1
|
Yan J, Zhou Y, Wang Y, Liu Y. PARG Promotes Esophagus Cancer Cell Metastasis by Activation of the Wnt/β-Catenin Pathway. Biochem Genet 2024; 62:761-774. [PMID: 37429965 DOI: 10.1007/s10528-023-10434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Esophagus cancer (EC) is a highly malignant and metastatic cancer. Poly(ADP-ribose) glycohydrolase (PARG), a DNA replication and repair regulator, inhibits cancer cell replication defects. This study aimed to explore the role of PARG in EC. The biological behaviors were analyzed using MTT assay, Transwell assay, scratch test, cell adhesion assay, and western blot. PARG expression was detected using quantitative PCR and immunohistochemical assay. The regulation of the Wnt/β-catenin pathway was assessed using western blot. The results showed that PARG was highly expressed in EC tissues and cells. Knockdown of PARG suppressed cell viability, invasion, migration, adhesion, and epithelial-mesenchymal transition. Conversely, overexpression of PARG promoted the biological behaviors mentioned above. Moreover, overexpression of PARG promoted the activation of the Wnt/β-catenin pathway rather than the STAT and Notch pathways. XAV939, the Wnt/β-catenin pathway inhibitor, partly abolished the biological behaviors mediated by PARG overexpression. In conclusion, PARG promoted the malignant advancement of EC via activating the Wnt/β-catenin pathway. These findings suggested that PARG might be a new therapeutic target for EC.
Collapse
Affiliation(s)
- Jiaxin Yan
- Department of Pathology, Sichuan Cancer Hospital, 55 Renmin South Road, Wuhou District, Chengdu City, 610000, Sichuan, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Cancer Hospital, 55 Renmin South Road, Wuhou District, Chengdu City, 610000, Sichuan, China
| | - Yalan Wang
- Department of Pathology, School of Basic Medical Sciences, Chongqing Medical University, Chengdu City, China
| | - Yang Liu
- Department of Pathology, Sichuan Cancer Hospital, 55 Renmin South Road, Wuhou District, Chengdu City, 610000, Sichuan, China.
| |
Collapse
|
2
|
Zhao Y, Liu Y, Liu Z, Ren K, Jiao D, Ren J, Wu P, Li X, Wang Z, Han X. In Situ Nanofiber Patch Boosts Postoperative Hepatocellular Carcinoma Immune Activation by Trimodal Combination Therapy. ACS NANO 2024; 18:245-263. [PMID: 38117780 PMCID: PMC10786167 DOI: 10.1021/acsnano.3c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023]
Abstract
Poor clinical efficacy associated with postoperative hepatocellular carcinoma (HCC) often results from recurrence and metastasis. Hence, research has focused on establishing an effective multimodal therapy. However, complex combinations of active ingredients require multiple functions in therapeutic systems. Herein, a portable nanofiber patch composing germanium phosphorus (GeP) and anlotinib (AL) was designed to form a versatile platform for molecularly targeted photothermal-immune checkpoint blockade (ICB) trimodal combination therapy. The patches possess hydrophilic, satisfactory mechanical, and excellent photothermal conversion properties. Moreover, they achieve a penetrating and sustained drug release. The near-infrared light-assisted GeP-induced temperature increase regulates AL release, downregulating the expression of vascular-related factor receptors, triggering immunogenic cell death of tumor cells, and inducing dendritic cell maturation. Simultaneously, ICB therapy (programmed cell death ligand 1, PD-L1) was introduced to improve treatment outcomes. Notably, this trimodal combination therapy significantly inhibits vascular hypergrowth, enhances effector T-cell infiltration, and sensitizes the PD-L1 antibody response, boosting immunotherapy to suppress residual HCC recurrence and metastasis. Further validation of the genome sequencing results revealed cell pathways related primarily to regulatory immune effects. This study demonstrates the use of an effective and practical nanofiber patch to improve multimodal therapy of postoperative HCC, with high clinical translation value.
Collapse
Affiliation(s)
- Yanan Zhao
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Yiming Liu
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Zaoqu Liu
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Kewei Ren
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Dechao Jiao
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Jianzhuang Ren
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| | - Ping Wu
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaokun Li
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhouguang Wang
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Xinwei Han
- Department
of Interventional Radiology, Key Laboratory of Interventional Radiology
of Henan Province, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou 450052, China
- Interventional
Institute of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
3
|
Li X, Wu Y, Tian T. TGF-β Signaling in Metastatic Colorectal Cancer (mCRC): From Underlying Mechanism to Potential Applications in Clinical Development. Int J Mol Sci 2022; 23:14436. [PMID: 36430910 PMCID: PMC9698504 DOI: 10.3390/ijms232214436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is a serious public health issue, and it has the leading incidence and mortality among malignant tumors worldwide. CRC patients with metastasis in the liver, lung or other distant sites always have poor prognosis. Thus, there is an urgent need to discover the underlying mechanisms of metastatic colorectal cancer (mCRC) and to develop optimal therapy for mCRC. Transforming growth factor-β (TGF-β) signaling plays a significant role in various physiologic and pathologic processes, and aberrant TGF-β signal transduction contributes to mCRC progression. In this review, we summarize the alterations of the TGF-β signaling pathway in mCRC patients, the functional mechanisms of TGF-β signaling, its promotion of epithelial-mesenchymal transition, its facilitation of angiogenesis, its suppression of anti-tumor activity of immune cells in the microenvironment and its contribution to stemness of CRC cells. We also discuss the possible applications of TGF-β signaling in mCRC diagnosis, prognosis and targeted therapies in clinical trials. Hopefully, these research advances in TGF-β signaling in mCRC will improve the development of new strategies that can be combined with molecular targeted therapy, immunotherapy and traditional therapies to achieve better efficacy and benefit mCRC patients in the near future.
Collapse
Affiliation(s)
| | | | - Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
4
|
Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int J Mol Sci 2022; 23:ijms23137292. [PMID: 35806303 PMCID: PMC9266317 DOI: 10.3390/ijms23137292] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Differential evolution of apoptosis, programmed necrosis, and autophagy, parthanatos is a form of cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1), which is caused by DNA damage. PARP1 hyper-activation stimulates apoptosis-inducing factor (AIF) nucleus translocation, and accelerates nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) depletion, leading to DNA fragmentation. The mechanisms of parthanatos mainly include DNA damage, PARP1 hyper-activation, PAR accumulation, NAD+ and ATP depletion, and AIF nucleus translocation. Now, it is reported that parthanatos widely exists in different diseases (tumors, retinal diseases, neurological diseases, diabetes, renal diseases, cardiovascular diseases, ischemia-reperfusion injury...). Excessive or defective parthanatos contributes to pathological cell damage; therefore, parthanatos is critical in the therapy and prevention of many diseases. In this work, the hallmarks and molecular mechanisms of parthanatos and its related disorders are summarized. The questions raised by the recent findings are also presented. Further understanding of parthanatos will provide a new treatment option for associated conditions.
Collapse
|
5
|
Harrision D, Gravells P, Thompson R, Bryant HE. Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) - Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy. Front Mol Biosci 2020; 7:191. [PMID: 33005627 PMCID: PMC7485115 DOI: 10.3389/fmolb.2020.00191] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that catalyze the addition of poly(ADP-ribose) (PAR) subunits onto themselves and other acceptor proteins. PARPs are known to function in a large range of cellular processes including DNA repair, DNA replication, transcription and modulation of chromatin structure. Inhibition of PARP holds great potential for therapy, especially in cancer. Several PARP1/2/3 inhibitors (PARPi) have had success in treating ovarian, breast and prostate tumors harboring defects in the homologous recombination (HR) DNA repair pathway, especially BRCA1/2 mutated tumors. However, treatment is limited to specific sub-groups of patients and resistance can occur, limiting the use of PARPi. Poly(ADP-ribose) glycohydrolase (PARG) reverses the action of PARP enzymes, hydrolysing the ribose-ribose bonds present in poly(ADP-ribose). Like PARPs, PARG is involved in DNA replication and repair and PARG depleted/inhibited cells show increased sensitivity to DNA damaging agents. They also display an accumulation of perturbed replication intermediates which can lead to synthetic lethality in certain contexts. In addition, PARG is thought to play an important role in preventing the accumulation of cytoplasmic PAR and therefore parthanatos, a caspase-independent PAR-mediated type of cell death. In contrast to PARP, the therapeutic potential of PARG has been largely ignored. However, several recent papers have demonstrated the exciting possibilities that inhibitors of this enzyme may have for cancer treatment, both as single agents and in combination with cytotoxic drugs and radiotherapy. This article discusses what is known about the functions of PARP and PARG and the potential future implications of pharmacological inhibition in anti-cancer therapy.
Collapse
Affiliation(s)
- Daniel Harrision
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ruth Thompson
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Lee EK, Konstantinopoulos PA. PARP inhibition and immune modulation: scientific rationale and perspectives for the treatment of gynecologic cancers. Ther Adv Med Oncol 2020; 12:1758835920944116. [PMID: 32782491 PMCID: PMC7383615 DOI: 10.1177/1758835920944116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Poly[adenosine diphosphate (ADP) ribose]polymerase (PARP) has multifaceted roles in the maintenance of genomic integrity, deoxyribonucleic acid (DNA) repair and replication, and the maintenance of immune-system homeostasis. PARP inhibitors are an attractive oncologic therapy, causing direct cancer cell cytotoxicity by propagating DNA damage and indirectly, by various mechanisms of immunostimulation, including activation of the cGAS/STING pathway, paracrine stimulation of dendritic cells, increased T-cell infiltration, and upregulation of death-ligand receptors to increase susceptibility to natural-killer-cell killing. However, these immunostimulatory effects are counterbalanced by PARPi-mediated upregulation of programmed cell-death-ligand 1 (PD-L1), which leads to immunosuppression. Combining PARP inhibition with immune-checkpoint blockade seeks to exploit the immune stimulatory effects of PARP inhibition while negating the immunosuppressive effects of PD-L1 upregulation.
Collapse
Affiliation(s)
- Elizabeth K Lee
- Department of Medical Oncology, Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
Immunomodulatory Roles of PARP-1 and PARP-2: Impact on PARP-Centered Cancer Therapies. Cancers (Basel) 2020; 12:cancers12020392. [PMID: 32046278 PMCID: PMC7072203 DOI: 10.3390/cancers12020392] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 01/11/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 are enzymes which post-translationally modify proteins through poly(ADP-ribosyl)ation (PARylation)—the transfer of ADP-ribose chains onto amino acid residues—with a resultant modulation of protein function. Many targets of PARP-1/2-dependent PARylation are involved in the DNA damage response and hence, the loss of these proteins disrupts a wide range of biological processes, from DNA repair and epigenetics to telomere and centromere regulation. The central role of these PARPs in DNA metabolism in cancer cells has led to the development of PARP inhibitors as new cancer therapeutics, both as adjuvant treatment potentiating chemo-, radio-, and immuno-therapies and as monotherapy exploiting cancer-specific defects in DNA repair. However, a cancer is not just made up of cancer cells and the tumor microenvironment also includes multiple other cell types, particularly stromal and immune cells. Interactions between these cells—cancerous and non-cancerous—are known to either favor or limit tumorigenesis. In recent years, an important role of PARP-1 and PARP-2 has been demonstrated in different aspects of the immune response, modulating both the innate and adaptive immune system. It is now emerging that PARP-1 and PARP-2 may not only impact cancer cell biology, but also modulate the anti-tumor immune response. Understanding the immunomodulatory roles of PARP-1 and PARP-2 may provide invaluable clues to the rational development of more selective PARP-centered therapies which target both the cancer and its microenvironment.
Collapse
|
8
|
Houl JH, Ye Z, Brosey CA, Balapiti-Modarage LPF, Namjoshi S, Bacolla A, Laverty D, Walker BL, Pourfarjam Y, Warden LS, Babu Chinnam N, Moiani D, Stegeman RA, Chen MK, Hung MC, Nagel ZD, Ellenberger T, Kim IK, Jones DE, Ahmed Z, Tainer JA. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat Commun 2019; 10:5654. [PMID: 31827085 PMCID: PMC6906431 DOI: 10.1038/s41467-019-13508-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
Poly(ADP-ribose)ylation (PARylation) by PAR polymerase 1 (PARP1) and PARylation removal by poly(ADP-ribose) glycohydrolase (PARG) critically regulate DNA damage responses; yet, conflicting reports obscure PARG biology and its impact on cancer cell resistance to PARP1 inhibitors. Here, we found that PARG expression is upregulated in many cancers. We employed chemical library screening to identify and optimize methylxanthine derivatives as selective bioavailable PARG inhibitors. Multiple crystal structures reveal how substituent positions on the methylxanthine core dictate binding modes and inducible-complementarity with a PARG-specific tyrosine clasp and arginine switch, supporting inhibitor specificity and a competitive inhibition mechanism. Cell-based assays show selective PARG inhibition and PARP1 hyperPARylation. Moreover, our PARG inhibitor sensitizes cells to radiation-induced DNA damage, suppresses replication fork progression and impedes cancer cell survival. In PARP inhibitor-resistant A172 glioblastoma cells, our PARG inhibitor shows comparable killing to Nedaplatin, providing further proof-of-concept that selectively inhibiting PARG can impair cancer cell survival.
Collapse
Affiliation(s)
- Jerry H Houl
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Zu Ye
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Chris A Brosey
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Lakshitha P F Balapiti-Modarage
- Department of Chemistry, The University of Arkansas at Little Rock, 2801S. University Ave, Little Rock, AR, 72204, USA
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Sarita Namjoshi
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Daniel Laverty
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Brian L Walker
- Department of Chemistry, The University of Arkansas at Little Rock, 2801S. University Ave, Little Rock, AR, 72204, USA
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Leslie S Warden
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Naga Babu Chinnam
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Davide Moiani
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Roderick A Stegeman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO, 63110, USA
| | - Mei-Kuang Chen
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Mien-Chie Hung
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, and Office of the President, China Medical University, Taichung, 404, Taiwan
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO, 63110, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO, 63110, USA.
| | - Darin E Jones
- Department of Chemistry, The University of Arkansas at Little Rock, 2801S. University Ave, Little Rock, AR, 72204, USA
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| |
Collapse
|