results shed some light on the occurrence of drug resistance in breast cancer patients who are ERα/GPER-1 positive, have been treated with tamoxifen and display low survival rate. Overexpression of kinin B1 receptor may explain the increased proliferative response observed in breast tumors under continuous treatment with tamoxifen.
Collapse
Affiliation(s)
- Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Felipe Bustamante
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Iraidi Ramos
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D. Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
21
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
22
|
Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019; 200:55-68. [PMID: 30998941 DOI: 10.1016/j.pharmthera.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.
Collapse
|
23
|
Wang FT, Sun W, Zhang JT, Fan YZ. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer. Oncol Lett 2019; 17:3055-3065. [PMID: 30867734 PMCID: PMC6396119 DOI: 10.3892/ol.2019.9973] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Adequate blood supply is essential for tumor survival, growth and metastasis. The tumor microenvironment (TME) is dynamic and complex, comprising cancer cells, cancer-associated stromal cells and their extracellular products. The TME serves an important role in tumor progression. Cancer-associated fibroblasts (CAFs) are the principal component of stromal cells within the TME, and contribute to tumor neo-angiogenesis by altering the proteome and degradome. The present paper reviews previous studies of the molecular signaling pathways by which CAFs promote tumor neo-angiogenesis and highlights therapeutic response targets. Also discussed are potential strategies for antitumor neo-angiogenesis to improve tumor treatment efficacy.
Collapse
Affiliation(s)
- Fang-Tao Wang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wei Sun
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jing-Tao Zhang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
24
|
Xu S, Yu S, Dong D, Lee LTO. G Protein-Coupled Estrogen Receptor: A Potential Therapeutic Target in Cancer. Front Endocrinol (Lausanne) 2019; 10:725. [PMID: 31708873 PMCID: PMC6823181 DOI: 10.3389/fendo.2019.00725] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
The G protein-coupled estrogen receptor (GPER) is a seven-transmembrane-domain receptor that mediates non-genomic estrogen related signaling. After ligand activation, GPER triggers multiple downstream pathways that exert diverse biological effects on the regulation of cell growth, migration and programmed cell death in a variety of tissues. A significant correlation between GPER and the progression of multiple cancers has likewise been reported. Therefore, a better understanding of the role GPER plays in cancer biology may lead to the identification of novel therapeutic targets, especially among estrogen-related cancers. Here, we review cell signaling and detail the functions of GPER in malignancies.
Collapse
Affiliation(s)
- Shen Xu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Faculty of Health Sciences, Centre of Reproduction Development and Aging, University of Macau, Macau, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
| | - Daming Dong
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Daming Dong
| | - Leo Tsz On Lee
- Faculty of Health Sciences, Centre of Reproduction Development and Aging, University of Macau, Macau, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China
- Leo Tsz On Lee
| |
Collapse
|
25
|
Yeldag G, Rice A, Del Río Hernández A. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers (Basel) 2018; 10:E471. [PMID: 30487436 PMCID: PMC6315745 DOI: 10.3390/cancers10120471] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
The progression of cancer is associated with alterations in the tumor microenvironment, including changes in extracellular matrix (ECM) composition, matrix rigidity, hypervascularization, hypoxia, and paracrine factors. One key malignant phenotype of cancer cells is their ability to resist chemotherapeutics, and elements of the ECM can promote chemoresistance in cancer cells through a variety of signaling pathways, inducing changes in gene expression and protein activity that allow resistance. Furthermore, the ECM is maintained as an environment that facilitates chemoresistance, since its constitution modulates the phenotype of cancer-associated cells, which themselves affect the microenvironment. In this review, we discuss how the properties of the tumor microenvironment promote chemoresistance in cancer cells, and the interplay between these external stimuli. We focus on both the response of cancer cells to the external environment, as well as the maintenance of the external environment, and how a chemoresistant phenotype emerges from the complex signaling network present.
Collapse
Affiliation(s)
- Gulcen Yeldag
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Armando Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
26
|
Subtle changes in host cell density cause a serious error in monitoring of the intracellular growth of Chlamydia trachomatis in a low-oxygen environment: Proposal for a standardized culture method. J Microbiol Methods 2018; 153:84-91. [DOI: 10.1016/j.mimet.2018.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022]
|
27
|
Huang M, Du H, Zhang L, Che H, Liang C. The association of HIF-1α expression with clinicopathological significance in prostate cancer: a meta-analysis. Cancer Manag Res 2018; 10:2809-2816. [PMID: 30174456 PMCID: PMC6109649 DOI: 10.2147/cmar.s161762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Hypoxia-inducible factor-1α (HIF-1α) plays an important role in tumor growth, invasion, and metastasis. The aim of this study was to perform a meta-analysis to explore the association of HIF-1α expression with clinicopathological significance in patients with prostate cancer (PCa). Methods A detailed literature search was made in PubMed, Embase, Cochrane Library, China Biology Medicine disc (CBM), and China National Knowledge Infrastructure (CNKI) up to August 21, 2017. Odds ratios (ORs) with 95% CIs were calculated to evaluate the strength of the correlations. Analysis of pooled data was performed using Review Manager 5.3 software. Results Eventually, 14 studies were identified and involved in this meta-analysis. The rate of HIF-1α protein expression was significantly higher in PCa than in nonmalignant prostate tissues (OR=12.01, 95% CI: 8.22-17.55, P<0.00001). Similar results were found in different subgroups. There were significant differences between HIF-1α expression and clinicopathological significance. The expression of HIF-1α protein was significantly associated with Gleason score (Gleason ≥7 vs Gleason <7: OR=3.58, 95% CI: 2.35-5.46, P<0.00001). The frequency of HIF-1α protein expression was significantly higher in T3-T4 stages than in T1-T2 stages of PCa (OR=3.70, 95% CI: 1.53-8.96, P=0.004). The expression of HIF-1α protein was significantly associated with the presence of lymph node and/or bone metastasis of PCa (metastasis positive vs negative: OR=7.07, 95% CI: 4.08-12.25, P<0.00001). Conclusion Taken together, our findings have demonstrated the certain associations of HIF-1α expression with an increased risk and clinicopathological significance in PCa patients, indicating that HIF-1α may serve as a valuable biomarker for diagnosing PCa and monitoring the progression.
Collapse
Affiliation(s)
- Meng Huang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Ultrasound, The East District of First Affiliated Hospital of Anhui Medical University, The People's Hospital of Feidong, Hefei, Anhui, China
| | - Hexi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, China,
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, China,
| | - Hong Che
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui, China,
| |
Collapse
|
28
|
Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci 2018; 19:ijms19072011. [PMID: 29996493 PMCID: PMC6073901 DOI: 10.3390/ijms19072011] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway acts in both physiological and pathological conditions, including embryonic development and tumorigenesis. In cancer progression, diverse mechanisms are involved in Notch-mediated biological responses, including angiogenesis and epithelial-mesenchymal-transition (EMT). During EMT, the activation of cellular programs facilitated by transcriptional repressors results in epithelial cells losing their differentiated features, like cell–cell adhesion and apical–basal polarity, whereas they gain motility. As it concerns cancer epithelial cells, EMT may be consequent to the evolution of genetic/epigenetic instability, or triggered by factors that can act within the tumor microenvironment. Following a description of the Notch signaling pathway and its major regulatory nodes, we focus on studies that have given insights into the functional interaction between Notch signaling and either hypoxia or estrogen in breast cancer cells, with a particular focus on EMT. Furthermore, we describe the role of hypoxia signaling in breast cancer cells and discuss recent evidence regarding a functional interaction between HIF-1α and GPER in both breast cancer cells and cancer-associated fibroblasts (CAFs). On the basis of these studies, we propose that a functional network between HIF-1α, GPER and Notch may integrate tumor microenvironmental cues to induce robust EMT in cancer cells. Further investigations are required in order to better understand how hypoxia and estrogen signaling may converge on Notch-mediated EMT within the context of the stroma and tumor cells interaction. However, the data discussed here may anticipate the potential benefits of further pharmacological strategies targeting breast cancer progression.
Collapse
|
29
|
Metabolic Reprogramming of Cancer Associated Fibroblasts: The Slavery of Stromal Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6075403. [PMID: 29967776 PMCID: PMC6008683 DOI: 10.1155/2018/6075403] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Cancer associated fibroblasts (CAFs) are the main stromal cell type of solid tumour microenvironment and undergo an activation process associated with secretion of growth factors, cytokines, and paracrine interactions. One of the important features of solid tumours is the metabolic reprogramming that leads to changes of bioenergetics and biosynthesis in both tumour cells and CAFs. In particular, CAFs follow the evolution of tumour disease and acquire a catabolic phenotype: in tumour tissues, cancer cells and tumour microenvironment form a network where the crosstalk between cancer cells and CAFs is associated with cell metabolic reprogramming that contributes to CAFs activation, cancer growth, and progression and evasion from cancer therapies. In this regard, the study of CAFs metabolic reprogramming could contribute to better understand their activation process, the interaction between stroma, and cancer cells and could offer innovative tools for the development of new therapeutic strategies able to eradicate the protumorigenic activity of CAFs. Therefore, this review focuses on CAFs metabolic reprogramming associated with both differentiation process and cancer and stromal cells crosstalk. Finally, therapeutic responses and potential anticancer strategies targeting CAFs metabolic reprogramming are reviewed.
Collapse
|
30
|
Lappano R, Maggiolini M. GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J Steroid Biochem Mol Biol 2018; 176:49-56. [PMID: 28249728 DOI: 10.1016/j.jsbmb.2017.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/02/2017] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
The aggressiveness of breast tumors is deeply influenced by the surrounding stroma. In this regard, the functional crosstalk between cancer cells and the tumor microenvironment has received considerable attention in recent years. Cancer-associated fibroblasts (CAFs) are active components of the tumor stroma as they play a main role in the initiation, progression, metastasis and recurrence of breast malignancy. Hence, a better understanding of the mechanisms through which host stroma may contribute to cancer development would lead to novel therapeutic approaches aimed to target both tumor cells and the adjacent microenvironment. The G protein estrogen receptor (GPER/GPR30) has been involved in estrogenic signaling in normal and malignant cells, including breast cancer. It is noteworthy that the potential of GPER to mediate stimulatory effects of estrogens has been also shown in CAFs derived from patients with breast tumors, suggesting that GPER may act at the cross-road between cancer cells and these important components of the tumor microenvironment. This review recapitulates recent findings underlying the breast tumor-promoting action of CAFs, in particular their functional liaison with breast cancer cells via GPER toward the occurrence of malignant features.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
31
|
Wang M, Zhang J, Huang Y, Ji S, Shao G, Feng S, Chen D, Zhao K, Wang Z, Wu A. Cancer-Associated Fibroblasts Autophagy Enhances Progression of Triple-Negative Breast Cancer Cells. Med Sci Monit 2017; 23:3904-3912. [PMID: 28802099 PMCID: PMC5565237 DOI: 10.12659/msm.902870] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are key factors in malignant tumor initiation, progression, and metastasis. However, the effect of CAFs autophagy on triple-negative breast cancer (TNBC) cells is not clear. In this study, the growth effect of TNBC cells regulated by CAFs autophagy was evaluated. MATERIAL AND METHODS CAFs were obtained from invasive TNBC tumors and identified by Western blot and immunofluorescence staining assay. CAFs were co-cultured with TNBC cells, and migration and invasion were evaluated by Matrigel-coated Transwell and Transwell inserts. TNBC cells growth was detected by MTT assay, and epithelial-mesenchymal transition (EMT) regulated by CAFs was evaluated by Western blot assay. RESULTS CAFs were identified by the high expression of α-smooth muscle actin (α-SMA) protein. Autophagy-relevant Beclin 1 and LC3-II/I protein conversion levels in CAFs were higher than those in NFs (P<0.05). TNBC cells migration, invasion, and proliferation levels were significantly improved in the CAFs-conditioned medium (CAFs-CM) group, compared with the other 3 groups (P<0.05). TNBC cells vimentin and N-cadherin protein levels were upregulated and E-cadherin protein level was downregulated in the CAFs-CM group compared with the control group (P<0.05). Further study indicated b-catenin and P-GSK-3β protein levels, which are the key proteins in the Wnt/β-catenin pathway, were upregulated in the CAFs-CM group compared with the control group (P<0.05). CONCLUSIONS Our data demonstrated CAFs autophagy can enhance TNBC cell migration, invasion, and proliferation, and CAFs autophagy can induce TNBC cells to engage in the EMT process through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Mengchuan Wang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jian Zhang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yizhe Huang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shufeng Ji
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Guoli Shao
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shaobo Feng
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Danxun Chen
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Kankan Zhao
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Zixiang Wang
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Aiguo Wu
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
32
|
Molina L, Figueroa CD, Bhoola KD, Ehrenfeld P. GPER-1/GPR30 a novel estrogen receptor sited in the cell membrane: therapeutic coupling to breast cancer. Expert Opin Ther Targets 2017; 21:755-766. [PMID: 28671018 DOI: 10.1080/14728222.2017.1350264] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Breast cancer is clinically classified as 'estrogen-positive' when at least 1% of cancer cells stain for the estrogen receptor alpha (ERα). However, recent research on both basic and clinical aspects of breast cancer suggests that GPER-1 (G protein-coupled estrogen receptor-1) may have an important role in breast cancer. Areas covered: This review provides a comprehensive and systematic literature search on GPER-1. We have focused on the role of GPER-1 in breast cancer and on resistance to endocrine therapy, an unsolved clinical issue still under discussion. Expert opinion: The discovery of GPER-1 as a novel estrogen receptor is unique and the signaling pathways activated by its stimulation, when compared to the classical nuclear ERα, indicate a potential role of GPER-1 in the genesis and mechanisms of drug resistance in breast cancer. Tumors expressing ERα represent the largest group of breast cancer patients indicating that more women eventually die from ERα-positive breast tumors than from other more malignant breast cancer subtypes such as HER2-positive and the triple negative groups. It is important to develop new strategies on endocrine therapy with regard to ERα and GPER-1 receptors to achieve innovative successful therapeutic tools.
Collapse
Affiliation(s)
- Luis Molina
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Carlos D Figueroa
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Kanti D Bhoola
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Pamela Ehrenfeld
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| |
Collapse
|
33
|
Chen JY, Lin CH, Chen BC. Hypoxia-induced ADAM 17 expression is mediated by RSK1-dependent C/EBPβ activation in human lung fibroblasts. Mol Immunol 2017. [PMID: 28646679 DOI: 10.1016/j.molimm.2017.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hypoxia was identified as a mediator of lung fibrosis in patients with chronic obstructive asthma (COA). Overexpression of a disintegrin and metalloproteinase 17 (ADAM 17) and connective tissue growth factor (CTGF) leads to development of tissue fibrosis. However, the signaling pathway in hypoxia-induced ADAM 17 expression remains poorly defined. In this study, we investigated the roles that ribosomal S-6 kinase 1 (RSK1)/CCAAT/enhancer-binding protein β (C/EBPβ)-dependent ADAM 17 expression plays in hypoxia-induced CTGF expression in human lung fibroblasts. We observed that hypoxia caused increases in ADAM 17 expression and ADAM 17-luciferase activity in WI-38 cells. Hypoxia-induced CTGF-luciferase activity and CTGF expression were reduced in cells transfected with small interfering (si)RNA of ADAM 17 in WI-38 cells. Moreover, hypoxia-induced ADAM 17 expression was reduced by RSK1 siRNA and C/EBPβ siRNA. Hypoxia caused time-dependent increases in RSK1 phosphorylation at Thr359/Ser363. Exposure of cells to hypoxia resulted in increased C/EBPβ phosphorylation at Thr266 and C/EBPβ-luciferase activity in time-dependent manners, and these effects were suppressed by RSK1 siRNA. Hypoxia induced recruitment of C/EBPβ to the ADAM 17 promoter. Furthermore, CTGF-luciferase activity induced by hypoxia was attenuated by RSK1 siRNA and C/EBPβ siRNA. These results suggest that hypoxia instigates the RSK1-dependent C/EBPβ signaling pathway, which in turn initiates binding of C/EBPβ to the ADAM 17 promoter and ultimately induces ADAM 17 expression in human lung fibroblasts. Moreover, RSK1/C/EBPβ-dependent ADAM 17 expression is involved in hypoxia-induced CTGF expression. Our results suggest possible therapeutic approaches for treating hypoxia-mediated lung fibrosis in COA.
Collapse
Affiliation(s)
- Jing-Yun Chen
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Zhang L, Xiong W, Li N, Liu H, He H, Du Y, Zhang Z, Liu Y. Estrogen stabilizes hypoxia-inducible factor 1α through G protein-coupled estrogen receptor 1 in eutopic endometrium of endometriosis. Fertil Steril 2016; 107:439-447. [PMID: 27939762 DOI: 10.1016/j.fertnstert.2016.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate whether G protein-coupled estrogen receptor (GPER, also known as GPR30 and GPER1) stabilizes hypoxia-inducible factor 1α (HIF-1α) in eutopic endometrium (EuEM) of endometriosis. DESIGN Immunohistochemical analysis and experimental in vitro study. SETTING University hospital. PATIENT(S) Patients with or without endometriosis. INTERVENTION(S) The EuEM and normal control endometrium (CoEM) were obtained by curettage. Primary cultured endometrial stromal cells (ESCs) were treated with 17β-E2, G1, or G15. MAIN OUTCOME MEASURE(S) The EuEM and CoEM were collected for immunohistochemistry. Western blot, polymerase chain reaction, ELISA, and dual luciferase experiments were used to detect expression of GPER, HIF-1α, vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP9) in ESCs. Estradiol and G1 were used as agonists of GPER, G15 as an antagonist. Migration of ESCs and endothelial tube formation of human umbilical vein endothelial cells cultured in medium collected from ESCs were measured. RESULT(S) Protein levels of GPER and HIF-1α were higher in EuEM than in CoEM. Protein levels of HIF-1α but not HIF-1α mRNA levels increased concurrently with GPER after E2 and G1 treatment. Furthermore, expression and activity of VEGF and MMP9 increased under E2 and G1 stimulation. However, these effects disappeared when GPER was blocked. CONCLUSION(S) G protein-coupled estrogen receptor stabilizes HIF-1α and thus promotes HIF-1α-induced VEGF and MMP9 in ESCs, which play critical roles in endometriosis.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Na Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Haitang He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Yu Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China.
| |
Collapse
|
35
|
Cheng Y, Lin CH, Chen JY, Li CH, Liu YT, Chen BC. Induction of Connective Tissue Growth Factor Expression by Hypoxia in Human Lung Fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 Pathways. PLoS One 2016; 11:e0160593. [PMID: 27486656 PMCID: PMC4972311 DOI: 10.1371/journal.pone.0160593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/21/2016] [Indexed: 01/25/2023] Open
Abstract
Several reports have indicated that hypoxia, GLI, and connective tissue growth factor (CTGF) contribute to pulmonary fibrosis in idiopathic pulmonary fibrosis. We investigated the participation of mitogen-activated protein kinase kinase (MEK) kinase 1 (MEKK1)/MEK1/ERK1/GLI-1/2 and activator protein-1 (AP-1) signaling in hypoxia-induced CTGF expression in human lung fibroblasts. Hypoxia time-dependently increased CTGF expression, which was attenuated by the small interfering RNA (siRNA) of GLI-1 (GLI-1 siRNA) and GLI-2 (GLI-2 siRNA) in both human lung fibroblast cell line (WI-38) and primary human lung fibroblasts (NHLFs). Moreover, GLI-1 siRNA and GLI-2 siRNA attenuated hypoxia-induced CTGF-luciferase activity, and the treatment of cells with hypoxia induced GLI-1 and GLI-2 translocation. Furthermore, hypoxia-induced CTGF expression was reduced by an MEK inhibitor (PD98059), MEK1 siRNA, ERK inhibitor (U0126), ERK1 siRNA, and MEKK1 siRNA. Both PD98059 and U0126 significantly attenuated hypoxia-induced CTGF-luciferase activity. Hypoxia time-dependently increased MEKK1, ERK, and p38 MAPK phosphorylation. Moreover, SB203580 (a p38 MAPK inhibitor) also apparently inhibited hypoxia-induced CTGF expression. The treatment of cells with hypoxia induced ERK, GLI-1, or GLI-2 complex formation. Hypoxia-induced GLI-1 and GLI-2 translocation into the nucleus was significantly attenuated by U0126. In addition, hypoxia-induced ERK Tyr204 phosphorylation was impeded by MEKK1 siRNA. Moreover, hypoxia-induced CTGF-luciferase activity was attenuated by cells transfected with AP-1 site mutation in a CTGF construct. Exposure to hypoxia caused a time-dependent phosphorylation of c-Jun, but not of c-Fos. Chromatin immunoprecipitation (ChIP) revealed that hypoxia induced the recruitment of c-Jun, GLI-1, and GLI-2 to the AP-1 promoter region of CTGF. Hypoxia-treated cells exhibited an increase in α-smooth muscle actin (α-SMA) and collagen production, which was blocked by GLI-1 siRNA and GLI-2 siRNA. Overall, these data implied that the MEKK1/MEK1/ERK1/GLI-1/GLI-2, and AP-1 pathways mediated hypoxia-induced CTGF expression in human lung fibroblasts. Furthermore, GLI-1 and GLI-2 found to be involved in hypoxia-induced α-SMA and collagen expression.
Collapse
Affiliation(s)
- Yi Cheng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-huang Lin
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Yun Chen
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hua Li
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tin Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Pasanen I, Lehtonen S, Sormunen R, Skarp S, Lehtilahti E, Pietilä M, Sequeiros RB, Lehenkari P, Kuvaja P. Breast cancer carcinoma-associated fibroblasts differ from breast fibroblasts in immunological and extracellular matrix regulating pathways. Exp Cell Res 2016; 344:53-66. [PMID: 27112989 DOI: 10.1016/j.yexcr.2016.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022]
Abstract
Tumor stroma has been recently shown to play a crucial role in the development of breast cancer. Since the origin of the stromal cells in the tumor is unknown, we have examined differences and similarities between three stromal cell types of mesenchymal origin, namely carcinoma associated fibroblasts from breast tumor (CAFs), fibroblasts from normal breast area (NFs) and bone marrow derived mesenchymal stromal cells (MSCs). In a microarray analysis, immunological, developmental and extracellular matrix -related pathways were over-represented in CAFs when compared to NFs (p<0.001). Under hypoxic conditions, the expression levels of pyruvate dehydrogenase kinase-1 (PDK1) and pyruvate dehydrogenase kinase-4 (PDK4) were lower in CAFs when compared to NFs (fold changes 0.6 and 0.4, respectively). In normoxia, when compared to NFs, CAFs displayed increased expression of glucose transporter 1 (GLUT-1) and PDK1 (fold changes 1.5 and 1.3, respectively). With respect to the assessed surface markers, only CD105 was expressed differently in MSCs when compared to fibroblasts, being more often expressed on MSCs. Cells with myofibroblast features were present in both NF and CAF samples. We conclude, that CAFs differ distinctly from NFs at the gene expression level, this hypothesis was also tested in silico for other available gene expression data.
Collapse
Affiliation(s)
- I Pasanen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland; Department of Anatomy and Cell Biology, Oulu University Hospital, Finland.
| | - S Lehtonen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland; Department of Anatomy and Cell Biology, Oulu University Hospital, Finland; Department of Internal Medicine, Oulu University Hospital, Finland
| | - R Sormunen
- Biocenter Oulu and Departments of Pathology, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - S Skarp
- Biocenter Oulu, University of Oulu, Finland; Center for Life Course Epidemiology and Systems Medicine, Faculty of Medicine, University of Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Oulu Center for Cell - Matrix Research, University of Oulu, Finland
| | - E Lehtilahti
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland
| | - M Pietilä
- Turku Centre for Biotechnology, University of Turku, Turku FIN-20520, Finland
| | | | - P Lehenkari
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland; Department of Anatomy and Cell Biology, Oulu University Hospital, Finland; Department of Surgery, Oulu University Hospital, Finland
| | - P Kuvaja
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland; Department of Pathology, Oulu University Hospital, Finland
| |
Collapse
|