1
|
Luo X, Huang W, Li S, Sun M, Hu D, Jiang J, Zhang Z, Wang Y, Wang Y, Zhang J, Wu Z, Ji X, Liu D, Chen X, Zhang B, Liang H, Li Y, Liu B, Wang S, Xu X, Nie Y, Wu K, Fan D, Xia L. SOX12 Facilitates Hepatocellular Carcinoma Progression and Metastasis through Promoting Regulatory T-Cells Infiltration and Immunosuppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310304. [PMID: 39072947 PMCID: PMC11423149 DOI: 10.1002/advs.202310304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Despite the success of immunotherapy in treating hepatocellular carcinoma (HCC), HCC remains a severe threat to health. Here, a crucial transcription factor, SOX12, is revealed that induces the immunosuppression of liver tumor microenvironment. Overexpressing SOX12 in HCC syngeneic models increases intratumoral regulatory T-cell (Treg) infiltration, decreases CD8+T-cell infiltration, and hastens HCC metastasis. Hepatocyte-specific SOX12 knockout attenuates DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SOX12 knock-in accelerates these effects. Mechanistically, SOX12 transcriptionally activates C-C motif chemokine ligand 22 (CCL22) expression to promote the recruitment and suppressive activity of Tregs. Moreover, SOX12 transcriptionally upregulates CD274 expression to suppress CD8+T-cell infiltration. Either knockdown of CCL22 or PD-L1 dampens SOX12-mediated HCC metastasis. Blocking of CC chemokine receptor 4 (CCR4), a receptor for CCL22, by inhibitor C-021 or Treg-specific knockout of CCR4 inhibits SOX12-mediated HCC metastasis. Transforming growth factor-β1 (TGF-β1)/TGFβR1-Smad2/3/4 is identified as a key upstream signaling for SOX12 overexpression in HCC cells. Combining C-021 or TGFβR1 inhibitor galunisertib with anti-PD-L1 exhibits an enhanced antitumor effect in two HCC models. Collectively, the findings demonstrate that SOX12 contributes to HCC immunosuppression through the CCL22/CCR4-Treg and PD-L1-CD8+T axes. Blocking of CCR4 or TGFβR1 improves the efficacy of anti-PD-L1 in SOX12-mediated HCC.
Collapse
Affiliation(s)
- Xiangyuan Luo
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenjie Huang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Siwen Li
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Mengyu Sun
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Dian Hu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Junqing Jiang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zerui Zhang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yijun Wang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yufei Wang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jiaqian Zhang
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhangfan Wu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Ji
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Danfei Liu
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoping Chen
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Bixiang Zhang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Huifang Liang
- Hepatic Surgery CenterHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyClinical Medicine Research Center for Hepatic Surgery of Hubei ProvinceKey Laboratory of Organ TransplantationMinistry of Education and Ministry of Public HealthWuhan430030China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics and Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics‐Hubei Bioinformatics and Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceDepartment of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceDepartment of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| | - Limin Xia
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesHubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi’ an710032China
| |
Collapse
|
2
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
3
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Dąbrowska A, Grubba M, Balihodzic A, Szot O, Sobocki BK, Perdyan A. The Role of Regulatory T Cells in Cancer Treatment Resistance. Int J Mol Sci 2023; 24:14114. [PMID: 37762416 PMCID: PMC10531820 DOI: 10.3390/ijms241814114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Despite tremendous progress in cancer treatment in recent years, treatment resistance is still a major challenge for a great number of patients. One of the main causes is regulatory T lymphocytes (Tregs), which suppress excessive inflammatory responses via the secretion of immunosuppressive cytokines and upregulate the immune checkpoints. Their abundance causes an immunosuppressive reprogramming of the tumor environment, which is ideal for tumor growth and drug inefficiency. Hence, regiments that can regain tumor immunogenicity are a promising strategy to overcome Tregs-mediated drug resistance. However, to develop effective therapeutic regimens, it is essential to understand the molecular mechanisms of Treg-mediated resistance. In this article, we gathered a comprehensive summary of the current knowledge on molecular mechanisms and the role of Tregs in cancer treatment resistance, including cancer immunotherapy, targeted therapy, chemotherapy, and radiotherapy.
Collapse
Affiliation(s)
- Anna Dąbrowska
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Grubba
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Amar Balihodzic
- Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Olga Szot
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Bartosz Kamil Sobocki
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Funaki S, Ose N, Kimura T, Kanou T, Fukui E, Shintani Y. Clinicopathological analysis of a superior sulcus tumor treated by salvage surgery after concurrent definitive chemoradiotherapy followed by durvalumab: A case report. Thorac Cancer 2022; 13:3229-3232. [PMID: 36193676 PMCID: PMC9663671 DOI: 10.1111/1759-7714.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023] Open
Abstract
Surgical treatment of superior sulcus tumors (SSTs) is clinically challenging. Definitive chemoradiotherapy (CRT) is a standard treatment for SST. In operable cases, multimodal therapy (CRT followed by surgery) is another option, at least for experienced institutions. Immune checkpoint inhibitors (ICIs) have recently been developed, and several clinical trials have investigated definitive CRT followed by ICIs for consolidation or maintenance therapy of unresectable local advanced non-small cell lung cancer (NSCLC), including SSTs. Clinical studies of salvage surgery after CRT followed by ICIs are also ongoing. However, the clinical outcomes of salvage surgery after multimodal therapies and histopathological analyses of surgical specimens after such treatments remain unclear. Here, we report the case of a patient with SST comprising squamous cell carcinoma with invasion of the second to third rib and vertebrae who underwent salvage surgery after concurrent definitive CRT followed by the ICI durvalumab, and show the results of clinicopathological analyses of the resected specimen.
Collapse
Affiliation(s)
- Soichiro Funaki
- Department of General Thoracic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Naoko Ose
- Department of General Thoracic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Toru Kimura
- Department of General Thoracic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Takashi Kanou
- Department of General Thoracic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Eriko Fukui
- Department of General Thoracic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yasushi Shintani
- Department of General Thoracic SurgeryOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
6
|
Li Z, Wang F, Dang J, Cheng F, Zheng F. Bidirectional regulation between tumor cell-intrinsic PD-L1 and TGF-β1 in epithelial-to-mesenchymal transition in melanoma. Transl Cancer Res 2022; 11:3698-3710. [PMID: 36388018 PMCID: PMC9641118 DOI: 10.21037/tcr-22-292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/22/2022] [Indexed: 04/04/2024]
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1) is the predominant form of TGF-β and induces epithelial-to-mesenchymal transition (EMT) in melanoma. Tumor cell-intrinsic programmed death ligand-1 (PD-L1) plays a crucial role in maintenance of the EMT in melanoma. However, the relationship among tumor cell-intrinsic PD-L1, TGF-β1 and EMT is very complicated. METHODS We investigated the bidirectional regulation between cell-intrinsic PD-L1 and TGF-β1 in melanoma, and explored the role of PD-L1 in TGF-β1-induced EMT and tumor progression. RESULTS We found that TGF-β1 upregulated PD-L1 expression in B16-F0 and B16-F10 melanoma cells. Interestingly, PD-L1 also enhanced the intracellular TGF-β1 mRNA levels and induced the secretion of TGF-β1. Immunohistochemical staining revealed that PD-L1 protein expression was co-localized with α-smooth muscle actin (SMA) protein expression in melanoma, suggesting that PD-L1 was associated with EMT. By using shRNA lentivirus to knockdown PD-L1 (PD-L1-shRNA) in melanoma cell lines, we showed that TGF-β1-induced EMT was significantly inhibited in PD-L1-shRNA melanoma cells, which was characterized by the lower fibronectin (FN1) mRNA and higher E-cadherin (CDH1) mRNA levels (both are EMT markers) than that in control. TGF-β1-induced melanoma cell proliferation and migration were also markedly inhibited in PD-L1-shRNA cells. Consistent with the observation in vitro, PD-L1 knockdown inhibited tumor growth and repressed TGF-β1-induced EMT characterized by reduction of FN1 and increase of CDH1 in mouse model. CONCLUSIONS The present study demonstrated a bidirectional regulation between cell-intrinsic PD-L1 and TGF-β1 in melanoma, which may help in designing promising combinations which include targeting TGF-β1 signaling along with PD-L1.
Collapse
Affiliation(s)
- Zhen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengdi Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianzhong Dang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Cella E, Zullo L, Marconi S, Rossi G, Coco S, Dellepiane C, Alama A, Rozeboom L, Bennicelli E, Parisi F, Sacco G, Barletta G, Zinoli L, Tagliamento M, Pronzato P, Genova C. Immunotherapy-chemotherapy combinations for non-small cell lung cancer: current trends and future perspectives. Expert Opin Biol Ther 2022; 22:1259-1273. [PMID: 35994596 DOI: 10.1080/14712598.2022.2116273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION In recent years, immunotherapy has become a pillar in the treatment of advanced, non-oncogene-addicted non-small cell lung cancer (NSCLC). Programmed death ligand 1 (PD-L1) expression is currently the only factor used to predict response to immunotherapy in clinical practice. Specifically, single agent pembrolizumab as first line therapy is approved for tumors with high expression of PD-L1 (≥50%) while immunotherapy and chemotherapy are approved for any PD-L1. However, combinations of immune-checkpoint inhibitors (ICIs) and other agents may confer higher benefit than immunotherapy alone in some circumstances. AREAS COVERED We reviewed the available data regarding the combined use of ICIs and chemotherapy in patients with advanced, treatment-naïve NSCLC. In light of the benefit demonstrated in advanced disease, these combinations have been subsequently tested in other settings. We collected the most relevant findings regarding efficacy and safety of chemo-immunotherapy combinations in early and locally advanced NSCLC. EXPERT OPINION Immune-chemotherapy combinations demonstrated benefit in the advanced setting, and this strategy in now being applied in the early and local advanced settings. A description of clinical and biological predictors of response is required in order to identify patients who may benefit the most from combination therapy.
Collapse
Affiliation(s)
- Eugenia Cella
- UO Oncologia Medica 2; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lodovica Zullo
- UO Oncologia Medica 2; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Marconi
- UO Tumori Polmonari; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanni Rossi
- UO Oncologia Medica 2; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Coco
- UO Tumori Polmonari; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Dellepiane
- UO Oncologia Medica 2; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Angela Alama
- UO Tumori Polmonari; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Leslie Rozeboom
- Department of Pathology, Anschutz Medical Campus, Aurora, Colorado
| | - Elisa Bennicelli
- UO Oncologia Medica 2; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Parisi
- UO Oncologia Medica 2; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Sacco
- UO Oncologia Medica 2; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Barletta
- UO Oncologia Medica 2; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Linda Zinoli
- UO Clinica di Oncologia Medica; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Tagliamento
- Dipartimento di Medicina Interna (DiMI); Università degli Studi di Genova, Genoa, Italy
| | - Paolo Pronzato
- UO Oncologia Medica 2; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Genova
- UO Clinica di Oncologia Medica; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Dipartimento di Medicina Interna (DiMI); Università degli Studi di Genova, Genoa, Italy
| |
Collapse
|
8
|
Serrán MG, Vernengo FF, Almada L, Beccaria CG, Gazzoni Y, Canete PF, Roco JA, Boari JT, Ramello MC, Wehrens E, Cai Y, Zuniga EI, Montes CL, Cockburn IA, Rodriguez EVA, Vinuesa CG, Gruppi A. Extrafollicular Plasmablasts Present in the Acute Phase of Infections Express High Levels of PD-L1 and Are Able to Limit T Cell Response. Front Immunol 2022; 13:828734. [PMID: 35651611 PMCID: PMC9149371 DOI: 10.3389/fimmu.2022.828734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
During infections with protozoan parasites or some viruses, T cell immunosuppression is generated simultaneously with a high B cell activation. It has been described that, as well as producing antibodies, plasmablasts, the differentiation product of activated B cells, can condition the development of protective immunity in infections. Here, we show that, in T. cruzi infection, all the plasmablasts detected during the acute phase of the infection had higher surface expression of PD-L1 than other mononuclear cells. PD-L1hi plasmablasts were induced in vivo in a BCR-specific manner and required help from Bcl-6+CD4+T cells. PD-L1hi expression was not a characteristic of all antibody-secreting cells since plasma cells found during the chronic phase of infection expressed PD-L1 but at lower levels. PD-L1hi plasmablasts were also present in mice infected with Plasmodium or with lymphocytic choriomeningitis virus, but not in mice with autoimmune disorders or immunized with T cell-dependent antigens. In vitro experiments showed that PD-L1hi plasmablasts suppressed the T cell response, partially via PD-L1. Thus, this study reveals that extrafollicular PD-L1hi plasmablasts, whose peaks of response precede the peak of germinal center response, may have a modulatory function in infections, thus influencing T cell response.
Collapse
Affiliation(s)
- Melisa Gorosito Serrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Almada
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristian G Beccaria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yamila Gazzoni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo F Canete
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jonathan A Roco
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jimena Tosello Boari
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Cecilia Ramello
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ellen Wehrens
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Yeping Cai
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Elina I Zuniga
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,China-Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
9
|
Majidi M, Safaee S, Amini M, Baghbanzadeh A, Hajiasgharzadeh K, Hashemzadeh S, Sandoghchian Shotorbani S, Mokhtarzadeh A, Baradaran B. The effects of chemotherapeutic drugs on PD-L1 gene expression in breast cancer cell lines. Med Oncol 2021; 38:147. [PMID: 34687372 DOI: 10.1007/s12032-021-01556-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common cancer among women in terms of prevalence and mortality, and chemotherapy is one of the most effective treatments at higher stages. However, resistance to chemotherapy is the main obstacle in the treatment of this cancer. Accumulated evidence identified the PD-L1 protein as an essential protein in the development of different cancers. Abnormal expression of this protein in various tumor cells is linked to cancer development and inhibiting the function of immune cells, which correlated with reduced beneficial effects of chemotherapy drugs. In the present study, the effects of common chemotherapy drugs including doxorubicin, paclitaxel, and docetaxel on the expression of the PD-L1 gene were investigated by qRT-PCR before and after the treatment with these drugs in MD231, MD468, SKBR3 breast cancer cell lines. Also, the MTT test was applied to examine the effects of drugs on the growth and proliferation of cancer cells considering PD-L1 expression. The expression of the PD-L1 gene increased after 24 and 48 h of treatment with chemotherapy drugs. The obtained results indicate the enhancing effects of chemotherapy drugs on PD-L1 gene expression, which have a suppressive effect on the immune system against breast cancer. The use of these drugs as the first line of chemotherapy in triple-negative breast cancer is not recommended. However, there is still a need for further experimental and clinical research on the exact effects of these drugs on undesired immune cells exhaustion in breast cancer therapy.
Collapse
Affiliation(s)
- Misagh Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran
| | - Sahar Safaee
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Department of Thoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Strait AA, Woolaver RA, Hall SC, Young CD, Karam SD, Jimeno A, Lan Y, Raben D, Wang JH, Wang XJ. Distinct immune microenvironment profiles of therapeutic responders emerge in combined TGFβ/PD-L1 blockade-treated squamous cell carcinoma. Commun Biol 2021; 4:1005. [PMID: 34433873 PMCID: PMC8387430 DOI: 10.1038/s42003-021-02522-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Transforming growth factor beta (TGFβ) and programmed death-ligand 1 (PD-L1) are often overproduced in refractory squamous cell carcinoma (SCC). We examined spatial patterns of PD-L1+ cells in mouse and human SCCs and found that PD-L1 was primarily expressed on infiltrating leukocytes. Although combined TGFβ and PD-L1 blockade are undergoing cancer clinical trials, there are no predictive markers for therapeutic responders. To address this, we used both a small molecule TGFβ inhibitor in combination with anti-PD-L1 and a bifunctional fusion protein targeting both TGFβ and PD-L1 to treat mouse SCCs and found TGFβ inhibition enhanced PD-L1 blockade-induced tumor eradication in multiple tumor models. Furthermore, we identified distinct cell populations of responders and non-responders to bintrafusp alfa, with responders showing a shift toward a more immune-permissive microenvironment. The cellular and molecular signatures of responders versus non-responders to combined TGFβ and PD-L1 blockade provide important insights into future personalized immunotherapy in SCC. Strait et al describe distinct immune microenvironment profiles of responders versus non-responders to combined TGF-β/PD-L1 blockade in mouse models of squamous cell carcinoma (SCC). The results emphasize the potential of combined TGF-β/PD-L1 targeting and provide important clues to guide personalized SCC immunotherapy.
Collapse
Affiliation(s)
- Alexander A Strait
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Spencer C Hall
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christian D Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Antonio Jimeno
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Yan Lan
- EMD Serono Research and Development Institute Inc., Billerica, MA, USA.,a business of Merck KGaA, Darmstadt, Germany
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. .,Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA. .,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA.
| |
Collapse
|
11
|
Melillo G, Chand V, Yovine A, Gupta A, Massacesi C. Curative-Intent Treatment with Durvalumab in Early-Stage Cancers. Adv Ther 2021; 38:2759-2778. [PMID: 33881745 PMCID: PMC8190020 DOI: 10.1007/s12325-021-01675-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022]
Abstract
The introduction of immunotherapy has fundamentally transformed the treatment landscape in cancer, providing long-term survival benefit for patients with advanced disease across multiple tumor types, including non-small cell lung cancer (NSCLC). In the placebo-controlled phase 3 PACIFIC trial, the PD-L1 inhibitor durvalumab demonstrated significant improvements in progression-free survival and overall survival in patients with unresectable, stage III NSCLC who had not progressed after platinum-based chemoradiotherapy (CRT). These findings have led to the widespread acceptance of the 'PACIFIC regimen' (durvalumab after CRT) as the standard of care in this setting. Moreover, the PACIFIC trial is the first study to demonstrate a proven survival advantage with an immunotherapy in a curative-intent setting, thereby providing a strong rationale for further investigation of durvalumab in early-stage cancers. Herein, we describe the extensive clinical development program for durvalumab across multiple tumor types in curative-intent settings, outlining the scientific rationale(s) for its use and highlighting the innovative research (e.g., personalized cancer monitoring) advanced by these trials.
Collapse
|
12
|
Bornes L, Belthier G, van Rheenen J. Epithelial-to-Mesenchymal Transition in the Light of Plasticity and Hybrid E/M States. J Clin Med 2021; 10:jcm10112403. [PMID: 34072345 PMCID: PMC8197992 DOI: 10.3390/jcm10112403] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a cellular program which leads to cells losing epithelial features, including cell polarity, cell-cell adhesion and attachment to the basement membrane, while gaining mesenchymal characteristics, such as invasive properties and stemness. This program is involved in embryogenesis, wound healing and cancer progression. Over the years, the role of EMT in cancer progression has been heavily debated, and the requirement of this process in metastasis even has been disputed. In this review, we discuss previous discrepancies in the light of recent findings on EMT, plasticity and hybrid E/M states. Moreover, we highlight various tumor microenvironmental cues and cell intrinsic signaling pathways that induce and sustain EMT programs, plasticity and hybrid E/M states. Lastly, we discuss how recent findings on plasticity, especially on those that enable cells to switch between hybrid E/M states, have changed our understanding on the role of EMT in cancer metastasis, stemness and therapy resistance.
Collapse
|
13
|
Liu ZL, Liu JH, Staiculescu D, Chen J. Combination of molecularly targeted therapies and immune checkpoint inhibitors in the new era of unresectable hepatocellular carcinoma treatment. Ther Adv Med Oncol 2021; 13:17588359211018026. [PMID: 34104226 PMCID: PMC8150670 DOI: 10.1177/17588359211018026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Multikinase inhibitors (MKIs) have been the only first-line treatment for advanced hepatocellular carcinoma (HCC) for more than a decade, until the approval of immune checkpoint inhibitors (ICIs). Moreover, the combination regimen of atezolizumab (anti-programmed cell death protein ligand 1 antibody) plus bevacizumab (anti-vascular endothelial growth factor monoclonal antibody) has recently been demonstrated to have superior efficacy when compared with sorafenib monotherapy. The remarkable efficacy has made this combination therapy the new standard treatment for advanced HCC. In addition to MKIs, many other molecularly targeted therapies are under investigation, some of which have shown promising results. Therefore, in the era of immuno-oncology, there is a significant rationale for testing the combinations of molecularly targeted therapies and ICIs. Indeed, numerous preclinical and clinical studies have shown the synergic antitumor efficacy of such combinations. In this review, we aim to summarize the current knowledge on the combination of molecularly targeted therapies and immune checkpoint therapies for HCC from both preclinical and clinical perspectives.
Collapse
Affiliation(s)
- Ze-Long Liu
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing-Hua Liu
- Department of Hepatobiliary Surgery and Professor Cai’s Laboratory, Linyi People’s Hospital, Linyi, Shandong Province, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, Zhejiang Province, 310016, China
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
14
|
Garassino MC, Paz-Ares L, Hui R, Faivre-Finn C, Spira A, Planchard D, Özgüroğlu M, Daniel D, Vicente D, Murakami S, Langer C, Senan S, Spigel D, Rydén A, Zhang Y, O'Brien C, Dennis PA, Antonia SJ. Patient-reported outcomes with durvalumab by PD-L1 expression and prior chemoradiotherapy-related variables in unresectable stage III non-small-cell lung cancer. Future Oncol 2021; 17:1165-1184. [PMID: 33583206 DOI: 10.2217/fon-2020-1102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: We retrospectively investigated the impact of tumor PD-L1 expression and prior chemoradiotherapy (CRT)-related variables on patient-reported outcomes (PROs) from PACIFIC. Patients & methods: PACIFIC was a Phase III study of durvalumab versus placebo after CRT in patients with unresectable, stage III non-small-cell lung cancer. If available, pre-CRT tumor tissue was tested for PD-L1 tumor-cell expression, scored at prespecified (25%) and post-hoc (1%) cut-offs. PROs were assessed using EORTC QLQ C30/-LC13. Results: Similar to the intent-to-treat (ITT) population, most PROs remained stable over time across PD-L1 and CRT subgroups, with few clinically relevant differences between treatment arms. Time to deterioration was generally similar to the ITT population. Conclusion: Neither PD-L1 expression nor prior CRT-related variables influenced PROs with durvalumab therapy. Clinical trial registration: NCT02125461 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, CiberOnc, Universidad Complutense & CNIO, Madrid, 28041, Spain
| | - Rina Hui
- Westmead Hospital & the University of Sydney, Sydney, NSW, 2145, Australia
| | - Corinne Faivre-Finn
- The University of Manchester & The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Alex Spira
- Virginia Cancer Specialists Research Institute, Fairfax, VA, & US Oncology Research, The Woodlands, TX 22031, USA
| | - David Planchard
- Institut Gustave Roussy, Department of Medical Oncology, Thoracic Group, Villejuif, 94805, France
| | - Mustafa Özgüroğlu
- Istanbul University - Cerrahpaşa, Cerrahpaşa School of Medicine, Istanbul, 34320, Turkey
| | - Davey Daniel
- Sarah Cannon Research Institute/Tennessee Oncology, Chattanooga, TN 37203, USA
| | - David Vicente
- Hospital Universitario Virgen Macarena, Seville, 41009, Spain
| | | | - Corey Langer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, 1081, The Netherlands
| | - David Spigel
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN 3720231, USA
| | | | | | | | | | - Scott J Antonia
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Ungefroren H. Autocrine TGF-β in Cancer: Review of the Literature and Caveats in Experimental Analysis. Int J Mol Sci 2021; 22:977. [PMID: 33478130 PMCID: PMC7835898 DOI: 10.3390/ijms22020977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Autocrine signaling is defined as the production and secretion of an extracellular mediator by a cell followed by the binding of that mediator to receptors on the same cell to initiate signaling. Autocrine stimulation often operates in autocrine loops, a type of interaction, in which a cell produces a mediator, for which it has receptors, that upon activation promotes expression of the same mediator, allowing the cell to repeatedly autostimulate itself (positive feedback) or balance its expression via regulation of a second factor that provides negative feedback. Autocrine signaling loops with positive or negative feedback are an important feature in cancer, where they enable context-dependent cell signaling in the regulation of growth, survival, and cell motility. A growth factor that is intimately involved in tumor development and progression and often produced by the cancer cells in an autocrine manner is transforming growth factor-β (TGF-β). This review surveys the many observations of autocrine TGF-β signaling in tumor biology, including data from cell culture and animal models as well as from patients. We also provide the reader with a critical discussion on the various experimental approaches employed to identify and prove the involvement of autocrine TGF-β in a given cellular response.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, D-23538 Lübeck, Germany;
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| |
Collapse
|
16
|
Faivre-Finn C, Spigel DR, Senan S, Langer C, Perez BA, Özgüroğlu M, Daniel D, Villegas A, Vicente D, Hui R, Murakami S, Paz-Ares L, Broadhurst H, Wadsworth C, Dennis PA, Antonia SJ. Impact of prior chemoradiotherapy-related variables on outcomes with durvalumab in unresectable Stage III NSCLC (PACIFIC). Lung Cancer 2020; 151:30-38. [PMID: 33285469 DOI: 10.1016/j.lungcan.2020.11.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The PACIFIC trial demonstrated that durvalumab significantly improved progression-free and overall survival (PFS/OS), versus placebo, in patients with Stage III NSCLC and stable or responding disease following concurrent, platinum-based chemoradiotherapy (CRT). A range of CT and RT regimens were permitted, and used, in the trial. We report post-hoc, exploratory analyses of clinical outcomes from PACIFIC according to CRT-related variables. METHODS Patients were randomized 2:1 (1-42 days post-CRT) to up to 12 months durvalumab (10 mg/kg intravenously every 2 weeks) or placebo. Efficacy and safety were analyzed in patient subgroups defined by the following baseline variables: platinum-based CT (cisplatin/carboplatin); vinorelbine, etoposide, or taxane-based CT (all yes/no); total RT dose (<60 Gy/60-66 Gy/>66 Gy); time from last RT dose to randomization (<14 days/≥14 days); and use of pre-CRT induction CT (yes/no). Treatment effects for time-to-event endpoints were estimated by hazard ratios (HRs) from unstratified Cox-proportional-hazards models. RESULTS Overall, 713 patients were randomized, of whom 709 received treatment in either the durvalumab (n/N = 473/476) or placebo arms (n/N = 236/237). Durvalumab improved PFS, versus placebo, across all subgroups (median follow up, 14.5 months; HR range, 0.34-0.63). Durvalumab improved OS across most subgroups (median follow up, 25.2 months; HR range, 0.35-0.86); however, the 95 % confidence interval (CI) of the estimated treatment effect crossed one for the subgroups of patients who received induction CT (HR, 0.78 [95 % CI, 0.51-1.20]); carboplatin (0.86 [0.60-1.23]); vinorelbine (0.79 [0.49-1.27]); and taxane-based CT (0.73 [0.51-1.04]); and patients who were randomized ≥14 days post-RT (0.81 [0.62-1.06]). Safety was broadly similar across the CRT subgroups. CONCLUSION Durvalumab prolonged PFS and OS irrespective of treatment variables related to prior CRT to which patients with Stage III NSCLC had previously stabilized or responded. Limited patient numbers and imbalances in baseline factors in each subgroup preclude robust conclusions.
Collapse
Affiliation(s)
- Corinne Faivre-Finn
- The University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK.
| | - David R Spigel
- Tennessee Oncology, Chattanooga, TN, USA; Sarah Cannon Research Institute, Nashville, TN, USA
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Corey Langer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradford A Perez
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mustafa Özgüroğlu
- Istanbul University - Cerrahpaşa, Cerrahpaşa School of Medicine, Istanbul, Turkey
| | - Davey Daniel
- Tennessee Oncology, Chattanooga, TN, USA; Sarah Cannon Research Institute, Nashville, TN, USA
| | | | - David Vicente
- Hospital Universitario Virgen Macarena, Seville, Spain
| | - Rina Hui
- Westmead Hospital and the University of Sydney, Sydney, NSW, Australia
| | | | - Luis Paz-Ares
- Hospital Universitario 12 de Octubre, Lung Cancer Unit CNIO-H12o, CiberOnc and Universidad Complutense, Madrid, Spain
| | | | | | | | - Scott J Antonia
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
17
|
Ancel J, Dewolf M, Deslée G, Nawrocky-Raby B, Dalstein V, Gilles C, Polette M. Clinical Impact of the Epithelial-Mesenchymal Transition in Lung Cancer as a Biomarker Assisting in Therapeutic Decisions. Cells Tissues Organs 2020; 211:91-109. [PMID: 32750701 DOI: 10.1159/000510103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common solid cancers and represents the leading cause of cancer death worldwide. Over the last decade, research on the epithelial-mesenchymal transition (EMT) in lung cancer has gained increasing attention. Here, we review clinical and histological features of non-small-cell lung cancer associated with EMT. We then aimed to establish potential clinical implications of EMT in current therapeutic options, including surgery, radiation, targeted therapy against oncogenic drivers, and immunotherapy.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Maxime Dewolf
- Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Gaëtan Deslée
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Béatrice Nawrocky-Raby
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium,
| | - Myriam Polette
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| |
Collapse
|
18
|
Xiao F, Liu Y, Zhang Z, Wang L, Wang T, Wang X. Tobacco extracts promote PD-L1 expression and enhance malignant biological differences via mTOR in gefitinib-resistant cell lines. Thorac Cancer 2020; 11:2237-2251. [PMID: 32558328 PMCID: PMC7396363 DOI: 10.1111/1759-7714.13533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate whether tobacco extracts could regulate PD-L1 expression and enhance malignant biological differences in gefitinib-resistant cell lines. METHODS We constructed gefitinib-resistant cells and observed the biological differences in gefitinib-resistant cells. The cells were stimulated with medium containing 5% volume of tobacco extract, and the change in PD-L1 expression and the mammalian target of rapamycin (mTOR) and p-mTOR expression in gefitinib-resistant cells treated with tobacco extracts was observed. We discussed the relationship between PD-L1 and mTOR. RESULTS Tobacco extracts could promote PD-L1 expression in the cell line. Western blot analysis showed that mTOR and p-mTOR were significantly enhanced in gefitinib-resistant cell lines cultured in the tobacco extracts. The mTOR signaling pathway was involved in PD-L1 expression and in regulating the expression of cytokines IL-6 and IL-23. In addition, the tobacco extracts could promote macrophage migration via mTOR/IL-6. CONCLUSIONS PD-L1 can transmit inhibitory signals and reduce the proliferation of CD8 + T cells in lymph nodes. Tobacco extracts upregulate PD-L1 expression via mTOR/IL-6. These results imply that lung cancer patients should not smoke and stay away from a smoke environment.
Collapse
Affiliation(s)
- Fengqi Xiao
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Yanguo Liu
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Zhihui Zhang
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Luojia Wang
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Ting Wang
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| | - Xiuwen Wang
- Department of Medical OncologyQilu Hospital, Shandong UniversityJinanShandongChina
| |
Collapse
|
19
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 561] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
20
|
Gaponova AV, Rodin S, Mazina AA, Volchkov PV. Epithelial-Mesenchymal Transition: Role in Cancer Progression and the Perspectives of Antitumor Treatment. Acta Naturae 2020; 12:4-23. [PMID: 33173593 PMCID: PMC7604894 DOI: 10.32607/actanaturae.11010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
About 90% of all malignant tumors are of epithelial nature. The epithelial tissue is characterized by a close interconnection between cells through cell-cell interactions, as well as a tight connection with the basement membrane, which is responsible for cell polarity. These interactions strictly determine the location of epithelial cells within the body and are seemingly in conflict with the metastatic potential that many cancers possess (the main criteria for highly malignant tumors). Tumor dissemination into vital organs is one of the primary causes of death in patients with cancer. Tumor dissemination is based on the so-called epithelial-mesenchymal transition (EMT), a process when epithelial cells are transformed into mesenchymal cells possessing high mobility and migration potential. More and more studies elucidating the role of the EMT in metastasis and other aspects of tumor progression are published each year, thus forming a promising field of cancer research. In this review, we examine the most recent data on the intracellular and extracellular molecular mechanisms that activate EMT and the role they play in various aspects of tumor progression, such as metastasis, apoptotic resistance, and immune evasion, aspects that have usually been attributed exclusively to cancer stem cells (CSCs). In conclusion, we provide a detailed review of the approved and promising drugs for cancer therapy that target the components of the EMT signaling pathways.
Collapse
Affiliation(s)
- A. V. Gaponova
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - S. Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177 Sweden
| | - A. A. Mazina
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| | - P. V. Volchkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Russia
| |
Collapse
|
21
|
Lingling Z, Jiewei L, Li W, Danli Y, Jie Z, Wen L, Dan P, Lei P, Qinghua Z. Molecular regulatory network of PD-1/PD-L1 in non-small cell lung cancer. Pathol Res Pract 2020; 216:152852. [DOI: 10.1016/j.prp.2020.152852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
|
22
|
Epithelial-mesenchymal transition gene signature is associated with prognosis and tumor microenvironment in head and neck squamous cell carcinoma. Sci Rep 2020; 10:3652. [PMID: 32107458 PMCID: PMC7046610 DOI: 10.1038/s41598-020-60707-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
In this study we assessed the clinical significance of an epithelial-mesenchymal transition (EMT) gene signature and explored its association with the tumor microenvironment related to immunotherapy in patients with head and neck squamous cell carcinoma (HNSCC). Genes were selected when mRNA levels were positively or negatively correlated with at least one well-known EMT marker. We developed an EMT gene signature consisting of 82 genes. The patients were classified into epithelial or mesenchymal subgroups according to EMT signature. The clinical significance of the EMT signature was validated in three independent cohorts and its association with several immunotherapy-related signatures was investigated. The mesenchymal subgroup showed worse prognosis than the epithelial subgroup, and significantly elevated PD-1, PD-L1, and CTLA-4 levels, and increased interferon-gamma, cytolytic, T cell infiltration, overall immune infiltration, and immune signature scores. The relationship between PD-L1 expression and EMT status in HNSCC after treatment with TGF-β was validated in vitro. In conclusion, the EMT gene signature was associated with prognosis in HNSCC. Additionally, our results suggest that EMT is related to immune activity of the tumor microenvironment with elevated immune checkpoint molecules.
Collapse
|
23
|
Shrestha R, Bridle KR, Crawford DHG, Jayachandran A. TNF‑α‑mediated epithelial‑to‑mesenchymal transition regulates expression of immune checkpoint molecules in hepatocellular carcinoma. Mol Med Rep 2020; 21:1849-1860. [PMID: 32319631 PMCID: PMC7057769 DOI: 10.3892/mmr.2020.10991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fastest growing cause of cancer-related deaths globally. Epithelial-to-mesenchymal transition (EMT) is a cellular process that confers HCC tumor cells with the ability to evade the immune system. Immune escape in most tumors, including HCC, is controlled by immune checkpoint molecules. The aim of the present study was to investigate the association between EMT and immune checkpoint in HCC, and identify novel therapeutic targets for HCC. An in vitro model of reversible EMT was utilized based on cytokine tumor necrosis factor (TNF)-α treatment of HCC cell lines Hep3B and PLC/PRF/5. Hep3B and PLC/PRF/5 cells were treated with TNF-α, and the EMT status and the expression of immune checkpoint molecules was assessed by reverse transcription-quantitative PCR, western blotting and immunofluorescence. To confirm an association between EMT and immune modulators, cells were exposed to culture medium with TNF-α for 3 days to induce EMT, following which a reversal assay was performed. The expression of immune modulators and mesenchymal-to-epithelial transition (MET) status was investigated upon reversal of EMT. Furthermore, SurvExpress, a web-based platform was utilized to analyze survival and recurrence in a dataset of patients with HCC. TNF-α treatment for 3 days induced EMT in Hep3B and PLC/PRF/5 cells, as demonstrated by the downregulation of epithelial markers along with upregulation in mesenchymal markers. An EMT reversal assay was able to induce MET by increasing epithelial markers and decreasing mesenchymal markers. TNF-α-induced EMT led to the upregulation of immune modulators, including programmed death receptor ligand (PD-L)1, PD-L2, CD73 and B7-H3. In contrast, reversal of EMT suppressed the expression of PD-L1, PD-L2, CD73 and B7-H3. In addition, high expression of TNF-α and PD-L1 in 422 patients with HCC was associated with poor overall survival. The coordinate expression of TNF-α with PD-L2 in this patient cohort was associated with increased HCC recurrence. In conclusion, the present study demonstrated a close association between immune modulator expression and EMT induction/reversal driven by TNF-α.
Collapse
Affiliation(s)
- Ritu Shrestha
- University of Queensland, Faculty of Medicine, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Kim R Bridle
- University of Queensland, Faculty of Medicine, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Darrell H G Crawford
- University of Queensland, Faculty of Medicine, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Aparna Jayachandran
- University of Queensland, Faculty of Medicine, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| |
Collapse
|
24
|
Epithelial‑mesenchymal transition induced by bone morphogenetic protein 9 hinders cisplatin efficacy in ovarian cancer cells. Mol Med Rep 2019; 19:1501-1508. [PMID: 30628686 PMCID: PMC6390058 DOI: 10.3892/mmr.2019.9814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/19/2018] [Indexed: 01/04/2023] Open
Abstract
Bone morphogenetic protein 9 (BMP9) belongs to the transforming growth factor-β (TGF-β) superfamily, and has been reported to promote cancer cell proliferation and epithelial-mesenchymal transition (EMT). Cisplatin (DDP) is the first line treatment for ovarian cancer. However, initiation of EMT confers insensitivity to chemotherapy. The present study aimed to verify and examine the mechanisms underlying the effects of BMP9 on treatment with DDP for ovarian cancer. Prior to treatment with DDP, ovarian cancer cells were exposed to BMP9 for 3 days. Following this, cell viability, apoptosis rate and the extent of DNA damage were evaluated to compare the effects of DDP on BMP9-pretreated and non-pretreated ovarian cancer cells. In addition, EMT marker expression was evaluated by western blotting and immunofluorescence. The results demonstrated that BMP9 pretreatment inhibited the cytotoxicity of DDP on ovarian cancer cells. Additionally, BMP9-pretreated ovarian cancer cells had downregulated expression of the epithelial marker E-cadherin, which was accompanied by an upregulation of the mesenchymal markers N-cadherin, Snail, Slug, and Twist. Taken together, the findings of the present study indicated that BMP9 conferred resistance to DDP in ovarian cancer cells by inducing EMT. The present study provided valuable insight into the mechanisms of chemotherapy in ovarian cancer and highlighted the potential of BMP9 as a novel therapeutic target for improving cisplatin chemosensitivity.
Collapse
|
25
|
Funaki S, Shintani Y, Fukui E, Yamamoto Y, Kanzaki R, Ose N, Kanou T, Minami M, Mori E, Okumura M. The prognostic impact of programmed cell death 1 and its ligand and the correlation with epithelial-mesenchymal transition in thymic carcinoma. Cancer Med 2019; 8:216-226. [PMID: 30600651 PMCID: PMC6346217 DOI: 10.1002/cam4.1943] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/18/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Background The significance of epithelial‐mesenchymal transition (EMT) and immune checkpoint proteins in thymic carcinoma remains unknown. We examined the clinical significance of EMT, tumor‐infiltrating lymphocytes expressing the immune checkpoint protein, programmed cell death 1 (PD‐1 + TILs), and the expression of PD‐1 ligand 1 (PD‐L1) in thymic carcinoma (TC). We also investigated the relationships between these immune checkpoint proteins and the EMT status and examined the impact of induction chemotherapy on patients with tumors that express these proteins. Methods The relationship between PD‐1 + TILs/PD‐L1 and clinicopathological findings including EMT was investigated by immunohistochemistry (IHC) of surgically resected samples from 43 patients with TC. In 15 patients receiving induction therapy (IT), those factors were compared before and after IT. Results With IHC, 26 cases (60.5%) were positive for PD‐L1, and 19 cases were positive for PD‐1 + TILs (44.2%). The disease‐free survival rate in patients showing EMT and who were PD‐1/PD‐L1 positive was significantly worse compared to negative cases (EMT; P = 0.0095, PD‐1; P = 0.001, PD‐L1; P = 0.0037). We found a significant relationship between PD‐L1 and EMT status (P = 0.01). In patients who received IT, PD‐L1 increased, and the change was strongly correlated with EMT status (P = 0.01). Conclusion Epithelial‐mesenchymal transition, PD‐L1, and PD‐1 + TILs have prognostic impact, and PD‐L1 is correlated with EMT status. PD‐L1 expression after IT was significantly higher compared to before IT and was correlated with the EMT change. Thus, PD‐L1 may be upregulated during EMT, and anti‐PD‐1/PD‐L1 immunotherapy may provide reliable treatment of TC in combination with chemotherapy.
Collapse
Affiliation(s)
- Soichiro Funaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Yoko Yamamoto
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Ryu Kanzaki
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Naoko Ose
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Takashi Kanou
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Masato Minami
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Eiichi Mori
- Department of Pathology, Osaka University Graduate School of Medicine, Suita-city, Japan
| | - Meinoshin Okumura
- General Thoracic Surgery, Toneyama National Hospital, Toneyama, Japan
| |
Collapse
|
26
|
Lantuejoul S, Damotte D, Hofman V, Adam J. Programmed death ligand 1 immunohistochemistry in non-small cell lung carcinoma. J Thorac Dis 2019; 11:S89-S101. [PMID: 30775032 PMCID: PMC6353738 DOI: 10.21037/jtd.2018.12.103] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide with low response rates to conventional chemotherapy. New promising therapies have emerged based on programmed cell death protein 1 (PD-1) immunity checkpoint inhibitors (ICI), including anti-PD-1, such as nivolumab and pembrolizumab, or programmed death ligand 1 (PD-L1) inhibitors, such as atezolizumab, durvalumab, and avelumab. The prescription of pembrolizumab has been approved by FDA and EMA for advanced stages non-small cell lung carcinoma (NSCLC), restricted for first-line setting to patients whose tumor presents ≥50% of PD-L1 positive tumor cells (TC), and ≥1% for second-line and beyond, leading to consider PD-L1 assay as a companion diagnostic tool for pembrolizumab. Very recently, the EMA has approved durvalumab for the treatment of patients with unresectable stage III NSCLC not progressing after chemoradiotherapy and whose tumors express PD-L1 on ≥1% of TC. Four standardized PD-L1 immunohistochemistry assays have been used in clinical trials; 22C3 and 28-8 PharmDx assays on Dako/Agilent platforms, and SP142 and SP263 assays on Ventana platforms, each test having been developed initially for a specific ICI. They differ in terms of primary monoclonal antibody, platform, detection system and scoring methods with different thresholds of positivity validated in clinical trials. Several studies have shown a close analytical performance of the 22C3, 28-8 and SP263 assays regarding TC staining in NSCLC, with poor concordance with SP142 assay and for immune cells. However, as dedicated platforms are not available in all pathology laboratories and because of the high cost of these assays, laboratory developed tests are widely used in many countries. Their validation must guarantee the same sensitivities and specificities as compared to standardized assays. Overall, PD-L1 test is of great help to select patients who could benefit for ICI and most pathologists have included this test in their daily practice for advanced stages NSCLC, besides ALK and ROS1 IHC.
Collapse
Affiliation(s)
- Sylvie Lantuejoul
- Département de Biopathologie, Centre Léon Bérard UNICANCER, Lyon, France
- Département de Recherche Translationnelle et d’Innovations, Centre Léon Bérard UNICANCER, Lyon, France
- Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
- PATTERN: Group of French Thoracic Pathologists for Innovation and Translational Research, Synergie Lyon Cancer Foundation, Lyrican, France
| | - Diane Damotte
- PATTERN: Group of French Thoracic Pathologists for Innovation and Translational Research, Synergie Lyon Cancer Foundation, Lyrican, France
- Département de Pathologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
- Centre de Recherche des Cordeliers, Université Paris Descartes, Paris, France
| | - Véronique Hofman
- PATTERN: Group of French Thoracic Pathologists for Innovation and Translational Research, Synergie Lyon Cancer Foundation, Lyrican, France
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Hospital, University Côte d’Azur, Nice, France
- Biobank BB-0033-0025, FHU OncoAge, Nice Hospital, University Côte d’Azur, Nice, France
| | - Julien Adam
- PATTERN: Group of French Thoracic Pathologists for Innovation and Translational Research, Synergie Lyon Cancer Foundation, Lyrican, France
- Département de Biologie et Pathologie Médicales, Gustave-Roussy, Villejuif, France
| |
Collapse
|
27
|
Biomarqueurs prédictifs de réponse aux inhibiteurs de points de contrôle immuns. Bull Cancer 2018; 105 Suppl 1:S80-S91. [DOI: 10.1016/s0007-4551(18)30393-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022]
|
28
|
van Staalduinen J, Baker D, Ten Dijke P, van Dam H. Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 2018; 37:6195-6211. [PMID: 30002444 DOI: 10.1038/s41388-018-0378-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 02/06/2023]
Abstract
Chemoresistance remains a major complication of cancer treatments. Recent data provide strong evidence that chemoresistance is linked to epithelial-mesenchymal transition (EMT), a latent developmental process, which is re-activated during cancer progression. EMT involves transcriptional reprogramming and is driven by specific EMT transcription factors (EMT-TFs). In this review, we provide support for the idea that EMT-TFs contribute to the development of resistance against cancer therapy and discuss how EMT-TFs might be targeted to advance novel therapeutic approaches to the treatment of cancer.
Collapse
Affiliation(s)
- Jente van Staalduinen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - David Baker
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands.
| | - Hans van Dam
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Redfern AD, Spalding LJ, Thompson EW. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis 2018; 35:285-308. [PMID: 29948647 DOI: 10.1007/s10585-018-9906-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.
Collapse
Affiliation(s)
- Andrew D Redfern
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia.
| | - Lisa J Spalding
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
30
|
Lantuejoul S, Adam J, Girard N, Duruisseaux M, Mansuet-Lupo A, Cazes A, Rouquette I, Gibault L, Garcia S, Antoine M, Vignaud JM, Galateau-Sallé F, Sagan C, Badoual C, Penault-Llorca F, Damotte D. Tests immunohistochimiques PD-L1 dans les cancers du poumon non à petites cellules : recommandations par le groupe PATTERN de pathologistes thoraciques. Ann Pathol 2018; 38:110-125. [DOI: 10.1016/j.annpat.2018.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 01/09/2023]
|
31
|
Frelau A, Pracht M, Le Sourd S, Lespagnol A, Corre R, Ménard C, Tarte K, Mosser J, Edeline J. WITHDRAWN: Biomarqueurs prédictifs de réponse aux inhibiteurs de points de contrôle immuns. Bull Cancer 2018:S0007-4551(17)30384-3. [PMID: 29525053 DOI: 10.1016/j.bulcan.2017.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Alexandra Frelau
- CLCC Eugène-Marquis UNICANCER, oncologie médicale, avenue de la Bataille-Flandres-Dunkerque, 35042 Rennes cedex, France.
| | - Marc Pracht
- CLCC Eugène-Marquis UNICANCER, oncologie médicale, avenue de la Bataille-Flandres-Dunkerque, 35042 Rennes cedex, France
| | - Samuel Le Sourd
- CLCC Eugène-Marquis UNICANCER, oncologie médicale, avenue de la Bataille-Flandres-Dunkerque, 35042 Rennes cedex, France
| | - Alexandra Lespagnol
- CHU de Rennes, laboratoire de génétique somatique des cancers, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| | - Romain Corre
- CHU de Rennes, service de pneumologie, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| | - Cédric Ménard
- CHU de Rennes, Inserm U197, laboratoire d'immunologie, thérapie cellulaire et hématopoïèse, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| | - Karin Tarte
- CHU de Rennes, Inserm U197, laboratoire d'immunologie, thérapie cellulaire et hématopoïèse, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| | - Jean Mosser
- CHU de Rennes, laboratoire de génétique somatique des cancers, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France; CHU de Rennes, institut de génétique et développement, CNRS-UR1, IGRD UMR 6290, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| | - Julien Edeline
- CLCC Eugène-Marquis UNICANCER, oncologie médicale, avenue de la Bataille-Flandres-Dunkerque, 35042 Rennes cedex, France; CHU de Rennes, UMR991, unité de recherche foie, métabolisme et cancer, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| |
Collapse
|
32
|
McCall NS, Dicker AP, Lu B. Beyond Concurrent Chemoradiation: The Emerging Role of PD-1/PD-L1 Inhibitors in Stage III Lung Cancer. Clin Cancer Res 2018; 24:1271-1276. [DOI: 10.1158/1078-0432.ccr-17-3269] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 11/16/2022]
|