1
|
Gaggi G, Hausman C, Cho S, Badalamenti BC, Trinh BQ, Di Ruscio A, Ummarino S. LncRNAs Ride the Storm of Epigenetic Marks. Genes (Basel) 2025; 16:313. [PMID: 40149464 PMCID: PMC11942515 DOI: 10.3390/genes16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Advancements in genome sequencing technologies have uncovered the multifaceted roles of long non-coding RNAs (lncRNAs) in human cells. Recent discoveries have identified lncRNAs as major players in gene regulatory pathways, highlighting their pivotal role in human cell growth and development. Their dysregulation is implicated in the onset of genetic disorders and age-related diseases, including cancer. Specifically, they have been found to orchestrate molecular mechanisms impacting epigenetics, including DNA methylation and hydroxymethylation, histone modifications, and chromatin remodeling, thereby significantly influencing gene expression. This review provides an overview of the current knowledge on lncRNA-mediated epigenetic regulation of gene expression, emphasizing the biomedical implications of lncRNAs in the development of different types of cancers and genetic diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Clinton Hausman
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soomin Cho
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Brianna C. Badalamenti
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q. Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Annalisa Di Ruscio
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
2
|
Wu Y, Zeng Y, Wu Y, Ha X, Feng Z, Liu C, Liu Z, Wang J, Ju X, Huang S, Liang L, Zheng B, Yang L, Wang J, Wu X, Li S, Wen H. HIF-1α-induced long noncoding RNA LINC02776 promotes drug resistance of ovarian cancer by increasing polyADP-ribosylation. Clin Transl Med 2025; 15:e70244. [PMID: 40118782 PMCID: PMC11928293 DOI: 10.1002/ctm2.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Chemoresistance remains a major hurdle in ovarian cancer (OC) treatment, as many patients eventually develop resistance to platinum-based chemotherapy and/or PARP inhibitors (PARPi). METHODS We performed transcriptome-wide analysis by RNA sequencing (RNA-seq) data of platinum-resistant and -sensitive OC tissues. We demonstrated the role of LINC02776 in platinum resistance in OC cells, mice models and patient-derived organoid (PDO) models. RESULTS We identify the long noncoding RNA LINC02776 as a critical factor of platinum resistance. Elevated expression of LINC02776 is observed in platinum-resistant OC and serves as an independent prognostic factor for OC patients. Functionally, silencing LINC02776 reduces proliferation and DNA damage repair in OC cells, thereby enhancing sensitivity to platinum and PARPi in both xenograft mouse models and patient-derived organoid (PDO) models with acquired chemoresistance. Mechanistically, LINC02776 binds to the catalytic domain of poly (ADP-ribose) polymerase 1 (PARP1), promoting PARP1-dependent polyADP-ribosylation (PARylation) and facilitating homologous recombination (HR) restoration. Additionally, high HIF-1α expression in platinum-resistant tissues further stimulates LINC02776 transcription. CONCLUSIONS Our findings suggest that targeting LINC02776 represents a promising therapeutic strategy for OC patients who have developed resistance to platinum or PARPi. KEY POINTS LINC02776 promotes OC cell proliferation by regulating DNA damage and apoptosis signaling pathways. LINC02776 binds PARP1 to promote DNA damage-triggered PARylation in OC cells. LINC02776 mediates cisplatin and olaparib resistance in OC cells by enhancing PARP1-mediated PARylation activity and regulating the PARP1-mediated HR pathway. The high expression of LINC02776 is induced by HIF-1α in platinum-resistant OC cells and tissues.
Collapse
Affiliation(s)
- Yangjun Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu Zeng
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yong Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xinyu Ha
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zheng Feng
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Chaohua Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ziqi Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jiajia Wang
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xingzhu Ju
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shenglin Huang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Linhui Liang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Bin Zheng
- Accurate International Biotechnology Co. Ltd.GuangzhouChina
| | - Lulu Yang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Jun Wang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Xiaohua Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shengli Li
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Wen
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Wu Q, Zhu C, Zhao T, Liu T, Da M. Downregulation of LncRNA CCAT1 Enhances Chemosensitivity in Cisplatin-Resistant Gastric Cancer Cells. Drug Dev Res 2025; 86:e70048. [PMID: 39829433 DOI: 10.1002/ddr.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Chemotherapy is an effective treatment for gastric cancer. However, many patients develop resistance to chemotherapeutic agents during clinical treatment. LncRNA CCAT1 has recently been shown to influence cellular resistance to specific chemotherapeutic drugs, but its role in gastric cancer remains underexplored. This study aims to investigate the role of LncRNA CCAT1 in cisplatin resistance in gastric cancer cells and its potential underlying mechanisms. Gastric cancer cell lines with acquired resistance were established. The expression of CCAT1 was assessed in both cisplatin-sensitive and cisplatin-resistant AGS cell lines. CCAT1 expression was knocked down in AGS/DDP cells, and the changes in IC50 values were measured using the Cell Counting Kit-8 (CCK-8) assay. Apoptosis in gastric cancer cells was evaluated by flow cytometry. Additionally, Western blotting was employed to measure the expression levels of PI3K/AKT/mTOR signaling pathway proteins and apoptosis-related proteins in both interference and control groups. RT-qPCR results indicated that CCAT1 expression was significantly elevated in cisplatin-resistant gastric cancer cells compared to non-resistant cells. Similarly, CCK-8 assay results demonstrated that knocking down CCAT1 in resistant cells increased their sensitivity to cisplatin treatment. Flow cytometry and Western blot results further confirmed that silencing CCAT1 promoted apoptosis in these cells. Additionally, the expression of PI3K/AKT/mTOR signaling pathway proteins was higher in resistant cells compared to their sensitive counterparts, and silencing CCAT1 in AGS/DDP cells resulted in reduced expression of these proteins. In conclusion, the above studies demonstrated that LncRNA CCAT1 induced cisplatin resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Qiong Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chenglou Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Tiantian Zhao
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Tianxiang Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
4
|
Bagheri M, Akrami H. Studying the non-coding RNA expression and its role in drug resistance mechanisms of gastric cancer. Pathol Res Pract 2025; 265:155742. [PMID: 39602870 DOI: 10.1016/j.prp.2024.155742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Gastric cancer is the fifth most common malignancy and the fifth primary cause of death from cancer all over the world. Because of diagnosis of gastric cancer at advanced, incurable stages and limited response to treatment, the disease has an adverse prognosis and a low survival rate. Chemotherapy consisting of medications such as platinum and 5-Fluorouracil can be effective for patients with advanced stomach cancer. Nevertheless, drug resistance eventually leads to unsuccessful therapy and adverse outcomes for gastric cancer patients. Most therapy failures in gastric cancer patients undergoing chemotherapy are caused by the development of drug resistance. Several studies have shown that noncoding RNAs (ncRNAs) play important roles in the resistance of gastric cancer to chemotherapy drugs. The development of stomach cancer is greatly impacted by a number of ncRNAs, including microRNAs (e.g., miR-21, miR-27a), circular RNAs (e.g., CircPVT1), and long noncoding RNAs (e.g., HOTAIR). Because of their regulatory characteristics in certain genes implicated in the chemoresistant phenotype of gastric cancer, much evidence has demonstrated their function in the emergence and persistence of drug resistance. In the future, ncRNA-based treatment could represent a novel approach to treating drug resistance. Despite numerous studies on anticancer drug resistance mechanisms, it is still unclear how these mechanisms are regulated. In this review, we investigated the evolving function and molecular mechanisms of ncRNAs related to drug resistance, their function in controlling drug resistance in gastric cancer, and their potential to create targeted therapeutics for reducing drug resistance in gastric cancer.
Collapse
Affiliation(s)
- Mahdi Bagheri
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. LncRNAs in modulating cancer cell resistance to paclitaxel (PTX) therapy. Med Oncol 2024; 42:28. [PMID: 39671022 DOI: 10.1007/s12032-024-02577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Paclitaxel (PTX) is widely used for treating several cancers, including breast, ovarian, lung, esophageal, gastric, pancreatic, and neck cancers. Despite its clinical utility, cancer recurrence frequently occurs in patients due to the development of resistance to PTX. Resistance mechanisms in cancer cells treated with PTX include alterations in β-tubulin, the target molecule involved in mitosis, activation of molecular pathways enabling drug efflux, and dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules longer than 200 nucleotides without protein-coding potential, serve diverse regulatory roles in cellular processes. Increasing evidence highlights the involvement of lncRNAs in cancer progression and their contribution to PTX resistance across various cancers. Consequently, lncRNAs have emerged as potential therapeutic targets for addressing drug resistance in cancer treatment. This review focuses on the current understanding of lncRNAs and their role in drug resistance mechanisms, aiming to encourage further investigation in this area. Key lncRNAs and their associated pathways linked to PTX resistance will be summarized.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Sejal Shah
- Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Chen Z, Zhang X, Li Z, Zhang H, Wang Z. lncRNA LINC02323 predicts adverse neoadjuvant chemotherapy outcomes of gastric cancer patients and regulates cell sensitivity to 5-fluorouracil by negatively modulating miR-139-3p. Ann Med 2024; 56:2424513. [PMID: 39506605 PMCID: PMC11544739 DOI: 10.1080/07853890.2024.2424513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND/OBJECTIVE Drug resistance is a challenging problem in the clinical chemotherapy of gastric cancer. Identification of predictive biomarkers for chemotherapy outcomes could improve therapeutic efficacy and patient prognosis. This study aimed to assess the significance of long non-coding RNA (lncRNA) LINC02323 in gastric cancer progression and neoadjuvant chemotherapy and to explore its potential regulatory mechanism. MATERIALS AND METHODS This study enrolled 117 patients with gastric cancer who received neoadjuvant chemotherapy combined with surgical treatment and 35 patients with benign gastroscopic results. The expression of LINC02323 in gastric mucosal tissues of study subjects was analyzed by PCR, and its association with chemotherapy efficacy and cancer development was evaluated. Gastric cancer cells were treated with 5-FU, and the effect of LINC02323 on cell growth and motility under 5-FU treatments was evaluated using CCK8 and transwell assays. RESULTS LINC02323 was upregulated in gastric cancer patients, which was related to advanced T stage, occurrence of lymph node metastasis, and less pathological response to chemotherapy. LINC02323 serves as a prognostic biomarker for predicting poor overall survival of gastric cancer patients receiving neoadjuvant chemotherapy. Silencing LINC02323 suppressed the proliferation and motility of gastric cancer cells treated with 5-FU and induced cell apoptosis, indicating the enhanced sensitivity of gastric cancer cells to 5-FU. miR-139-3p was negatively regulated by LINC02323 and could reverse the function of LINC02323 in 5-FU-treated gastric cancer cells. CONCLUSION Upregulated LINC02323 expression in gastric cancer is associated with malignant progression, adverse prognosis, and chemotherapy resistance. Silencing LINC02323 could enhance the sensitivity of gastric cancer cells to 5-FU by negatively modulating miR-139-3p expression.
Collapse
Affiliation(s)
- Zexu Chen
- Department of General Surgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Xiaodong Zhang
- Department of Gastroenterology, Nanjing LuHe People’s Hospital, Nanjing, Jiangsu, China
| | - Zhentao Li
- Department of Gastroenterology, Xuzhou Municipal Hospital Affiliated to XuZhou Medical University, Xuzhou, Jiangsu, China
| | - Haihan Zhang
- Department of Gastroenterology, Xuzhou Municipal Hospital Affiliated to XuZhou Medical University, Xuzhou, Jiangsu, China
| | - Zhuangmei Wang
- Department of Gastroenterology, Xuzhou Municipal Hospital Affiliated to XuZhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Vaghari-Tabari M, Qujeq D, Hashemzadeh MS. Long noncoding RNAs as potential targets for overcoming chemoresistance in upper gastrointestinal cancers. Biomed Pharmacother 2024; 179:117368. [PMID: 39214010 DOI: 10.1016/j.biopha.2024.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
In the last decade, researchers have paid much attention to the role of noncoding RNA molecules in human diseases. Among the most important of these molecules are LncRNAs, which are RNA molecules with a length of more than 200 nucleotides. LncRNAs can regulate gene expression through various mechanisms, such as binding to DNA sequences and interacting with miRNAs. Studies have shown that LncRNAs may be valuable therapeutic targets in treating various cancers, including upper-gastrointestinal cancers. Upper gastrointestinal cancers, mainly referring to esophageal and gastric cancers, are among the deadliest gastrointestinal cancers. Despite notable advances, traditional chemotherapy remains a common strategy for treating these cancers. However, chemoresistance poses a significant obstacle to the effective treatment of upper gastrointestinal cancers, resulting in a low survival rate. Chemoresistance arises from various events, such as the enhancement of efflux and detoxification of chemotherapy agents, reduction of drug uptake, alteration of drug targeting, reduction of prodrug activation, strengthening of EMT and stemness, and the attenuation of apoptosis in cancerous cells. Tumor microenvironment also plays an important role in chemoresistance. Interestingly, a series of studies have revealed that LncRNAs can influence important mechanisms associated with some of the aforementioned events and may serve as promising targets for mitigating chemoresistance in upper gastrointestinal cancers. In this review paper, following a concise overview of chemoresistance mechanisms in upper gastrointestinal cancers, we will review the most intriguing findings of these investigations in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
9
|
Meng X, Bai X, Ke A, Li K, Lei Y, Ding S, Dai D. Long Non-Coding RNAs in Drug Resistance of Gastric Cancer: Complex Mechanisms and Potential Clinical Applications. Biomolecules 2024; 14:608. [PMID: 38927012 PMCID: PMC11201466 DOI: 10.3390/biom14060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) ranks as the third most prevalent malignancy and a leading cause of cancer-related mortality worldwide. However, the majority of patients with GC are diagnosed at an advanced stage, highlighting the urgent need for effective perioperative and postoperative chemotherapy to prevent relapse and metastasis. The current treatment strategies have limited overall efficacy because of intrinsic or acquired drug resistance. Recent evidence suggests that dysregulated long non-coding RNAs (lncRNAs) play a significant role in mediating drug resistance in GC. Therefore, there is an imperative to explore novel molecular mechanisms underlying drug resistance in order to overcome this challenging issue. With advancements in deep transcriptome sequencing technology, lncRNAs-once considered transcriptional noise-have garnered widespread attention as potential regulators of carcinogenesis, including tumor cell proliferation, metastasis, and sensitivity to chemo- or radiotherapy through multiple regulatory mechanisms. In light of these findings, we aim to review the mechanisms by which lncRNAs contribute to drug therapy resistance in GC with the goal of providing new insights and breakthroughs toward overcoming this formidable obstacle.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Kaiqiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Yun Lei
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Siqi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
10
|
Kim HW, Baek M, Jung S, Jang S, Lee H, Yang SH, Kwak BS, Kim SJ. ELOVL2-AS1 suppresses tamoxifen resistance by sponging miR-1233-3p in breast cancer. Epigenetics 2023; 18:2276384. [PMID: 37908128 PMCID: PMC10621244 DOI: 10.1080/15592294.2023.2276384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Tamoxifen (Tam) has long been a top treatment option for breast cancer patients, but the challenge of eliminating cancer recurrence remains. Here, we identify a signalling pathway involving ELOVL2, ELOVL2-AS1, and miR-1233-3p, which contributes to drug resistance in Tam-resistant (TamR) breast cancer. ELOVL2-AS1, a long noncoding RNA, was significantly upregulated by its antisense gene, ELOVL2, which is known to be downregulated in TamR cells. Additionally, ELOVL2-AS1 underwent the most hypermethylation in MCF-7/TamR cells. Furthermore, patients with breast cancer who developed TamR during chemotherapy had significantly lower expression of ELOVL2-AS1 compared to those who responded to Tam. Ectopic downregulation of ELOVL2-AS1 by siRNA both stimulated cancer cell growth and deteriorated TamR. We also found that ELOVL2-AS1 sponges miR-1233-3p, which has pro-proliferative activity and elevates TamR, leading to the activation of potential target genes, such as MYEF2, NDST1, and PIK3R1. These findings suggest that ELOVL2-AS1, in association with ELOVL2, may contribute to the suppression of drug resistance by sponging miR-1233-3p in breast cancer.
Collapse
Affiliation(s)
- Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Minjae Baek
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sanghyun Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Siyeon Jang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeonjin Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Beom Seok Kwak
- Department of Surgery, Ilsan Hospital, College of Medicine, Dongguk University, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
11
|
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers (Basel) 2023; 15:4160. [PMID: 37627188 PMCID: PMC10453084 DOI: 10.3390/cancers15164160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting with multiple proteins and miRNAs. It has been found to play important roles in various cellular processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated with several diseases like cancers and cardiovascular diseases, for instance. Understanding the oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of the 9p21 locus and ANRIL in cancer.
Collapse
Affiliation(s)
| | | | | | - Lilia Ayadi
- CNRS, Université de Lorraine, IMoPA, F-54000 Nancy, France
| | | |
Collapse
|
12
|
Islam S, Mukherjee C. Molecular regulation of hypoxia through the lenses of noncoding RNAs and epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1750. [PMID: 35785444 DOI: 10.1002/wrna.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Cells maintain homeostasis in response to environmental stress through specific cell stress responses. Hypoxic stress, well known to be associated with diverse solid tumors, is one of the main reasons for cancer-related mortality. Although cells can balance themselves well during hypoxic stress, the underlying molecular mechanisms are not well understood. The enhanced appreciation of diverse roles played by noncoding transcriptome and epigenome in recent years has brought to light the involvement of noncoding RNAs and epigenetic modifiers in hypoxic regulation. The emergence of techniques like deep sequencing has facilitated the identification of large numbers of long noncoding RNAs (lncRNAs) that are differentially regulated in various cancers. Similarly, proteomic studies have identified diverse epigenetic modifiers such as HATs, HDACs, DNMTs, polycomb groups of proteins, and their possible roles in the regulation of hypoxia. The crosstalk between lncRNAs and epigenetic modifiers play a pivotal role in hypoxia-induced cancer initiation and progression. Besides the lncRNAs, several other noncoding RNAs like circular RNAs, miRNAs, and so forth are also expressed during hypoxic conditions. Hypoxia has a profound effect on the expression of noncoding RNAs and epigenetic modifiers. Conversely, noncoding RNAs/epigenetic modifies can regulate the hypoxia signaling axis by modulating the stability of the hypoxia-inducible factors (HIFs). The focus of this review is to illustrate the molecular orchestration underlying hypoxia biology, especially in cancers, which can help in identifying promising therapeutic targets in hypoxia-induced cancers. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Safirul Islam
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| | - Chandrama Mukherjee
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| |
Collapse
|
13
|
Eptaminitaki GC, Stellas D, Bonavida B, Baritaki S. Long Non-coding RNAs (lncRNAs) signaling in Cancer Chemoresistance: From Prediction to Druggability. Drug Resist Updat 2022; 65:100866. [DOI: 10.1016/j.drup.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
14
|
Wang ZW, Pan JJ, Hu JF, Zhang JQ, Huang L, Huang Y, Liao CY, Yang C, Chen ZW, Wang YD, Shen BY, Tian YF, Chen S. SRSF3-mediated regulation of N6-methyladenosine modification-related lncRNA ANRIL splicing promotes resistance of pancreatic cancer to gemcitabine. Cell Rep 2022; 39:110813. [PMID: 35545048 DOI: 10.1016/j.celrep.2022.110813] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Serine/arginine-rich splicing factor 3 (SRSF3) regulates mRNA alternative splicing of more than 90% of protein-coding genes, providing an essential source for biological versatility. This study finds that SRSF3 expression is associated with drug resistance and poor prognosis in pancreatic cancer. We also find that SRSF3 regulates ANRIL splicing and m6A modification of ANRIL in pancreatic cancer cells. More importantly, we demonstrate that m6A methylation on lncRNA ANRIL is essential for the splicing. Moreover, our results show that SRSF3 promotes gemcitabine resistance by regulating ANRIL's splicing and ANRIL-208 (one of the ANRIL spliceosomes) can enhance DNA homologous recombination repair (HR) capacity by forming a complex with Ring1b and EZH2. In conclusion, this study establishes a link between SRSF3, m6A modification, lncRNA splicing, and DNA HR in pancreatic cancer and demonstrates that abnormal alternative splicing and m6A modification are closely related to chemotherapy resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Jing-Jing Pan
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Jia-Qiang Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Long Huang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China; Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Can Yang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Zhi-Wen Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China
| | - Yao-Dong Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China; Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Bai-Yong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China; Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou 350001, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou 350001, China; Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou 350001, China.
| |
Collapse
|
15
|
Liu Y, Ao X, Wang Y, Li X, Wang J. Long Non-Coding RNA in Gastric Cancer: Mechanisms and Clinical Implications for Drug Resistance. Front Oncol 2022; 12:841411. [PMID: 35155266 PMCID: PMC8831387 DOI: 10.3389/fonc.2022.841411] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide, with high recurrence and mortality rate. Chemotherapy, including 5-fluorouracil (5-FU), adriamycin (ADR), vincristine (VCR), paclitaxel (PTX), and platinum drugs, remains one of the fundamental methods of GC treatment and has efficiently improved patients’ prognosis. However, most patients eventually develop resistance to chemotherapeutic agents, leading to the failure of clinical treatment and patients’ death. Recent studies suggest that long non-coding RNAs (lncRNAs) are involved in the drug resistance of GC by modulating the expression of drug resistance-related genes via sponging microRNAs (miRNAs). Moreover, lncRNAs also play crucial roles in GC drug resistance via a variety of mechanisms, such as the regulation of the oncogenic signaling pathways, inhibition of apoptosis, induction of autophagy, modulation of cancer stem cells (CSCs), and promotion of the epithelial-to-mesenchymal transition (EMT) process. Some of lncRNAs exhibit great potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for GC patients. Therefore, understanding the role of lncRNAs and their mechanisms in GC drug resistance may provide us with novel insights for developing strategies for individual diagnosis and therapy. In this review, we summarize the recent findings on the mechanisms underlying GC drug resistance regulated by lncRNAs. We also discuss the potential clinical applications of lncRNAs as biomarkers and therapeutic targets in GC.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
- *Correspondence: Ying Liu,
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Sun Y, Cao X, Guo Y, Liu B, Zhang Y. The Prognostic and Molecular Landscape of Autophagy-Related Long Noncoding RNA in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5614915. [PMID: 35097120 PMCID: PMC8794669 DOI: 10.1155/2022/5614915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Current evidence suggests that autophagy is closely correlated with the pathogenesis and development of malignant tumors. This study is aimed at assessing the potential prognostic significance of autophagy-related long noncoding RNA (ARlncRNA) in colorectal cancer (CRC). 3145 ARlncRNAs were obtained from autophagy-related genes (ARGs) by Pearson correlation analysis, and we established a competing endogenous RNA (ceRNA) network mediated by ARlncRNAs. A novel six-ARlncRNA prognostic signature was constructed based on TCGA samples used as the training group. Kaplan-Meier survival analysis and independent prognosis analysis were performed on the internal (training and test groups) and external validations (GEO datasets) to assess the accuracy and clinical practicability. Moreover, the nomogram combining the two independent prognostic factors (age and ARlncRNA-risk score (ARlncRNA-RS)) intuitively displayed overall survival. Gene set enrichment analysis (GSEA) conducted on the prognostic signature revealed that the gene set of the high-risk group was significantly enriched in the hallmark gene set "hypoxia" and the gene set of the low-risk group was enriched in KEGG pathways, including "peroxisome," "the citrate cycle (TCA cycle)," and "other glycan degradation." Assessment of antineoplastic therapy susceptibility and microsatellite instability (MSI) analysis were performed on CRC samples based on the prognostic signature. Moreover, Spearman correlation analysis was conducted on the expression of six ARlncRNAs of the prognostic signature and cancer stem cell (CSC) index as well as the tumor microenvironment (TME). In conclusion, this study established a six-ARlncRNA prognostic signature, which yielded favorable prognostic significance and demonstrated the correlation between ARlncRNAs and CRC progression.
Collapse
Affiliation(s)
- YuanLin Sun
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - XueYuan Cao
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - YuChen Guo
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Bin Liu
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, 130021 Jilin, China
| |
Collapse
|
17
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Lee AM, Ferdjallah A, Moore E, Kim DC, Nath A, Greengard E, Huang RS. Long Non-Coding RNA ANRIL as a Potential Biomarker of Chemosensitivity and Clinical Outcomes in Osteosarcoma. Int J Mol Sci 2021; 22:ijms222011168. [PMID: 34681828 PMCID: PMC8538287 DOI: 10.3390/ijms222011168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023] Open
Abstract
Osteosarcoma has a poor prognosis due to chemo-resistance and/or metastases. Increasing evidence shows that long non-coding RNAs (lncRNAs) can play an important role in drug sensitivity and cancer metastasis. Using osteosarcoma cell lines, we identified a positive correlation between the expression of a lncRNA and ANRIL, and resistance to two of the three standard-of-care agents for treating osteosarcoma-cisplatin and doxorubicin. To confirm the potential role of ANRIL in chemosensitivity, we independently inhibited and over-expressed ANRIL in osteosarcoma cell lines followed by treatment with either cisplatin or doxorubicin. Knocking-down ANRIL in SAOS2 resulted in a significant increase in cellular sensitivity to both cisplatin and doxorubicin, while the over-expression of ANRIL in both HOS and U2OS cells led to an increased resistance to both agents. To investigate the clinical significance of ANRIL in osteosarcoma, we assessed ANRIL expression in relation to clinical phenotypes using the osteosarcoma data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset. Higher ANRIL expression was significantly associated with increased rates of metastases at diagnosis and death and was a significant predictor of reduced overall survival rate. Collectively, our results suggest that the lncRNA ANRIL can be a chemosensitivity and prognosis biomarker in osteosarcoma. Furthermore, reducing ANRIL expression may be a therapeutic strategy to overcome current standard-of-care treatment resistance.
Collapse
Affiliation(s)
- Adam M. Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (A.M.L.); (D.C.K.)
| | - Asmaa Ferdjallah
- Department of Pediatrics, Hematology & Oncology, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.); (E.G.)
| | - Elise Moore
- Department of Natural Sciences, Zanvyl Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Daniel C. Kim
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (A.M.L.); (D.C.K.)
| | - Aritro Nath
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA 91007, USA;
| | - Emily Greengard
- Department of Pediatrics, Hematology & Oncology, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.); (E.G.)
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (A.M.L.); (D.C.K.)
- Correspondence: ; Tel.: +1-612-625-1372
| |
Collapse
|
19
|
Zhang SX, Liu W, Ai B, Sun LL, Chen ZS, Lin LZ. Current Advances and Outlook in Gastric Cancer Chemoresistance: A Review. Recent Pat Anticancer Drug Discov 2021; 17:26-41. [PMID: 34587888 DOI: 10.2174/1574892816666210929165729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical resection of the lesion is the standard primary treatment of gastric cancer. Unfortunately, most patients are already in the advanced stage of the disease when they are diagnosed with gastric cancer. Alternative therapies, such as radiation therapy and chemotherapy, can achieve only very limited benefits. The emergence of cancer drug resistance has always been the major obstacle to the cure of tumors. The main goal of modern cancer pharmacology is to determine the underlying mechanism of anticancer drugs. OBJECTIVE Here, we mainly review the latest research results related to the mechanism of chemotherapy resistance in gastric cancer, the application of natural products in overcoming the chemotherapy resistance of gastric cancer, and the new strategies currently being developed to treat tumors based on immunotherapy and gene therapy. CONCLUSION The emergence of cancer drug resistance is the main obstacle in achieving alleviation and final cure for gastric cancer. Mixed therapies are considered to be a possible way to overcome chemoresistance. Natural products are the main resource for discovering new drugs specific for treating chemoresistance, and further research is needed to clarify the mechanism of natural product activity in patients. .
Collapse
Affiliation(s)
- Sheng-Xiong Zhang
- Guangdong Province Work Injury Rehabilitation Hospital, Guangzhou, 510440. China
| | - Wei Liu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006. China
| | - Bo Ai
- Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Ling-Ling Sun
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, New York. United States
| | - Li-Zhu Lin
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| |
Collapse
|
20
|
SNHG10 Promotes Cell Proliferation and Migration in Gastric Cancer by Targeting miR-495-3p/CTNNB1 Axis. Dig Dis Sci 2021; 66:2627-2636. [PMID: 32920660 DOI: 10.1007/s10620-020-06576-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Long non-coding RNAs have been acknowledged as the crucial regulators in the progression of human cancers, including gastric cancer (GC). Small nucleolar RNA host gene 10 (SNHG10) has been identified as an oncogene in several cancer types. Nonetheless, it is unclear whether SNHG10 exerts functions in GC cells. AIMS The aims of the current study were to explore the function and underlying mechanism of SNHG10 in GC. METHODS The expression levels of SNHG10, miR-495-3p and catenin beta 1 (CTNNB1) were detected by RT-qPCR. Loss-of-function assays, including CCK-8, colony formation assay, flow cytometry analysis and transwell assays, were conducted to verify the effect of SHNG10 on the proliferation, apoptosis, migration and invasion of GC cells. Mechanism experiments were performed to identify the downstream molecular mechanism of SNHG10. RESULTS SNHG10 was expressed at a high level in GC cells. Knockdown of SNHG10 inhibited the proliferation, migration and invasion of GC cells. Silencing of SNHG10 led to the downregulation of core factors of WNT signaling pathway. Knockdown of SNHG10 could decline the expression of CTNNB1 through sequestering miR-495-3p. CONCLUSIONS SNHG10 promotes the procession of GC through targeting miR-495-3p/CTNNB1 and activating WNT signaling pathway.
Collapse
|
21
|
de Mello RA, Amaral GA, Neves NM, Lippo EG, Parini F, Xu S, Tolia M, Charalampakis N, Tadokoro H, Castelo-Branco P, Zhu J. Current and potential biomarkers in gastric cancer: a critical review of the literature. Future Oncol 2021; 17:3383-3396. [PMID: 34291647 DOI: 10.2217/fon-2021-0084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer is the fourth most common type of cancer worldwide and the second most lethal. Gastric cancer biomarkers can be used for diagnosis, prediction of sensitivity to treatment, and prognosis. The following search terms were applied to PubMed as of December 2020: 'gastric cancer classification', 'gastric cancer epidemiology', 'cancer metastasis' and 'gastric cancer biomarker'. Only experimental studies were reported in the 'biomarkers' section. Some biomarkers can serve as therapeutic targets for antitumoral drugs. The genes analyzed include E-cadherin, RPRM, XAF1, MINT25, TFF1, p16 and p53. The miRNAs analyzed include miR-18a, miR185-5p, miR-125b and miR-21. Some molecules were associated with metastasis of gastric cancer, specifically those involved with EMT process and tissue degradation.
Collapse
Affiliation(s)
- Ramon Andrade de Mello
- Algarve Biomedical Centre, Faculty of Medicine & Biomedical Sciences, University of Algarve (FMCB UALG), Faro 8005-139, Portugal.,Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil.,Precision Oncology & Health Economics Group (ONCOPRECH), Post-Graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo 01525-000, Brazil
| | - Giovanna Araujo Amaral
- Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil
| | - Nathália Moisés Neves
- Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil
| | - Estela Gudin Lippo
- School of Biomedical Sciences, Santo Amaro University, São Paulo 01525-000, Brazil
| | - Fernanda Parini
- Precision Oncology & Health Economics Group (ONCOPRECH), Post-Graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo 01525-000, Brazil
| | - Song Xu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Maria Tolia
- Department of Radiotherapy, School of Medicine, University of Crete, Heraklion 715 00, Greece
| | | | - Hakaru Tadokoro
- Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil
| | - Pedro Castelo-Branco
- Algarve Biomedical Centre, Faculty of Medicine & Biomedical Sciences, University of Algarve (FMCB UALG), Faro 8005-139, Portugal
| | - Jinhui Zhu
- Department of General Surgery & Laparoscopic Center, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| |
Collapse
|
22
|
Mora Y, Reyes ME, Zanella L, Mora B, Buchegger K, Ili C, Brebi P. Resistance to platinum-based cancer drugs: a special focus on epigenetic mechanisms. Pharmacogenomics 2021; 22:777-790. [PMID: 34281355 DOI: 10.2217/pgs-2021-0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemoresistance is a significant clinical challenge, limiting the drug response in cancer. Several mechanisms associated with drug resistance have been characterized, and the role of epigenetics in generating resistance to platinum-based drugs has been clarified. Epigenetic mechanisms such as DNA methylation, histone modification, long noncoding RNA, and microRNA affect the expression of genes implicated in absorption, distribution, metabolism and excretion (ADME) of drugs, and other non-ADME genes that encode enzymes involved in the processes of cell proliferation, DNA repair, apoptosis and signal transduction key in the development of chemoresistance in cancer, specifically in platinum-based drugs. This review summarizes current discoveries in epigenetic regulation implicated in platinum drug resistance in cancer and the main clinical trials based on epigenetic therapy, evaluating their potential synergy with platinum-based drugs.
Collapse
Affiliation(s)
- Yuselin Mora
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - María Elena Reyes
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, 8370003, Chile
| | - Louise Zanella
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - Bárbara Mora
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, 4810101, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile.,Departamento Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Scientific & Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, 4810296, Chile
| |
Collapse
|
23
|
Wu J, Xu S, Li W, Lu Y, Zhou Y, Xie M, Luo Y, Cao Y, He Y, Zeng T, Ling H. lncRNAs as Hallmarks for Individualized Treatment of Gastric Cancer. Anticancer Agents Med Chem 2021; 22:1440-1457. [PMID: 34229588 DOI: 10.2174/1871520621666210706113102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
Gastric cancer is global cancer with a high mortality rate. A growing number of studies have found the abnormal expression of lncRNA (long noncoding RNA) in many tumors, which plays a role in promoting or inhibiting cancer. Similarly, lncRNA abnormal expression plays an essential biological function in gastric cancer. This article focuses on lncRNA involvement in the development of gastric cancer in terms of cell cycle disorder, apoptosis inhibition, metabolic remodeling, promotion of tumor inflammation, immune escape, induction of angiogenesis, and epithelial mesenchymal transition (EMT). The involvement of lncRNA in the development of gastric cancer is related to drug resistance, such as cisplatin and multi-drug resistance. It can also be used as a potential marker for the diagnosis and prognosis of gastric cancer and a target for the treatment. With an in-depth understanding of the mechanism of lncRNA in gastric cancer, new ideas for personalized treatment of gastric cancer are expected.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Shan Xu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Wei Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yuru Lu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yu Zhou
- Shaoyang University, Shaoyang, Hunan 422000, China
| | - Ming Xie
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yichen Luo
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yijing Cao
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Yan He
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Tiebing Zeng
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405], Hengyang, Hunan 421001, China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
24
|
Hu X, Lou T, Yuan C, Wang Y, Tu X, Wang Y, Zhang T. Effects of lncRNA ANRIL-knockdown on the proliferation, apoptosis and cell cycle of gastric cancer cells. Oncol Lett 2021; 22:621. [PMID: 34267814 PMCID: PMC8258619 DOI: 10.3892/ol.2021.12882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/02/2021] [Indexed: 01/24/2023] Open
Abstract
Gastric cancer is one of the most common types of malignant tumor of the gastrointestinal tract worldwide. Cisplatin (DDP) is a commonly used chemotherapeutic drug in the clinic; however, the resistance of gastric cancer cells to DDP limits its efficacy. In the present study, drug-resistant gastric cancer cell lines were constructed using the stepwise continuous selection method, and the relative expression levels of long non-coding RNA (lncRNA) CDKN2B antisense RNA 1 (ANRIL) and microRNA (miR)-181a-5p were detected using reverse transcription-quantitative PCR. The knockdown of lncRNA ANRIL and miR-181a-5p expression was performed by transfection with shRNA-ANRIL and an miR-181a-5p inhibitor, respectively. Cellular proliferation and sensitivity to DDP were assessed using Cell Counting Kit-8 analysis. Cell apoptosis and cell cycle distribution were assessed using flow cytometry and western blotting. The binding relationships between ANRIL, miR-181a-5p and cyclin G1 (CCNG1) were verified using a dual luciferase reporter assay. The results revealed that the expression levels of miR-181a-5p were downregulated in all drug-resistant cell lines. ANRIL-knockdown inhibited cellular proliferation, and promoted apoptosis and cell cycle arrest; however, following the knockdown of miR-181a-5p, the inhibition of cell cycle arrest was alleviated. Notably, miR-181a-5p, ANRIL and CCNG1 were found to have targeting relationships. In conclusion, the findings of the present study suggested that knocking down the expression of ANRIL inhibited cellular proliferation, and promoted apoptosis and cell cycle arrest. Furthermore, its downstream target, miR-181a-5p, inhibited the proliferation of drug-resistant cells and enhanced their sensitivity to DDP.
Collapse
Affiliation(s)
- Xueqian Hu
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Ting Lou
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Chunying Yuan
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Yongsheng Wang
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Xiaolong Tu
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Yi Wang
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| | - Tingsu Zhang
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
25
|
Li Y, Lu L, Wu X, Li Q, Zhao Y, Du F, Chen Y, Shen J, Xiao Z, Wu Z, Hu W, Cho CH, Li M. The Multifaceted Role of Long Non-Coding RNA in Gastric Cancer: Current Status and Future Perspectives. Int J Biol Sci 2021; 17:2737-2755. [PMID: 34345204 PMCID: PMC8326121 DOI: 10.7150/ijbs.61410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer (GC) is one of the major public health concerns. Long non-coding RNAs (lncRNAs) have been increasingly demonstrated to possess a strong correlation with GC and play a critical role in GC occurrence, progression, metastasis and drug resistance. Many studies have shed light on the understanding of the underlying mechanisms of lncRNAs in GC. In this review, we summarized the updated research about lncRNAs in GC, focusing on their roles in Helicobacter pylori infection, GC metastasis, tumor microenvironment regulation, drug resistance and associated signaling pathways. LncRNAs may serve as novel biomarkers for diagnosis and prognosis of GC and potential therapeutic targets. The research gaps and future directions were also discussed.
Collapse
Affiliation(s)
- Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province,Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.,Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
26
|
Hao Y, Li C, Zhao T, Liu H. Long Non-Coding RNA GATA3-AS1 Promotes 5-Fluorouracil Resistance of Ovarian Cancer via Mediating miR-6771-3p/SOX4 Target Axis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ovarian cancer (OC) ranks as the 5th highest cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) exert significant effects on chemotherapy resistance. The effects of lncRNA GATA3-AS1 on the 5-Fluorouracil (5-FU) resistance in ovarian carcinoma were explored in the
current study. The results showed that GATA3-AS1 was highly expressed in OC tissues and 5-FU resistant OC cells. Moreover, GATA3-AS1 knockdown reduced 50% inhibitory concentration (IC50) of 5-Fluorouracil and promoted cell apoptosis, while GATA3-AS1-overexpression showed the opposite effect.
In vivo experiment and murine xenograft assay indicated GATA3-AS1 knockdown inhibited neoplasm growth, promoted cell apoptosis, and altered the expression level of apoptosis-associated proteins. GATA3-AS1 promoted SOX4 expression, a well-known transcription factor regulating apoptosis,
via targeting miR-6771-3p. In summary, our findings suggested GATA3-AS1 was associated with OC 5-Fluorouracil viaregulating miR-6771-3p/SOX4, providing novel insights into OC chemoresistance.
Collapse
Affiliation(s)
- Yafei Hao
- Department of Gynecology, Taian City Central Hospital, Taian 271000, PR China
| | - Changzhou Li
- Reproductive Medicine Centre, Taian City Central Hospital, Taian 271000, PR China
| | - Teng Zhao
- Department of Gynecology, Ningyang County People’s Hospital, Taian 271400, PR China
| | - Hansheng Liu
- Department of Gynecology, Taian City Central Hospital, Taian 271000, PR China
| |
Collapse
|
27
|
Loras A, Segovia C, Ruiz-Cerdá JL. Epigenomic and Metabolomic Integration Reveals Dynamic Metabolic Regulation in Bladder Cancer. Cancers (Basel) 2021; 13:2719. [PMID: 34072826 PMCID: PMC8198168 DOI: 10.3390/cancers13112719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) represents a clinical, social, and economic challenge due to tumor-intrinsic characteristics, limitations of diagnostic techniques and a lack of personalized treatments. In the last decade, the use of liquid biopsy has grown as a non-invasive approach to characterize tumors. Moreover, the emergence of omics has increased our knowledge of cancer biology and identified critical BC biomarkers. The rewiring between epigenetics and metabolism has been closely linked to tumor phenotype. Chromatin remodelers interact with each other to control gene silencing in BC, but also with stress-inducible factors or oncogenic signaling cascades to regulate metabolic reprogramming towards glycolysis, the pentose phosphate pathway, and lipogenesis. Concurrently, one-carbon metabolism supplies methyl groups to histone and DNA methyltransferases, leading to the hypermethylation and silencing of suppressor genes in BC. Conversely, α-KG and acetyl-CoA enhance the activity of histone demethylases and acetyl transferases, increasing gene expression, while succinate and fumarate have an inhibitory role. This review is the first to analyze the interplay between epigenome, metabolome and cell signaling pathways in BC, and shows how their regulation contributes to tumor development and progression. Moreover, it summarizes non-invasive biomarkers that could be applied in clinical practice to improve diagnosis, monitoring, prognosis and the therapeutic options in BC.
Collapse
Affiliation(s)
- Alba Loras
- Unidad Mixta de Investigación en TICs Aplicadas a la Reingeniería de Procesos Socio-Sanitarios (eRPSS), Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Cristina Segovia
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - José Luis Ruiz-Cerdá
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València-Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Servicio de Urología, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Departamento de Cirugía, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
28
|
Bure IV, Nemtsova MV. Methylation and Noncoding RNAs in Gastric Cancer: Everything Is Connected. Int J Mol Sci 2021; 22:ijms22115683. [PMID: 34073603 PMCID: PMC8199097 DOI: 10.3390/ijms22115683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Despite recent progress, gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Aberrant DNA methylation pattern and deregulation of noncoding RNA expression appear in the early stages of gastric cancer. Numerous investigations have confirmed their significant role in gastric cancer tumorigenesis and their high potential as diagnostic and prognostic biomarkers. Currently, it is clear that these epigenetic regulators do not work alone but interact with each other, generating a complex network. The aim of our review was to summarize the current knowledge of this interaction in gastric cancer and estimate its clinical potential for the diagnosis, prognosis, and treatment of the disease.
Collapse
Affiliation(s)
- Irina V. Bure
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: ; Tel.: +49-915-069-2721
| | - Marina V. Nemtsova
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
29
|
Wang C, Hu Y, Yang H, Wang S, Zhou B, Bao Y, Huang Y, Luo Q, Yang C, Xie X, Yang S. Function of Non-coding RNA in Helicobacter pylori-Infected Gastric Cancer. Front Mol Biosci 2021; 8:649105. [PMID: 34046430 PMCID: PMC8144459 DOI: 10.3389/fmolb.2021.649105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive system. Its occurrence and development are the result of a combination of genetic, environmental, and microbial factors. Helicobacter pylori infection is a chronic infection that is closely related to the occurrence of gastric tumorigenesis. Non-coding RNA has been demonstrated to play a very important role in the organism, exerting a prominent role in the carcinogenesis, proliferation, apoptosis, invasion, metastasis, and chemoresistance of tumor progression. H. pylori infection affects the expression of non-coding RNA at multiple levels such as genetic polymorphisms and signaling pathways, thereby promoting or inhibiting tumor progression or chemoresistance. This paper mainly introduces the relationship between H. pylori-infected gastric cancer and non-coding RNA, providing a new perspective for gastric cancer treatment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yulu Bao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chuan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xia Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Zhang K, Wang Q, Zhong B, Gong Z. LUCAT1 as an oncogene in tongue squamous cell carcinoma by targeting miR-375 expression. J Cell Mol Med 2021; 25:4543-4550. [PMID: 33787082 PMCID: PMC8107098 DOI: 10.1111/jcmm.15982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 01/17/2023] Open
Abstract
Emerging studies suggested that lncRNAs play a crucial molecular role in cancer development and progression. LncRNA LUCAT1 has been proved as oncogenic molecular in lung cancer, glioma, osteosarcoma, renal carcinoma and oesophageal squamous cell carcinoma. However, its roles and function mechanisms in tongue squamous cell carcinoma (TSCC) are still unknown. We showed that the expression of LUCAT1 was up‐regulated in the TSCC cells and tissues and the higher LUCAT1 expression was associated with the poor overall survival (OS). Knockdown expression of LUCAT1 suppressed TSCC cell proliferation, cycle and migration. In addition, we demonstrated that miR‐375 overexpression inhibited the luciferase activity of LUCAT1 wild‐type and knockdown LUCAT1 promoted the miR‐375 expression in TSCC cell. Furthermore, we indicated that miR‐375 expression was down‐regulated in the TSCC cell lines and tissues and the lower expression of miR‐375 was associated with poor OS. The expression of miR‐375 was inversely correlated with LUCAT1 expression in the TSCC tissues. Knockdown LUCAT1 promoted TSCC cell proliferation, cell cycle and migration partly through regulating miR‐375 expression. In summary, this study suggested the tumorigenic effect of lncRNA LUCAT1 in TSCC cells by targeting miR‐375 expression.
Collapse
Affiliation(s)
- Kai Zhang
- Center of Stomatology, China-Japan Friendship Hospital, Beijing, China
| | - Qibao Wang
- Department of Endodontics, Jinan Stomatological Hospital, Shandong, China
| | - Bo Zhong
- Center of Stomatology, China-Japan Friendship Hospital, Beijing, China
| | - Zuode Gong
- Department of Endodontics, Jinan Stomatological Hospital, Shandong, China
| |
Collapse
|
31
|
Zhang J, Xu X, Yin J, Tang J, Hu N, Hong Y, Song Z, Bian B, Wu F. lncRNA OGFRP1 promotes tumor progression by activating the AKT/mTOR pathway in human gastric cancer. Aging (Albany NY) 2021; 13:9766-9779. [PMID: 33744848 PMCID: PMC8064230 DOI: 10.18632/aging.202731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
As biomolecules of great clinical value, lncRNAs play a crucial role as regulators in the processes of tumor origin, metastasis, and recurrence. Thus, lncRNAs are urgently needed for research in gastric cancer. We elucidated the specific function of OGFRP1, both in vitro and in vivo. OGFRP1 was expressed at abnormally high levels in gastric cancer samples (n = 408) compared to normal samples (n = 211). Similar results were obtained in 30 clinical case samples. Interference of OGFRP1 markedly blocked cell proliferation and migration, and it induced cell cycle arrest and the apoptosis of gastric cancer cells in vitro. Phosphorylation of AKT was inhibited in cells transfected with OGFRP1 siRNA, as compared to their control cells. The in vivo results further confirmed the antitumor effects of OGFRP1 knockdown on gastric cancer. Decreases in tumor volume (104.23±62.27 mm3) and weight (0.1006±0.0488 g) in nude mice were observed during the OGFRP1 interference, as compared with the control group (418.96±211.96 mm3 and 0.2741±0.0769 g). OGFRP1 promotes tumor progression through activating the AKT/mTOR pathway. Our findings provide a new potential target for the clinical treatment of human gastric cancer.
Collapse
Affiliation(s)
- Jingzhou Zhang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiujuan Xu
- Department of Radiation Oncology, Lianyungang Second People's Hospital, Lianyungang, China
| | - Junfeng Yin
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiaqi Tang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Nan Hu
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yidong Hong
- Deparment of Oncology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziyan Song
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Baoxiang Bian
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Fenglei Wu
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
32
|
Karakas D, Ozpolat B. The Role of LncRNAs in Translation. Noncoding RNA 2021; 7:16. [PMID: 33672592 PMCID: PMC8005997 DOI: 10.3390/ncrna7010016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein coding RNAs with lengths of more than 200 nucleotides, exert their effects by binding to DNA, mRNA, microRNA, and proteins and regulate gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Depending on cellular location, lncRNAs are involved in a wide range of cellular functions, including chromatin modification, transcriptional activation, transcriptional interference, scaffolding and regulation of translational machinery. This review highlights recent studies on lncRNAs in the regulation of protein translation by modulating the translational factors (i.e, eIF4E, eIF4G, eIF4A, 4E-BP1, eEF5A) and signaling pathways involved in this process as wells as their potential roles as tumor suppressors or tumor promoters.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istinye University, Istanbul 34010, Turkey;
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
33
|
Li Z, Lü M, Zhou Y, Xu L, Jiang Y, Liu Y, Li X, Song M. Role of Long Non-Coding RNAs in the Chemoresistance of Gastric Cancer: A Systematic Review. Onco Targets Ther 2021; 14:503-518. [PMID: 33500626 PMCID: PMC7822221 DOI: 10.2147/ott.s294378] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Accumulating evidence demonstrates that long non-coding RNAs (lncRNAs) play a vital role in the chemoresistance of gastric cancer (GC). The present systematic review summarises the emerging role, potential targets or pathways and regulatory mechanisms of lncRNAs involved in chemoresistance and proposes a number of clinical implications of lncRNAs as novel therapeutic targets for GC. METHODS Studies on lncRNAs involved in the chemoresistance of GC published until July 2020 in the PubMed and Web of Science databases were systematically reviewed and the expression form, role in chemoresistance, targets or pathways, corresponding drugs and potential mechanisms of relevant lncRNAs were summarised in detail. RESULTS A total of 48 studies were included in this systematic review. Amongst these studies, 32 involved single drug resistance and 16 involved in multidrug resistance (MDR). The 48 studies collected described 38 lncRNAs in the drug-resistant cells of GC, including 33 upregulated and 5 downregulated lncRNAs. Cisplatin (DDP) was the most studied drug and lncRNA MALAT1 was the most studied lncRNA related to the chemoresistance of GC. The potential mechanisms of chemoresistance for lncRNAs in GC mainly included, amongst others, reduction of apoptosis, induction of autophagy, repair of DNA damage, promotion of epithelial-mesenchymal transition (EMT) and regulation of the related signalling pathways. CONCLUSION LncRNAs play a vital role in the chemoresistance of GC and are novel therapeutic targets for the disease. Detailed chemoresistance mechanisms, translational studies and clinical trials on lncRNAs in GC are urgently needed.
Collapse
Affiliation(s)
- Zonglin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Linxia Xu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Yifan Jiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Yi Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou646000, People’s Republic of China
| |
Collapse
|
34
|
Sun W, Jiang C, Ji Y, Xiao C, Song H. Long Noncoding RNAs: New Regulators of Resistance to Systemic Therapies for Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8853269. [PMID: 33506041 PMCID: PMC7808844 DOI: 10.1155/2021/8853269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is the second leading cause of cancer mortality and the fourth most commonly diagnosed malignant disease, with approximately 951,000 new cases diagnosed and approximately 723,000 cases of mortality each year. The highest mortality rate of GC is in East Asia, and the lowest is in North America. A large number of studies have demonstrated that GC patients are characterized by higher morbidity, metastasis rates, and mortality and lower early diagnosis rates, radical resection rates, and 5-year survival rates. All cases of GC can be divided into two important stages, namely, early- and advanced-stage GC, and the stage mainly determines the treatment strategy for and the therapeutic effect in GC patients. Patients with early-stage GC undergo radical surgery followed by chemotherapy, and the 5-year survival rate can be as high as 90%. However, patients with advanced-stage GC cannot undergo radical surgery because they are at risk for metastasis; therefore, they can choose only radiotherapy or chemotherapy and have a poor prognosis. Based on the lack of specific clinical manifestations and detection methods, most GC patients (>70%) are diagnosed in the advanced stage; therefore, continued efforts toward developing treatments have been focused on advanced-stage GC patients and include molecular targeted therapy, immunotherapy, and small molecular therapy. Nevertheless, in recent years, accumulating evidence has indicated that small molecules, especially long noncoding RNAs (lncRNAs), are involved in the occurrence, development, and progression of GC, and their abundantly dysregulated expression has been identified in GC tissues and cell lines. Therefore, lncRNAs are considered easily detectable molecules and ideal biomarkers or target-specific agents for the future diagnosis or treatment of GC. In this review, we primarily discuss the status of GC, the role of lncRNAs in GC, and the emerging systemic treatments for GC.
Collapse
Affiliation(s)
- Weihong Sun
- Department of Internal Medicine-Oncology Affiliated Qingdao Central Hospital, Qingdao University, 127 Siliu South Road, Qingdao 266042, China
- Department of Internal Medicine-Oncology Qingdao Tumor Hospital, 127 Siliu South Road, Qingdao 266042, China
| | - Changqing Jiang
- Department of Pathology Qingdao Municipal Hospital, Donghai Middle Road, Qingdao 266071, China
| | - Ying Ji
- Department of Internal Medicine-Oncology Affiliated Qingdao Central Hospital, Qingdao University, 127 Siliu South Road, Qingdao 266042, China
- Department of Internal Medicine-Oncology Qingdao Tumor Hospital, 127 Siliu South Road, Qingdao 266042, China
| | - Chao Xiao
- Department of Internal Medicine-Oncology Affiliated Qingdao Central Hospital, Qingdao University, 127 Siliu South Road, Qingdao 266042, China
- Department of Internal Medicine-Oncology Qingdao Tumor Hospital, 127 Siliu South Road, Qingdao 266042, China
| | - Haiping Song
- Department of Internal Medicine-Oncology Affiliated Qingdao Central Hospital, Qingdao University, 127 Siliu South Road, Qingdao 266042, China
- Department of Internal Medicine-Oncology Qingdao Tumor Hospital, 127 Siliu South Road, Qingdao 266042, China
| |
Collapse
|
35
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
36
|
Lou N, Liu G, Pan Y. Long noncoding RNA ANRIL as a novel biomarker in human cancer. Future Oncol 2020; 16:2981-2995. [PMID: 32986472 DOI: 10.2217/fon-2020-0470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The long noncoding RNA ANRIL, located in the human chromosome 9p21 region, has been reported to be involved in tumor progression. ANRIL regulates gene expression via recruiting PRC2 or titrating miRNA; it also participates in signaling pathways. Evidence has indicated that ANRIL is overexpressed in many cancer types and is capable of enhancing cell proliferation and cell cycle progression and inhibiting apoptosis and senescence. ANRIL has the potential to serve as a biomarker for diagnosis and prognosis in cancer. In this article we focus on recent advances in studies of the oncogenic role of ANRIL and its potential role in cancer medicine.
Collapse
Affiliation(s)
- Ning Lou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
37
|
Singh D, Khan MA, Siddique HR. Emerging role of long non-coding RNAs in cancer chemoresistance: unravelling the multifaceted role and prospective therapeutic targeting. Mol Biol Rep 2020; 47:5569-5585. [PMID: 32601922 DOI: 10.1007/s11033-020-05609-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy is one of the important treatment modules in early as well as advanced stages of cancer. However, the major limitation of chemotherapy is the development of chemoresistance in the transformed cells of cancer patients, which leads to cancer recurrence. Long non-coding RNAs (lncRNA) are the transcripts longer than 200 nucleotides in length, which are reported to associate with the initiation, progression, recurrence, and metastasis of different cancers. Several lncRNAs have been implicated in the prevalence of chemoresistant phenotypes and also in the restoration of drug sensitivity in chemoresistant cells. LncRNAs such as HOTAIR, H19, and a lot more are involved in the chemoresistance of cancer cells. Therefore, targeting the lncRNAs may serve as a novel strategy for treating chemoresistant cancer. This review throws light on the role of lncRNA in chemoresistance along with the perspective of the therapeutic targets for the treatment of multiple cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
38
|
Qu Y, Tan HY, Chan YT, Jiang H, Wang N, Wang D. The functional role of long noncoding RNA in resistance to anticancer treatment. Ther Adv Med Oncol 2020; 12:1758835920927850. [PMID: 32536982 PMCID: PMC7268113 DOI: 10.1177/1758835920927850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the fundamental methods of cancer treatment. However, drug resistance remains the main cause of clinical treatment failure. We comprehensively review the newly identified roles of long noncoding RNAs (lncRNAs) in oncobiology that are associated with drug resistance. The expression of lncRNAs is tissue-specific and often dysregulated in human cancers. Accumulating evidence suggests that lncRNAs are involved in chemoresistance of cancer cells. The main lncRNA-driven mechanisms of chemoresistance include regulation of drug efflux, DNA damage repair, cell cycle, apoptosis, epithelial-mesenchymal transition (EMT), induction of signaling pathways, and angiogenesis. LncRNA-driven mechanisms of resistance to various antineoplastic agents have been studied extensively. There are unique mechanisms of resistance against different types of drugs, and each mechanism may have more than one contributing factor. We summarize the emerging strategies that can be used to overcome the technical challenges in studying and addressing lncRNA-mediated drug resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Hongbo Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
39
|
Yuan L, Xu ZY, Ruan SM, Mo S, Qin JJ, Cheng XD. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol Cancer 2020; 19:96. [PMID: 32460771 PMCID: PMC7251695 DOI: 10.1186/s12943-020-01219-0] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is a deadly disease and remains the third leading cause of cancer-related death worldwide. The 5-year overall survival rate of patients with early-stage localized gastric cancer is more than 60%, whereas that of patients with distant metastasis is less than 5%. Surgical resection is the best option for early-stage gastric cancer, while chemotherapy is mainly used in the middle and advanced stages of this disease, despite the frequently reported treatment failure due to chemotherapy resistance. Therefore, there is an unmet medical need for identifying new biomarkers for the early diagnosis and proper management of patients, to achieve the best response to treatment. Long non-coding RNAs (lncRNAs) in body fluids have attracted widespread attention as biomarkers for early screening, diagnosis, treatment, prognosis, and responses to drugs due to the high specificity and sensitivity. In the present review, we focus on the clinical potential of lncRNAs as biomarkers in liquid biopsies in the diagnosis and prognosis of gastric cancer. We also comprehensively discuss the roles of lncRNAs and their molecular mechanisms in gastric cancer chemoresistance as well as their potential as therapeutic targets for gastric cancer precision medicine.
Collapse
Affiliation(s)
- Li Yuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
| | - Shan-Ming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Shaowei Mo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006 China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053 China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Banshan Road 1#, Gongshu District, Hangzhou, 310022 China
| |
Collapse
|
40
|
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y, Yang M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer 2020; 19:62. [PMID: 32192494 PMCID: PMC7081551 DOI: 10.1186/s12943-020-01185-7] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Advanced gastric cancer patients can notably benefit from chemotherapy including adriamycin, platinum drugs, 5-fluorouracil, vincristine, and paclitaxel as well as targeted therapy drugs. Nevertheless, primary drug resistance or acquisition drug resistance eventually lead to treatment failure and poor outcomes of the gastric cancer patients. The detailed mechanisms involved in gastric cancer drug resistance have been revealed. Interestingly, different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are critically involved in gastric cancer development. Multiple lines of evidences demonstrated that ncRNAs play a vital role in gastric cancer resistance to chemotherapy reagents and targeted therapy drugs. In this review, we systematically summarized the emerging role and detailed molecular mechanisms of ncRNAs impact drug resistance of gastric cancer. Additionally, we propose the potential clinical implications of ncRNAs as novel therapeutic targets and prognostic biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yan Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
41
|
Yin X, Liao Y, Xiong W, Zhang Y, Zhou Y, Yang Y. Hypoxia-induced lncRNA ANRIL promotes cisplatin resistance in retinoblastoma cells through regulating ABCG2 expression. Clin Exp Pharmacol Physiol 2020; 47:1049-1057. [PMID: 32173903 DOI: 10.1111/1440-1681.13279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
Cisplatin (DDP) resistance limits its efficacy for retinoblastoma (Rb). Hypoxia-inducible factor-1α (HIF-1α) has been shown to contribute to chemotherapy resistance in tumours under hypoxic conditions. This study was designed to explore the role and mechanism of long non-coding RNA (lncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) in regulating DDP resistance in Rb cells under hypoxia and to validate whether HIF-1α was involved in this process. The interaction between HIF-1α and the promoter of ANRIL was analyzed using ChIP assay. Cell proliferation and apoptosis, as well as protein levels of drug resistance-related proteins (ABCG2 and MDR1) were examined to evaluate DDP resistance in Rb cells. The interactions between miR-328 and ANRIL as well as miR-328 and ABCG2 were analyzed using dual-luciferase reporter assays. Upon hypoxia, HIF-1α directly bound to the ANRIL promoter region to transcriptionally activate ANRIL. The hypoxia-induced ANRIL promoted Rb cell resistance to DDP, as evidenced by facilitation of cell proliferation, inhibition of cell apoptosis and upregulation of ABCG2 and MDR1. Mechanistically, ANRIL promoted Rb cell resistance to DDP by acting as a sponge of miR-328 to upregulate expression of ABCG2, which was confirmed as a direct target of miR-328. Collectively, hypoxia-induced ANRIL promotes DDP resistance in Rb cells by sponging miR-328 to upregulate ABCG2 expression.
Collapse
Affiliation(s)
- Xiaolong Yin
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yujun Liao
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiwei Xiong
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuezhi Zhang
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Zhou
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Yang
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Liu K, Gao L, Ma X, Huang JJ, Chen J, Zeng L, Ashby CR, Zou C, Chen ZS. Long non-coding RNAs regulate drug resistance in cancer. Mol Cancer 2020; 19:54. [PMID: 32164712 PMCID: PMC7066752 DOI: 10.1186/s12943-020-01162-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance, whether intrinsic or acquired, is a major obstacle in the treatment of cancer. The resistance of cancer cells to chemotherapeutic drugs can result from various mechanisms. Over the last decade, it has been reported that 1ong noncoding RNAs (lncRNAs) can mediate carcinogenesis and drug resistance/sensitivity in cancer cells. This article reviews, in detail, recent studies regarding the roles of lncRNAs in mediating drug resistance.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Lin Gao
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Xiaoshi Ma
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Juan-Juan Huang
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Juan Chen
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
43
|
Liu K, Gao L, Ma X, Huang JJ, Chen J, Zeng L, Ashby CR, Zou C, Chen ZS. Long non-coding RNAs regulate drug resistance in cancer. Mol Cancer 2020. [PMID: 32164712 DOI: 10.1186/s12943-020-01162-0.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemoresistance, whether intrinsic or acquired, is a major obstacle in the treatment of cancer. The resistance of cancer cells to chemotherapeutic drugs can result from various mechanisms. Over the last decade, it has been reported that 1ong noncoding RNAs (lncRNAs) can mediate carcinogenesis and drug resistance/sensitivity in cancer cells. This article reviews, in detail, recent studies regarding the roles of lncRNAs in mediating drug resistance.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Lin Gao
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Xiaoshi Ma
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Juan-Juan Huang
- Department of Physics, Technical University of Munich, 85748, Garching, Germany
| | - Juan Chen
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
44
|
Koehler J, Sandey M, Prasad N, Levy SA, Wang X, Wang X. Differential Expression of miRNAs in Hypoxia ("HypoxamiRs") in Three Canine High-Grade Glioma Cell Lines. Front Vet Sci 2020; 7:104. [PMID: 32258065 PMCID: PMC7093022 DOI: 10.3389/fvets.2020.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Dogs with spontaneous high-grade gliomas increasingly are being proposed as useful large animal pre-clinical models for the human disease. Hypoxia is a critical microenvironmental condition that is common in both canine and human high-grade gliomas and drives increased angiogenesis, chemo- and radioresistance, and acquisition of a stem-like phenotype. Some of this effect is mediated by the hypoxia-induced expression of microRNAs, small (~22 nucleotides long), non-coding RNAs that can modulate gene expression through interference with mRNA translation. Using an in vitro model with three canine high-grade glioma cell lines (J3T, SDT3G, and G06A) exposed to 72 h of 1.5% oxygen vs. standard 20% oxygen, we examined the global “hypoxamiR” profile using small RNA-Seq and performed pathway analysis for targeted genes using both Panther and NetworkAnalyst. Important pathways include many that are well-established as being important in glioma biology, general cancer biology, hypoxia, angiogenesis, immunology, and stem-ness, among others. This work provides the first examination of the effect of hypoxia on miRNA expression in the context of canine glioma, and highlights important similarities with the human disease.
Collapse
Affiliation(s)
- Jennifer Koehler
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Maninder Sandey
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Shawn A Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Xiaozhu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States.,Alabama Agricultural Experimental Station, Auburn University, Auburn, AL, United States
| |
Collapse
|
45
|
Expression Analysis of lncRNAs in Refractory and Non-Refractory Epileptic Patients. J Mol Neurosci 2020; 70:689-698. [PMID: 31900886 DOI: 10.1007/s12031-019-01477-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/26/2019] [Indexed: 01/03/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to be involved in the pathogenesis of neuropsychiatric disorders such as epilepsy. In the current study, we evaluated expression of eight lncRNAs in 80 epileptic patients (40 refractory and 40 non-refractory ones) and 40 normal individual using quantitative real-time PCR. Bayesian regression model showed significant higher expression of UCA1 in both refractory and non-refractory groups compared with controls (posterior beta of relative expression (RE) = 2.03, P value = 0.003, and posterior beta of RE = 4.05, P value < 0.0001, respectively). Besides, expression of UCA1 was higher in non-refractory patients compared with refractory ones (posterior beta of RE = 2.008, P value = 0.019). When repeating statistical analyses in a gender-based manner, differences in expression of UCA1 were significant in all subgroup analyses except for male non-refractory vs. refractory subgroups analysis. Expression levels of NKILA and ANRIL were higher in both refractory and non-refractory groups compared with controls (posterior beta of RE = 1.565, P value = 0.018, and posterior beta of RE = 1.902, P value = 0.006 for NKILA; posterior beta of RE = 1.304, P value < 0.0001, and posterior beta of RE = 1.603, P value = 0.019 for ANRIL, respectively). However, expression levels of these two lncRNAs were not different between refractory and non-refractory groups. Gender-based analysis for these two lncRNAs revealed similar results except for lack of difference in ANRIL expression between male refractory group and controls. Expression of THRIL was significantly lower in both refractory and non-refractory groups compared with controls (posterior beta of RE = - 0.842, P value = 0.044 and posterior beta of RE = - 1.969, P value < 0.0001, respectively). Furthermore, expression of this lncRNA was lower in non-refractory patients compared with refractory ones (posterior beta of RE = - 1.129, P value = 0.002). However, no significant difference was detected between non-refractory and refractory patients either in males or females. The interactions between gender and relative expressions of PACER, DILC, and MALAT1 were significant, so the results were assessed in gender-based manner. In females, expression of DILC was higher in non-refractory patients compared with refractory ones (posterior beta of RE = 0.959, P value = 0.044). Expression of MALAT1 was lower in female non-refractory patients compared with controls and in female non-refractory patients compared with refractory ones (posterior beta of RE = - 1.35, P value = 0.002, and posterior beta of RE = - 0.942, P value = 0.045, respectively). Finally, expression of PACER was higher in refractory patients vs. controls and non-refractory patients vs. controls in both male and female subgroups. However, comparison between non-refractory and refractory patients revealed significant results only among females. Expression of none of the assessed lncRNAs was correlated with age of study participants. There were robust correlations between expression levels of lncRNAs. The most robust correlations were detected between UCA1 and PACER (r = 0.84, P < 0.0001) and between UCA1 and ANRIL (r = 0.75, P < 0.0001). Taken together, our study demonstrated dysregulation of lncRNAs in peripheral blood of epileptic patients and potentiated them as biomarkers for this neurologic condition.
Collapse
|
46
|
Ghafouri-Fard S, Taheri M. Long non-coding RNA signature in gastric cancer. Exp Mol Pathol 2019; 113:104365. [PMID: 31899194 DOI: 10.1016/j.yexmp.2019.104365] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer as a common human malignancy has been associated with aberrant expressions of several coding and non-coding genes. Long non-coding RNAs (lncRNAs) as regulators of gene expressions at different genomic, transcriptomic and post-transcriptomic levels are among putative biomarkers and therapeutic targets in gastric cancer. In the present study, we have searched available literature and listed lncRNAs that are involved in the pathogenesis of gastric cancer. In addition, we discuss associations between expressions of these lncRNAs and tumoral features or risk factors for gastric cancer. Based on the established role of lncRNAs in regulation of genomic stability, cell cycle, apoptosis, angiogenesis and other aspects of cell physiology, the potential of these transcripts as therapeutic targets in gastric cancer should be evaluated in future studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Association between polymorphism in CDKN2B-AS1 gene and its interaction with smoking on the risk of lung cancer in a Chinese population. Hum Genomics 2019; 13:58. [PMID: 31775885 PMCID: PMC6880550 DOI: 10.1186/s40246-019-0240-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
Background Long non-coding RNAs became the hot spots in the carcinogenesis of various tumors. This case-control study evaluated the association between the rs2151280 in lncRNA CDKN2B-AS1 and lung cancer risk. Methods This study included 507 lung cancer patients and 542 healthy individuals. Odds ratios and their 95% confidence intervals were calculated by unconditional logistic regression analysis to evaluate the association between the rs2151280 and lung cancer risk. Results Compared with individuals carrying TT genotype, individuals carrying CC genotype of rs2151280 had a decreased risk of lung cancer (OR = 0.640, 95%CI = 0.421–0.972, P = 0.036). In the recessive model, rs2151280 CC genotype was observed to reduce the risk of lung cancer (OR = 0.684). C allele was associated with non-small cell lung cancer risk (OR = 0.674). The rs2151280 was significantly associated with lung adenocarcinoma risk (CCvsTT: OR = 0.567, 95%CI = 0.333–0.965, P = 0.037; CCvsTC+TT: OR = 0.543, 95%CI 0.330–0.893, P = 0.016, respectively). However, there was no significant association between rs2151280 and lung squamous cell carcinoma risk in five models. The quantitative analysis suggested that there were no significant interactions of rs2151280 with smoking exposure to lung cancer susceptibility. Conclusions This hospital-based case-control study suggested that CDKN2B-AS1 rs2151280 T>C was associated with the risk of lung cancer.
Collapse
|
48
|
Luo YJ, Huang QM, Ren Y, Liu ZL, Xu CF, Wang H, Xiao JW. Non-coding RNA in drug resistance of gastric cancer. World J Gastrointest Oncol 2019; 11:957-970. [PMID: 31798777 PMCID: PMC6883183 DOI: 10.4251/wjgo.v11.i11.957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/21/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide. The poorly prognosis and survival of GC are due to diagnose in an advanced, non-curable stage and with a limited response to chemotherapy. The acquisition of drug resistance accounts for the majority of therapy failure of chemotherapy in GC patients. Although the mechanisms of anticancer drug resistance have been broadly studied, the regulation of these mechanisms has not been completely understood. Accumulating evidence has recently highlighted the role of non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, in the development and maintenance of drug resistance due to their regulatory features in specific genes involved in the chemoresistant phenotype of GC. We review the literature on ncRNAs in drug resistance of GC. This review summarizes the current knowledge about the ncRNAs’ characteristics, their regulation of the genes involved in chemoresistance and their potential as targeted therapies for personalized treatment in resistant GC.
Collapse
Affiliation(s)
- Ya-Jun Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qing-Mei Huang
- Department of Oncology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yan Ren
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Zi-Lin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Cheng-Fei Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Hao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Jiang-Wei Xiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| |
Collapse
|
49
|
Hanly D, Esteller M, Berdasco M. Altered Long Non-coding RNA Expression in Cancer: Potential Biomarkers and Therapeutic Targets? ACTA ACUST UNITED AC 2019. [DOI: 10.1007/7355_2019_83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Fattahi S, Kosari-Monfared M, Golpour M, Emami Z, Ghasemiyan M, Nouri M, Akhavan-Niaki H. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine. J Cell Physiol 2019; 235:3189-3206. [PMID: 31595495 DOI: 10.1002/jcp.29260] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Gastric cancer is the third leading cause of cancer death with 5-year survival rate of about 30-35%. Since early detection is associated with decreased mortality, identification of novel biomarkers for early diagnosis and proper management of patients with the best response to therapy is urgently needed. Long noncoding RNAs (lncRNAs) due to their high specificity, easy accessibility in a noninvasive manner, as well as their aberrant expression under different pathological and physiological conditions, have received a great attention as potential diagnostic, prognostic, or predictive biomarkers. They may also serve as targets for treating gastric cancer. In this review, we highlighted the role of lncRNAs as tumor suppressors or oncogenes that make them potential biomarkers for the diagnosis and prognosis of gastric cancer. Relatively, lncRNAs such as H19, HOTAIR, UCA1, PVT1, tissue differentiation-inducing nonprotein coding, and LINC00152 could be potential diagnostic and prognostic markers in patients with gastric cancer. Also, the impact of lncRNAs such as ecCEBPA, MLK7-AS1, TUG1, HOXA11-AS, GAPLINC, LEIGC, multidrug resistance-related and upregulated lncRNA, PVT1 on gastric cancer epigenetic and drug resistance as well as their potential as therapeutic targets for personalized medicine was discussed.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Department of Genetics, Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Genetics, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Biochemistry, North Research Center, Pasteur Institute, Amol, Iran
| | | | - Monireh Golpour
- Department of Immunology, Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakieh Emami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ghasemiyan
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Nouri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|