1
|
Wiese F, Schlüter N, Zirkel J, Herrle JO, Friedrich O. A 104-Ma record of deep-sea Atelostomata (Holasterioda, Spatangoida, irregular echinoids) - a story of persistence, food availability and a big bang. PLoS One 2023; 18:e0288046. [PMID: 37556403 PMCID: PMC10411753 DOI: 10.1371/journal.pone.0288046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/19/2023] [Indexed: 08/11/2023] Open
Abstract
Deep-sea macrobenthic body fossils are scarce due to the lack of deep-sea sedimentary archives in onshore settings. Therefore, hypothesized migrations of shallow shelf taxa into the deep-sea after phases of mass extinction (onshore-offshore pattern in the literature) due to anoxic events is not constrained by the fossil record. To resolve this conundrum, we investigated 1,475 deep-sea sediment samples from the Atlantic, Pacific and Southern oceans (water depth ranging from 200 to 4,700 m), providing 41,460 spine fragments of the crown group Atelostomata (Holasteroida, Spatangoida). We show that the scarce fossil record of deep-sea echinoids is in fact a methodological artefact because it is limited by the almost exclusive use of onshore fossil archives. Our data advocate for a continuous record of deep-sea Atelostomata back to at least 104 Ma (late early Cretaceous), and literature records suggest even an older age (115 Ma). A gradual increase of different spine tip morphologies from the Albian to the Maastrichtian is observed. A subsequent, abrupt reduction in spine size and the loss of morphological inventory in the lowermost Paleogene is interpreted to be an expression of the "Lilliput Effect", related to nourishment depletion on the sea floor in the course of the Cretaceous-Paleogene (K-Pg) Boundary Event. The recovery from this event lasted at least 5 Ma, and post-K-Pg Boundary Event assemblages progress-without any further morphological breaks-towards the assemblages observed in modern deep-sea environments. Because atelostomate spine morphology is often species-specific, the variations in spine tip morphology trough time would indicate species changes taking place in the deep-sea. This observation is, therefore, interpreted to result from in-situ evolution in the deep-sea and not from onshore-offshore migrations. The calculation of the "atelostomate spine accumulation rate" (ASAR) reveals low values in pre-Campanian times, possibly related to high remineralization rates of organic matter in the water column in the course of the mid-Cretaceous Thermal Maximum and its aftermath. A Maastrichtian cooling pulse marks the irreversible onset of fluctuating but generally higher atelostomate biomass that continues throughout the Cenozoic.
Collapse
Affiliation(s)
- Frank Wiese
- Department of Geobiology, Geoscience Centre, Georg-August-Universität Göttingen, Göttingen, Germany
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Nils Schlüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jessica Zirkel
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Jens O. Herrle
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Oliver Friedrich
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Rabone M, Wiethase JH, Simon-Lledó E, Emery AM, Jones DOB, Dahlgren TG, Bribiesca-Contreras G, Wiklund H, Horton T, Glover AG. How many metazoan species live in the world's largest mineral exploration region? Curr Biol 2023; 33:2383-2396.e5. [PMID: 37236182 DOI: 10.1016/j.cub.2023.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The global surge in demand for metals such as cobalt and nickel has created unprecedented interest in deep-sea habitats with mineral resources. The largest area of activity is a 6 million km2 region known as the Clarion-Clipperton Zone (CCZ) in the central and eastern Pacific, regulated by the International Seabed Authority (ISA). Baseline biodiversity knowledge of the region is crucial to effective management of environmental impact from potential deep-sea mining activities, but until recently this has been almost completely lacking. The rapid growth in taxonomic outputs and data availability for the region over the last decade has allowed us to conduct the first comprehensive synthesis of CCZ benthic metazoan biodiversity for all faunal size classes. Here we present the CCZ Checklist, a biodiversity inventory of benthic metazoa vital to future assessments of environmental impacts. An estimated 92% of species identified from the CCZ are new to science (436 named species from a total of 5,578 recorded). This is likely to be an overestimate owing to synonyms in the data but is supported by analysis of recent taxonomic studies suggesting that 88% of species sampled in the region are undescribed. Species richness estimators place total CCZ metazoan benthic diversity at 6,233 (+/-82 SE) species for Chao1, and 7,620 (+/-132 SE) species for Chao2, most likely representing lower bounds of diversity in the region. Although uncertainty in estimates is high, regional syntheses become increasingly possible as comparable datasets accumulate. These will be vital to understanding ecological processes and risks of biodiversity loss.
Collapse
Affiliation(s)
- Muriel Rabone
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK.
| | - Joris H Wiethase
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Erik Simon-Lledó
- National Oceanography Centre, European Way, SO14 3ZH Southampton, UK
| | - Aidan M Emery
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK
| | - Daniel O B Jones
- National Oceanography Centre, European Way, SO14 3ZH Southampton, UK
| | - Thomas G Dahlgren
- Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; NORCE, Norwegian Research Centre, 112, 5008 Bergen, Norway
| | - Guadalupe Bribiesca-Contreras
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK
| | - Helena Wiklund
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK; Department of Marine Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Tammy Horton
- National Oceanography Centre, European Way, SO14 3ZH Southampton, UK
| | - Adrian G Glover
- Deep-Sea Systematics and Ecology Group, Life Sciences Department, Natural History Museum, Cromwell Rd, SW7 5BD London, UK
| |
Collapse
|
3
|
Bribiesca-Contreras G, Dahlgren TG, Amon DJ, Cairns S, Drennan R, Durden JM, Eléaume MP, Hosie AM, Kremenetskaia A, McQuaid K, O’Hara TD, Rabone M, Simon-Lledó E, Smith CR, Watling L, Wiklund H, Glover AG. Benthic megafauna of the western Clarion-Clipperton Zone, Pacific Ocean. Zookeys 2022; 1113:1-110. [PMID: 36762231 PMCID: PMC9848802 DOI: 10.3897/zookeys.1113.82172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
There is a growing interest in the exploitation of deep-sea mineral deposits, particularly on the abyssal seafloor of the central Pacific Clarion-Clipperton Zone (CCZ), which is rich in polymetallic nodules. In order to effectively manage potential exploitation activities, a thorough understanding of the biodiversity, community structure, species ranges, connectivity, and ecosystem functions across a range of scales is needed. The benthic megafauna plays an important role in the functioning of deep-sea ecosystems and represents an important component of the biodiversity. While megafaunal surveys using video and still images have provided insight into CCZ biodiversity, the collection of faunal samples is needed to confirm species identifications to accurately estimate species richness and species ranges, but faunal collections are very rarely carried out. Using a Remotely Operated Vehicle, 55 specimens of benthic megafauna were collected from seamounts and abyssal plains in three Areas of Particular Environmental Interest (APEI 1, APEI 4, and APEI 7) at 3100-5100 m depth in the western CCZ. Using both morphological and molecular evidence, 48 different morphotypes belonging to five phyla were found, only nine referrable to known species, and 39 species potentially new to science. This work highlights the need for detailed taxonomic studies incorporating genetic data, not only within the CCZ, but in other bathyal, abyssal, and hadal regions, as representative genetic reference libraries that could facilitate the generation of species inventories.
Collapse
Affiliation(s)
- Guadalupe Bribiesca-Contreras
- Life Sciences Department, Natural History Museum, London, UK Life Sciences Department, Natural History MuseumLondonUnited Kingdom
| | - Thomas G. Dahlgren
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden,Norwegian Research Centre, NORCE, Bergen, NorwayNorwegian Research Centre, NORCEBergenNorway
| | - Diva J. Amon
- SpeSeas, D’Abadie, Trinidad and TobagoSpeSeasD’AbadieTrinidad and Tobago
| | - Stephen Cairns
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USANational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Regan Drennan
- National Oceanography Centre, Southampton, UKLife Sciences Department, Natural History MuseumLondonUnited Kingdom
| | - Jennifer M. Durden
- UMR ISYEB, Départment Origines et Évolution, Muséum national d’Histoire Naturelle, Paris, FranceNational Oceanography CentreSouthamptonUnited Kingdom
| | - Marc P. Eléaume
- Collections & Research, Western Australia Museum, Perth, AustraliaDépartment Origines et Évolution, Muséum national d’Histoire NaturelleParisFrance
| | - Andrew M. Hosie
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, RussiaCollections & Research, Western Australia MuseumPerthAustralia
| | - Antonina Kremenetskaia
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UKShirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia
| | - Kirsty McQuaid
- Museums Victoria, Melbourne, AustraliaUniversity of PlymouthPlymouthUnited Kingdom
| | - Timothy D. O’Hara
- Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, USAMuseums VictoriaMelbourneAustralia
| | - Muriel Rabone
- National Oceanography Centre, Southampton, UKLife Sciences Department, Natural History MuseumLondonUnited Kingdom
| | - Erik Simon-Lledó
- UMR ISYEB, Départment Origines et Évolution, Muséum national d’Histoire Naturelle, Paris, FranceNational Oceanography CentreSouthamptonUnited Kingdom
| | - Craig R. Smith
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, USAUniversity of Hawai’i at MānoaHonoluluUnited States of America
| | - Les Watling
- School of Life Sciences, University of Hawai’i at Mānoa, Honolulu, USAUniversity of Hawai’i at MānoaHonoluluUnited States of America
| | - Helena Wiklund
- Department of Marine Sciences, University of Gothenburg, Gothenburg, SwedenUniversity of GothenburgGothenburgSweden
| | - Adrian G. Glover
- National Oceanography Centre, Southampton, UKLife Sciences Department, Natural History MuseumLondonUnited Kingdom
| |
Collapse
|
4
|
A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses. PLoS One 2019; 14:e0218904. [PMID: 31891586 PMCID: PMC6938304 DOI: 10.1371/journal.pone.0218904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem.
Collapse
|
5
|
Kersten O, Vetter EW, Jungbluth MJ, Smith CR, Goetze E. Larval assemblages over the abyssal plain in the Pacific are highly diverse and spatially patchy. PeerJ 2019; 7:e7691. [PMID: 31579593 PMCID: PMC6766376 DOI: 10.7717/peerj.7691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022] Open
Abstract
Abyssal plains are among the most biodiverse yet least explored marine ecosystems on our planet, and they are increasingly threatened by human impacts, including future deep seafloor mining. Recovery of abyssal populations from the impacts of polymetallic nodule mining will be partially determined by the availability and dispersal of pelagic larvae leading to benthic recolonization of disturbed areas of the seafloor. Here we use a tree-of-life (TOL) metabarcoding approach to investigate the species richness, diversity, and spatial variability of the larval assemblage at mesoscales across the abyssal seafloor in two mining-claim areas in the eastern Clarion Clipperton Fracture Zone (CCZ; abyssal Pacific). Our approach revealed a previously unknown taxonomic richness within the meroplankton assemblage, detecting larvae from 12 phyla, 23 Classes, 46 Orders, and 65 Families, including a number of taxa not previously reported at abyssal depths or within the Pacific Ocean. A novel suite of parasitic copepods and worms were sampled, from families that are known to associate with other benthic invertebrates or demersal fishes as hosts. Larval assemblages were patchily distributed at the mesoscale, with little similarity in OTUs detected among deployments even within the same 30 × 30 km study area. Our results provide baseline observations on larval diversity prior to polymetallic nodule mining in this region, and emphasize our overwhelming lack of knowledge regarding larvae of the benthic boundary layer in abyssal plain ecosystems.
Collapse
Affiliation(s)
- Oliver Kersten
- Hawaii Pacific University, Kaneohe, HI, United States of America
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eric W. Vetter
- Hawaii Pacific University, Kaneohe, HI, United States of America
| | - Michelle J. Jungbluth
- Hawaii Pacific University, Kaneohe, HI, United States of America
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Erica Goetze
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, United States of America
| |
Collapse
|
6
|
Amon DJ, Ziegler AF, Drazen JC, Grischenko AV, Leitner AB, Lindsay DJ, Voight JR, Wicksten MK, Young CM, Smith CR. Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca. Biodivers Data J 2017:e14598. [PMID: 28874906 PMCID: PMC5565845 DOI: 10.3897/bdj.5.e14598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/06/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite having been the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. To predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to ABYSSLINE research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. NEW INFORMATION Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle (as well as several other pieces of equipment), the megafauna within the UK Seabed Resources Ltd exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal annelid, arthropod, bryozoan, chordate, ctenophore and molluscan megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 55 distinct morphospecies (8 Annelida, 12 Arthropoda, 4 Bryozoa, 22 Chordata, 5 Ctenophora, and 4 Mollusca) identified mostly by morphology but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.
Collapse
Affiliation(s)
- Diva J Amon
- University of Hawaii, Honolulu, United States of America
| | | | | | | | | | - Dhugal J Lindsay
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | | | - Mary K Wicksten
- Texas A&M University, College Station, United States of America
| | - Craig M Young
- Oregon Institute of Marine Biology, University of Oregon, Charleston, United States of America
| | - Craig R Smith
- University of Hawaii, Honolulu, United States of America
| |
Collapse
|