1
|
Wu N, Cai J, Jiang J, Lin Y, Wang X, Zhang W, Kang M, Zhang P. Biomarkers of lymph node metastasis in esophageal cancer. Front Immunol 2024; 15:1457612. [PMID: 39399490 PMCID: PMC11466839 DOI: 10.3389/fimmu.2024.1457612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Esophageal cancer (EC) is among the most aggressive malignancies, ranking as the seventh most prevalent malignant tumor worldwide. Lymph node metastasis (LNM) indicates localized spread of cancer and often correlates with a poorer prognosis, emphasizing the necessity for neoadjuvant systemic therapy before surgery. However, accurate identification of LNM in EC presents challenges due to the lack of satisfactory diagnostic techniques. Imaging techniques, including ultrasound and computerized tomography scans, have low sensitivity and accuracy in assessing LNM. Additionally, the existing serological detection lacks precise biomarkers. The intricate and not fully understood molecular processes involved in LNM of EC contribute to current detective limitations. Recent research has shown potential in using various molecules, circulating tumor cells (CTCs), and changes in the microbiota to identify LNM in individuals with EC. Through summarizing potential biomarkers associated with LNM in EC and organizing the underlying mechanisms involved, this review aims to provide insights that facilitate biomarker development, enhance our understanding of the underlying mechanisms, and ultimately address the diagnostic challenges of LNM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| |
Collapse
|
2
|
Qiu R, Wang W, Li J, Wang Y. Roles of PTEN inactivation and PD-1/PD-L1 activation in esophageal squamous cell carcinoma. Mol Biol Rep 2022; 49:6633-6645. [PMID: 35301651 DOI: 10.1007/s11033-022-07246-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer in China and developing countries. The purpose of this review is to summarize the roles of inactivation of the tumor suppressor gene, phosphatase and tensin homolog (PTEN), and activation of the programmed cell death protein 1 (PD-1) upon binding to its ligand (PD-L1) in the promotion of ESCC. Studies of ESCC performed in vitro and in vivo indicated that PTEN and PD-L1 function in the regulation of cell proliferation, invasion, and migration; the epithelial-mesenchymal transition; resistance to chemotherapy and radiotherapy; and the PI3K/AKT signaling pathway. Certain genetic variants of PTEN are related to susceptibility to ESCC, and PTEN and PD-L1 also function in ESCC progression and affect the prognosis of patients with ESCC. There is also evidence that the expression of PD-L1 and PTEN are associated with the progression of certain other cancers. Future studies should further examine the relationship of PD-L1 and PTEN and their possible interactions in ESCC.
Collapse
Affiliation(s)
- Rong Qiu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, No. 12 Jian Kang Road, Shijiazhuang, Hebei Province, P. R. China
| | - Wenxi Wang
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China
| | - Juan Li
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, No. 12 Jian Kang Road, Shijiazhuang, Hebei Province, P. R. China
| | - Yuxiang Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, No. 12 Jian Kang Road, Shijiazhuang, Hebei Province, P. R. China.
- , No.12, Jiankang Road, 050011, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
3
|
Gao PP, Qi XW, Sun N, Sun YY, Zhang Y, Tan XN, Ding J, Han F, Zhang Y. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188562. [PMID: 33964330 DOI: 10.1016/j.bbcan.2021.188562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/15/2022]
Abstract
Reversible phosphorylation of proteins, controlled by kinases and phosphatases, is involved in various cellular processes. Dual-specificity phosphatases (DUSPs) can dephosphorylate phosphorylated serine, threonine and tyrosine residues. This family consists of 61 members, 44 of which have been identified in human, and these 44 members are classified into six subgroups, the phosphatase and tensin homolog (PTEN) protein phosphatases (PTENs), mitogen-activated protein kinase phosphatases (MKPs), atypical DUSPs, cell division cycle 14 (CDC14) phosphatases (CDC14s), slingshot protein phosphatases (SSHs), and phosphatases of the regenerating liver (PRLs). Growing evidence has revealed dysregulation of DUSPs as one of the common phenomenons and highlighted their key roles in human cancers. Furthermore, their differential expression may be a potential biomarker for tumor prognosis. Despite this, there are still many unstudied members of DUSPs need to further explore their precise roles and mechanism in cancers. Most importantly, the systematic review is very limited on the functional/mechanistic characteristics and clinical application of DUSPs at present. In this review, the structures, functions and underlying mechanisms of DUSPs are systematically reviewed, and the molecular and functional characteristics of DUSPs in different tumor types according to the current researches are summarized. In addition, the potential roles of the unstudied members and the possible different mechanisms of DUSPs in cancer are discussed and classified based on homology alignment and structural domain analyses. Moreover, the specific characteristics of their expression and prognosis are further determined in more than 30 types of human cancers by using the online databases. Finally, their potential application in precise diagnosis, prognosis and treatment of different types of cancers, and the main possible problems for the clinical application at present are prospected.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Na Sun
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yuan-Yuan Sun
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Sciences, Changchun, Jilin 130023, China
| | - Ye Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuan-Ni Tan
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Ding
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
4
|
Transferred by exosomes-derived MiR-19b-3p targets PTEN to regulate esophageal cancer cell apoptosis, migration and invasion. Biosci Rep 2021; 40:226893. [PMID: 33146702 PMCID: PMC7685012 DOI: 10.1042/bsr20201858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
The present study aims to investigate the relationship between miR-19b-3p and esophageal cancer (ESCA), and to detect the effects of miR-19b-3p transferred by exosomes on the phenotype of EC9706 cells. The expression of miR-19b-3p was detected by starBase analysis and real-time quantitative PCR (RT-qPCR). The target genes of miR-19b-3p were predicted by TargetScan and further verified by luciferase analysis. The mRNA and protein expression levels of PTEN and EMT-related genes were detected by RT-qPCR and Western blotting. The effects of miR-19b-3p transferred by exosomes and its target genes on the apoptosis, migration and invasion of EC9706 cells were studied by establishing a co-culture model of donor cells. The expression of miR-19b-3p in ESCA plasma, cells and exosomes was significantly up-regulated. miR-19b-3p transferred by exosomes could significantly reduce EC9706 cells apoptosis rate, promote cell migration and invasion, and could target the inhibition of PTEN expression. PTEN overexpression promoted apoptosis, inhibited cell migration and invasion, down-regulated the expression of MMP-2 and vimentin, and up-regulated E-cadherin expression; however, these effects could be partially reversed by miR-19b-3p. In summary, our results reveal that miR-19b-3p transferred by exosomes can target PTEN to regulate ESCA biological functions in the receptor EC9706 cells.
Collapse
|
5
|
Wang B, Hua P, Wang R, Li J, Zhang G, Jin C, Zhang Y. Inhibited MicroRNA-301 Restrains Angiogenesis and Cell Growth in Esophageal Squamous Cell Carcinoma by Elevating PTEN. NANOSCALE RESEARCH LETTERS 2021; 16:3. [PMID: 33404856 PMCID: PMC7788144 DOI: 10.1186/s11671-020-03452-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Esophageal squamous cell carcinoma (ESCC) is featured by early metastasis and late diagnosis. MicroRNA-301 (miR-301) is known to participate in diverse cancers. Nevertheless, effects of miR-301 on ESCC remain unexplored. Thus, we aim to explore the role of miR-301 in ESCC progression. METHODS Expression of miR-301 and phosphatase and tensin homologue (PTEN) in ESCC tissues and cell lines was assessed. Next, the screened cells were treated with altered miR-301 or PTEN oligonucleotide and plasmid, and then, the colony formation ability, cell viability, migration, invasion, cell cycle distribution and apoptosis of ESCC cells were assessed. Moreover, tumor growth and microvessel density (MVD) were also assessed, and the targeting relationship between miR-301 and PTEN was affirmed. RESULTS MiR-301 was upregulated, and PTEN was downregulated in ESCC tissues and cells. KYSE30 cells and Eca109 cells were selected for functional assays. In KYSE30 cells, inhibited miR-301 or overexpressed PTEN suppressed cell malignant behaviors, and silenced PTEN eliminated the impact of miR-301 inhibition on ESCC progression. In Eca109 cells, miR-301 overexpression or PTEN inhibition promoted cell malignant behaviors, and PTEN overexpression reversed the effects of miR-301 elevation on ESCC progression. The in vivo assay revealed that miR-301 inhibition or PTEN overexpression repressed ESCC tumor growth and MVD, and miR-301 elevation or PTEN reduction had contrary effects. Moreover, PTEN was targeted by miR-301. CONCLUSION Taken together, results in our study revealed that miR-301 affected cell growth, metastasis and angiogenesis via regulating PTEN expression in ESCC.
Collapse
Affiliation(s)
- Bin Wang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Peiyan Hua
- Department of Thoracic Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Ruimin Wang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jindong Li
- Department of Thoracic Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Chengyan Jin
- Department of Thoracic Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China
| | - Yan Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, Jilin, China.
| |
Collapse
|
6
|
Zhang H, Wang P, Zhang X, Zhao W, Ren H, Hu Z. SDF1/CXCR7 Signaling Axis Participates in Angiogenesis in Degenerated Discs via the PI3K/AKT Pathway. DNA Cell Biol 2019; 38:457-467. [PMID: 30864829 DOI: 10.1089/dna.2018.4531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Degenerative disc disease (DDD) is the main cause of low back pain, and the ingrowth of new blood vessels is one of its pathological features. The stromal cell-derived factor 1 (SDF1)/CXCR7 signaling axis plays a role in these physiological and pathological activities. The aims of this study were to explore whether this signaling axis participates in the angiogenesis of degenerated intervertebral discs (IVDs) and to define its underlying mechanism. In this study, we cocultured human nucleus pulposus cells (NPCs) and vascular endothelial cells (VECs) and regulated the expression of SDF1/CXCR7 to investigate the effect of VEC angiogenesis by NPCs. The results revealed that angiogenesis was enhanced with increased SDF1 and that angiogenesis was weakened with the inhibition of CXCR7. We found that PI3K/AKT was involved in the downstream pathway in the coculture. VEC angiogenesis induction by NPCs was enhanced with an increase in pAKT or a decrease in PTEN. We conclude that the SDF1/CXCR7 signaling axis plays a role in the angiogenesis of degenerated IVD through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hanxiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Peng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Wenrui Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Honglei Ren
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zhenming Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
7
|
Li J, Qi Z, Hu YP, Wang YX. Possible biomarkers for predicting lymph node metastasis of esophageal squamous cell carcinoma: a review. J Int Med Res 2019; 47:544-556. [PMID: 30616477 PMCID: PMC6381495 DOI: 10.1177/0300060518819606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer is the eighth most common form of cancer worldwide, and esophageal squamous cell carcinoma (ESCC) is a major type of esophageal cancer that arises from epithelial cells of the esophagus. Local lymph node metastasis (LNM) is a typical sign of failure for ESCC clinical treatments, and a link has been established between LNM and the aberrant expression of specific biomarkers. In this review, we summarize what is known about nine factors significantly associated with LNM in ESCC patients: phosphatase and tensin homolog (PTEN), mucin 1, vascular endothelial growth factor-C, tumor necrosis factor alpha-induced protein 8 (TNFAIP8), Raf-1 kinase inhibitory protein, stathmin (STMN1), metastasis-associated protein 1, caveolin-1, and interferon-induced transmembrane protein 3. The function of these nine proteins involves four major mechanisms: tumor cell proliferation, tumor cell migration and invasion, epithelium–mesenchymal transition, and chemosensitivity. The roles of PTEN, STMN1, and TNFAIP8 involve at least two of these mechanisms, and we suggest that they are possible biomarkers for predicting LNM in ESCC. However, further retrospective research into PTEN, STMN1, and TNFAIP8 is needed to test their possibilities as indicators.
Collapse
Affiliation(s)
- Juan Li
- 1 Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Zhan Qi
- 2 Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Yuan-Ping Hu
- 1 Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Yu-Xiang Wang
- 1 Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
8
|
In vivo and in vitro effects of hyperplasia suppressor gene on the proliferation and apoptosis of lung adenocarcinoma A549 cells. Biosci Rep 2018; 38:BSR20180391. [PMID: 30061179 PMCID: PMC6167497 DOI: 10.1042/bsr20180391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 01/28/2023] Open
Abstract
Lung adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC). Hyperplasia suppressor gene (HSG) has been reported to inhibit cell proliferation, migration, and remodeling in cardiovascular diseases. However, there lacks systematic researches on the effect of HSG on the apoptosis and proliferation of lung adenocarcinoma A549 cells and data of in vivo experiments. The present study aims to investigate the effects of HSG gene silencing on proliferation and apoptosis of lung adenocarcinoma A549 cells. The human lung adenocarcinoma A549 cell was selected to construct adenovirus vector. Reverse transcription-quantitative PCR (RT-qPCR) and Western blot analysis were conducted to detect expressions of HSG and apoptosis related-proteins. Cell Counting Kit (CCK)-8 assay was performed to assess A549 cell proliferation and flow cytometry to analyze cell cycle and apoptosis rate. The BALB/C nude mice were collected to establish xenograft model. Silenced HSG showed decreased mRNA and protein expressions of HSG, and elevated A549 cell survival rates at the time point of 24, 48, and 72 h. The ratio of cells at G0/G1 phase and apoptosis rate decreased and the ratio of cells at S- and G2/M phases increased following the silencing of HSG. There were decreases of B cell lymphoma-2 (Bcl-2)-associated X protein (Bax), Caspase-3, and Caspase-8 expressions but increases in Bcl-2 induced by silenced HSG. As for the xenograft in nude mice, tumor volume increased, and apoptosis index (AI) decreased after HSG silencing. These results indicate that HSG gene silencing may promote the proliferation of A549 cells and inhibit the apoptosis. HSG may be a promising target for the treatment of lung adenocarcinoma.
Collapse
|
9
|
Palodhi A, Ghosh S, Biswas NK, Basu A, Majumder PP, Maitra A. Profiling of genomic alterations of mitochondrial DNA in gingivobuccal oral squamous cell carcinoma: Implications for disease progress. Mitochondrion 2018; 46:361-369. [PMID: 30261279 DOI: 10.1016/j.mito.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/08/2018] [Accepted: 09/14/2018] [Indexed: 01/31/2023]
Abstract
We have identified 164 somatic mutations in mitochondrial DNA in gingivobuccal oral cancer by deep sequencing the mitochondrial genome from paired tumor and blood DNA samples from 89 patients. We have found evidence of positive selection of somatic nonsynonymous mutations. Non-synonymous mutations in mitochondrial respiratory genes were found to increase the risk of lymph node metastasis (P = 0.0028). We have observed a significant reduction in mitochondrial DNA copy number in tumor DNA of these patients compared to the DNA from adjacent normal tissue samples (P < 1 × 10-6). Analysis of transcriptome data of tumor and adjacent normal tissue revealed patients harboring mutations in mitochondrial protein-coding genes exhibited reduced expression of mitochondrial transcripts.
Collapse
Affiliation(s)
- Arindam Palodhi
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Sahana Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | | | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India.
| |
Collapse
|
10
|
Xiao Z, Jia Y, Jiang W, Wang Z, Zhang Z, Gao Y. FOXM1: A potential indicator to predict lymphatic metastatic recurrence in stage IIA esophageal squamous cell carcinoma. Thorac Cancer 2018; 9:997-1004. [PMID: 29877046 PMCID: PMC6068428 DOI: 10.1111/1759-7714.12776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous studies have elucidated that FOXM1 may predict poor prognosis in patients with multiple solid malignant tumors. In this study we explored the differential expression of FOXM1 in stage IIA esophageal squamous cell carcinoma (ESCC) and investigated its prognostic value. METHODS Immunohistochemistry (IHC) and Western blot were used to detect FOXM1 expression in ESCC. Correlations between FOXM1 expression and clinicopathological variables, and five-year lymphatic metastatic recurrence (LMR) and overall survival (OS) of patients were analyzed. RESULTS FOXM1 was aberrantly expressed in ESCC. Statistical analysis revealed a close relationship between FOXM1 expression and tumor size (P = 0.024), depth of invasion (P = 0.048), and degree of differentiation (P = 0.043). The five-year LMR of patients in the FOXM1 overexpression group was significantly increased compared to the low expression group (P = 0.001). The five-year OS of patients in the FOXM1 overexpression group was significantly reduced compared to the low expression group (P = 0.007). Log-rank tests demonstrated that large tumor size (P = 0.044), poor differentiation degree (P = 0.005), deep invasion (P = 0.000), and FOXM1 overexpression (P = 0.007) may indicate poor prognosis in stage IIA ESCC. Cox multivariate regression analysis revealed that all of these variables were independent predictors of unfavorable outcome (P < 0.05). CONCLUSION FOXM1 could be a predictor of lymphatic metastatic recurrence in stage IIA ESCC after Ivor Lewis esophagectomy.
Collapse
Affiliation(s)
- Zhaohua Xiao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenpeng Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhiping Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanyun Gao
- Department of Gynaecology and Obstetrics, Jining Traditional Chinese Medicine Hospital, Jining, China
| |
Collapse
|
11
|
Alfieri R, Giovannetti E, Bonelli M, Cavazzoni A. New Treatment Opportunities in Phosphatase and Tensin Homolog (PTEN)-Deficient Tumors: Focus on PTEN/Focal Adhesion Kinase Pathway. Front Oncol 2017; 7:170. [PMID: 28848709 PMCID: PMC5552661 DOI: 10.3389/fonc.2017.00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 01/04/2023] Open
Abstract
Deep genetic studies revealed that phosphatase and tensin homolog (PTEN) mutations or loss of expression are not early events in cancer development but characterize tumor progression and invasion. Loss of PTEN function causes a full activation of the prosurvival phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, but the treatment with specific inhibitors of PI3K/AKT/mTOR did not produce the expected results. One of the alternative targets of PTEN is the focal adhesion kinase (FAK) kinase, mainly involved in the control of cancer cell spread. The connection between PTEN and FAK has been demonstrated in different tumor types, with reduced PTEN activity often correlated with increased expression and phosphorylation of FAK. FAK inhibition may thus represent a promising strategy, and some clinical trials are testing FAK inhibitors alone or combined with other agents in a number of solid tumors. However, only few preclinical and clinical data described the effects of the combination of PI3K/AKT/mTOR and FAK inhibitors. Increasing knowledge on the PTEN/FAK connection could confirm PTEN as a good prognostic marker for a combination strategy based on concomitant inhibition of PI3K/AKT and FAK signaling, in advanced metastatic malignancies with altered or reduced PTEN expression.
Collapse
Affiliation(s)
- Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands.,Cancer Pharmacology Laboratory, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Yu X, Li T, Xia Y, Lei J, Wang Y, Zhang L. Herpes simplex virus type 1 VP22-mediated intercellular delivery of PTEN increases the antitumor activity of PTEN in esophageal squamous cell carcinoma cells in vitro and in vivo. Oncol Rep 2016; 35:3034-40. [PMID: 27004535 DOI: 10.3892/or.2016.4694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/12/2016] [Indexed: 11/06/2022] Open
Abstract
In the past decade, studies have revealed that the phosphatase and tensin homolog (PTEN) protein, a tumor suppressor, comprises a potential biological marker and therapeutic target for esophageal squamous cell carcinoma (ESCC). As such, the delivery of the PTEN gene represents a powerful strategy for ESCC therapy. The tegument protein VP22 of herpes simplex virus type 1 (HSV-1) has been reported to act as a transporter of heterologous proteins across the host cell membrane, thereby enhancing the biological functions of these proteins. In the present study, the intercellular delivery and antitumor activity of the fusion protein PTEN-VP22 were examined in the esophageal squamous cell carcinoma cell line Eca109 both in vitro and in vivo. VP22-mediated PTEN intercellular delivery was confirmed in the Eca109 cells by western blot analysis and by quantitation of immunofluorescence. VP22 alone did not exert antiproliferative effects or induce cell cycle arrest, induction of apoptosis, blockage of the Akt and focal adhesion kinase (FAK) pathways, tumor growth inhibition, or antiangiogenic effects in Eca109 cells. However, compared with PTEN alone, PTEN-VP22 exerted significantly higher antiproliferative effects and induced cell cycle arrest at G1 stage, apoptosis and antiangiogenic effects in Eca109 cells. Together, our findings demonstrate that VP22 alone does not exert antitumor activity directly; however, this protein mediates the intercellular delivery of PTEN and thereby increases its intracellular concentration to achieve a therapeutic steady state, leading to an overall increase in the antitumor activity of PTEN. This study provides further experimental data to confirm the potential of VP22-based intercellular delivery strategies for enhancing the efficacy of gene therapy for cancer treatment.
Collapse
Affiliation(s)
- Xian Yu
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Tingting Li
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Yifan Xia
- Department of Orthopaedics, Chongqing General Hospital, Chongqing 400014, P.R. China
| | - Jun Lei
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Yan Wang
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Lijuan Zhang
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| |
Collapse
|