1
|
Gokhman VE, Kuznetsova VG. Structure and Evolution of Ribosomal Genes of Insect Chromosomes. INSECTS 2024; 15:593. [PMID: 39194798 DOI: 10.3390/insects15080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Currently, clusters of 45S and 5S ribosomal DNA (rDNA) have been studied in about 1000 and 100 species of the class Insecta, respectively. Although the number of insect species with known 45S rDNA clusters (also referred to as nucleolus-organizing regions, or NORs) constitutes less than 0.1 percent of the described members of this enormous group, certain conclusions can already be drawn. Since haploid karyotypes with single 45S and 5S rDNA clusters predominate in both basal and derived insect groups, this character state is apparently ancestral for the class Insecta in general. Nevertheless, the number, chromosomal location, and other characteristics of both 45S and 5S rDNA sites substantially vary across different species, and sometimes even within the same species. There are several main factors and molecular mechanisms that either maintain these parameters or alter them on the short-term and/or long-term scale. Chromosome structure (i.e., monocentric vs. holokinetic chromosomes), excessive numbers of rRNA gene copies per cluster, interactions with transposable elements, pseudogenization, and meiotic recombination are perhaps the most important among them.
Collapse
Affiliation(s)
| | - Valentina G Kuznetsova
- Department of Karyosystematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Dalíková M, Provazníková I, Provazník J, Grof-Tisza P, Pepi A, Nguyen P. The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera. Genome Biol Evol 2023; 15:evad090. [PMID: 37226278 PMCID: PMC10257491 DOI: 10.1093/gbe/evad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Genes for major ribosomal RNAs (rDNA) are present in multiple copies mainly organized in tandem arrays. The number and position of rDNA loci can change dynamically and their repatterning is presumably driven by other repetitive sequences. We explored a peculiar rDNA organization in several representatives of Lepidoptera with either extremely large or numerous rDNA clusters. We combined molecular cytogenetics with analyses of second- and third-generation sequencing data to show that rDNA spreads as a transcription unit and reveal association between rDNA and various repeats. Furthermore, we performed comparative long read analyses among the species with derived rDNA distribution and moths with a single rDNA locus, which is considered ancestral. Our results suggest that satellite arrays, rather than mobile elements, facilitate homology-mediated spread of rDNA via either integration of extrachromosomal rDNA circles or ectopic recombination. The latter arguably better explains preferential spread of rDNA into terminal regions of lepidopteran chromosomes as efficiency of ectopic recombination depends on the proximity of homologous sequences to telomeres.
Collapse
Affiliation(s)
- Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Irena Provazníková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan Provazník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Patrick Grof-Tisza
- Institute of Biology, Laboratory of Evolutionary Entomology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adam Pepi
- Department of Biology, Tufts University
| | - Petr Nguyen
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Nhim S, Gimenez S, Nait-Saidi R, Severac D, Nam K, d'Alençon E, Nègre N. H3K9me2 genome-wide distribution in the holocentric insect Spodoptera frugiperda (Lepidoptera: Noctuidae). Genomics 2021; 114:384-397. [PMID: 34971718 DOI: 10.1016/j.ygeno.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Eukaryotic genomes are packaged by Histone proteins in a structure called chromatin. There are different chromatin types. Euchromatin is typically associated with decondensed, transcriptionally active regions and heterochromatin to more condensed regions of the chromosomes. Methylation of Lysine 9 of Histone H3 (H3K9me) is a conserved biochemical marker of heterochromatin. In many organisms, heterochromatin is usually localized at telomeric as well as pericentromeric regions but can also be found at interstitial chromosomal loci. This distribution may vary in different species depending on their general chromosomal organization. Holocentric species such as Spodoptera frugiperda (Lepidoptera: Noctuidae) possess dispersed centromeres instead of a monocentric one and thus no observable pericentromeric compartment. To identify the localization of heterochromatin in such species we performed ChIP-Seq experiments and analyzed the distribution of the heterochromatin marker H3K9me2 in the Sf9 cell line and whole 4th instar larvae (L4) in relation to RNA-Seq data. RESULTS In both samples we measured an enrichment of H3K9me2 at the (sub) telomeres, rDNA loci, and satellite DNA sequences, which could represent dispersed centromeric regions. We also observed that density of H3K9me2 is positively correlated with transposable elements and protein-coding genes. But contrary to most model organisms, H3K9me2 density is not correlated with transcriptional repression. CONCLUSION This is the first genome-wide ChIP-Seq analysis conducted in S. frugiperda for H3K9me2. Compared to model organisms, this mark is found in expected chromosomal compartments such as rDNA and telomeres. However, it is also localized at numerous dispersed regions, instead of the well described large pericentromeric domains, indicating that H3K9me2 might not represent a classical heterochromatin marker in Lepidoptera. (242 words).
Collapse
Affiliation(s)
- Sandra Nhim
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | | | - Dany Severac
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
4
|
Barboza VP, Costa MA. Cytogenetic Analysis in Trigona spinipes Fabricius (Hymenoptera, Meliponina) Reveals Intraspecific Variation. NEOTROPICAL ENTOMOLOGY 2021; 50:846-849. [PMID: 33646535 DOI: 10.1007/s13744-021-00853-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Trigona spinipes Fabricius is a stingless bee with wide geographical distribution. Although being sometimes considered an agricultural pest, in fact, it has great pollinating potential, and therefore economic interest. Conventional and molecular cytogenetic techniques have been little used to verify genetic diversity in this species, despite its potential to reveal information about the reorganization of the genome having been demonstrated in other species. Conventional cytogenetic techniques, fluorochrome staining, and fluorescent in situ hybridization with 18S rDNA, telomeric, and microsatellite probes (GA)15 were used in this study to characterize and compare T. spinipes from different locations. The karyotypes showed a conserved chromosome number 2n = 34; however, geographic variations were verified in the different features and cytogenetic techniques analyzed, such as karyotype formulas, fluorocrome staining, and FISH. Although the 18S rDNA probe revealed the same number of markings in five rDNA clusters, the chromosomal pairs containing these markers varied between studied locations. The probe for microsatellite (GA)15 also showed polymorphisms within this species. The results reveal that T. spinipes has many intraspecific differences, revealing a higher chromosomal variation than expected.
Collapse
Affiliation(s)
- Vilmara Pereira Barboza
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Marco Antonio Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.
| |
Collapse
|
5
|
Provazníková I, Hejníčková M, Visser S, Dalíková M, Carabajal Paladino LZ, Zrzavá M, Voleníková A, Marec F, Nguyen P. Large-scale comparative analysis of cytogenetic markers across Lepidoptera. Sci Rep 2021; 11:12214. [PMID: 34108567 PMCID: PMC8190105 DOI: 10.1038/s41598-021-91665-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) allows identification of particular chromosomes and their rearrangements. Using FISH with signal enhancement via antibody amplification and enzymatically catalysed reporter deposition, we evaluated applicability of universal cytogenetic markers, namely 18S and 5S rDNA genes, U1 and U2 snRNA genes, and histone H3 genes, in the study of the karyotype evolution in moths and butterflies. Major rDNA underwent rather erratic evolution, which does not always reflect chromosomal changes. In contrast, the hybridization pattern of histone H3 genes was well conserved, reflecting the stable organisation of lepidopteran genomes. Unlike 5S rDNA and U1 and U2 snRNA genes which we failed to detect, except for 5S rDNA in a few representatives of early diverging lepidopteran lineages. To explain the negative FISH results, we used quantitative PCR and Southern hybridization to estimate the copy number and organization of the studied genes in selected species. The results suggested that their detection was hampered by long spacers between the genes and/or their scattered distribution. Our results question homology of 5S rDNA and U1 and U2 snRNA loci in comparative studies. We recommend the use of histone H3 in studies of karyotype evolution.
Collapse
Affiliation(s)
- Irena Provazníková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martina Hejníčková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Sander Visser
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | | | - Magda Zrzavá
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Anna Voleníková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - František Marec
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Petr Nguyen
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic.
| |
Collapse
|
6
|
Boštjančić LL, Bonassin L, Anušić L, Lovrenčić L, Besendorfer V, Maguire I, Grandjean F, Austin CM, Greve C, Hamadou AB, Mlinarec J. The Pontastacus leptodactylus (Astacidae) Repeatome Provides Insight Into Genome Evolution and Reveals Remarkable Diversity of Satellite DNA. Front Genet 2021; 11:611745. [PMID: 33552130 PMCID: PMC7859515 DOI: 10.3389/fgene.2020.611745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Pontastacus leptodactylus is a native European crayfish species found in both freshwater and brackish environments. It has commercial importance for fisheries and aquaculture industries. Up till now, most studies concerning P. leptodactylus have focused onto gaining knowledge about its phylogeny and population genetics. However, little is known about the chromosomal evolution and genome organization of this species. Therefore, we performed clustering analysis of a low coverage genomic dataset to identify and characterize repetitive DNA in the P. leptodactylus genome. In addition, the karyogram of P. leptodactylus (2n = 180) is presented here for the first time consisting of 75 metacentric, 14 submetacentric, and a submetacentric/metacentric heteromorphic chromosome pair. We determined the genome size to be at ~18.7 gigabase pairs. Repetitive DNA represents about 54.85% of the genome. Satellite DNA repeats are the most abundant type of repetitive DNA, making up to ~28% of the total amount of repetitive elements, followed by the Ty3/Gypsy retroelements (~15%). Our study established a surprisingly high diversity of satellite repeats in P. leptodactylus. The genome of P. leptodactylus is by far the most satellite-rich genome discovered to date with 258 satellite families described. Of the five mapped satellite DNA families on chromosomes, PlSAT3-411 co-localizes with the AT-rich DAPI positive probable (peri)centromeric heterochromatin on all chromosomes, while PlSAT14-79 co-localizes with the AT-rich DAPI positive (peri)centromeric heterochromatin on one chromosome and is also located subterminally and intercalary on some chromosomes. PlSAT1-21 is located intercalary in the vicinity of the (peri)centromeric heterochromatin on some chromosomes, while PlSAT6-70 and PlSAT7-134 are located intercalary on some P. leptodactylus chromosomes. The FISH results reveal amplification of interstitial telomeric repeats (ITRs) in P. leptodactylus. The prevalence of repetitive elements, especially the satellite DNA repeats, may have provided a driving force for the evolution of the P. leptodactylus genome.
Collapse
Affiliation(s)
| | - Lena Bonassin
- Division of Molecular Biology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Lucija Anušić
- Division of Molecular Biology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Leona Lovrenčić
- Division of Zoology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Višnja Besendorfer
- Division of Molecular Biology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Ivana Maguire
- Division of Zoology, Department of Biology, University of Zagreb, Zagreb, Croatia
| | - Frederic Grandjean
- Laboratoire Ecologie Biologie des Interactions-UMR CNRS 7267, University of Poitiers, Poitiers, France
| | - Christopher M. Austin
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, VIC, Australia
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Jelena Mlinarec
- Division of Molecular Biology, Department of Biology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Lukhtanov VA, Dantchenko AV. Chromosomal and DNA barcode analysis of the Polyommatus ( Agrodiaetus) damone (Eversmann, 1841) species complex (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2021; 15:1-22. [PMID: 33505635 PMCID: PMC7801365 DOI: 10.3897/compcytogen.v15.i1.60347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The Polyommatus (Agrodiaetus) damone (Eversmann, 1841) species complex comprises from 5 to 8 species distributed in southeastern Europe and southern Siberia. Here we used chromosomal and DNA-barcode markers in order to test the taxonomic hypotheses previously suggested for this complex. We revealed that all taxa within this group demonstrate chromosomal stasis and share the same or very similar haploid chromosome number (n = 66 or n = 67). This finding is unexpected since the karyotypes are known to be very diverse and species-specific within the other taxa of the subgenus Agrodiaetus Hübner, 1822. Analysis of the mitochondrial gene COI revealed six diverged clusters of individuals within the complex. Each cluster has a specific geographic distribution and is characterized by distinct morphological features in the wing pattern. The clusters mostly (but not always) correlate with traditionally recognized species. As a result of our study, we describe a new subspecies P. (A.) iphigenides zarmitanussubsp. nov. from Uzbekistan and Tajikistan and show that the taxon originally described as Lycaena kindermanni var. melania Staudinger, 1886 represents a subspecies P. (A.) iphigenides melanius (Staudinger, 1886). Polyommatus (A.) samusi Korb, 2017 (syn. nov.) and P. (A.) melanius komarovi Korb, 2017 (syn. nov.) are considered here as junior subjective synonyms of P. (A.) iphigenides iphigenides (Staudinger, 1886).
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
| | - Alexander V. Dantchenko
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1/11, Moscow119991, RussiaLomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
8
|
Magalhães BRDS, Sosa-Goméz DR, Dionísio JF, Dias FC, Baldissera JNDC, Rincão MP, Da Rosa R. Cytogenetic markers applied to cytotaxonomy in two soybean pests: Anticarsia gemmatalis (Hübner, 1818) and Chrysodeixis includens (Walker, 1858). PLoS One 2020; 15:e0230244. [PMID: 32160240 PMCID: PMC7065768 DOI: 10.1371/journal.pone.0230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/26/2020] [Indexed: 11/27/2022] Open
Abstract
Anticarsia gemmatalis (Hübner, 1818) and Chrysodeixis includens (Walker, 1858) are species of Lepidoptera that cause great damages in the soybean plantations of Brazil. Despite the importance they have in this regard, there are no studies on the chromosomal organization of these species and recently, A. gemmatalis, which belonged to the Noctuidae family, was allocated to the Erebidae family. Therefore, the objective of this paper was to analyze, through conventional and molecular cytogenetic markers, both species of Lepidoptera. A 2n = 62 was observed, with ZZ/ZW sex chromosome system and holokinetic chromosomes for both species. There was homogeneity in the number of 18S rDNA sites for both species. However, variations in heterochromatin distribution were observed between both species. The cytogenetic analyses enabled separation of the species, corroborating the transference of A. gemmatalis, from the family Noctuidae to the family Erebidae, suggesting new cytotaxonomic characteristics.
Collapse
Affiliation(s)
| | | | - Jaqueline Fernanda Dionísio
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Brasil
| | - Felipe Cordeiro Dias
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Brasil
| | | | - Matheus Pires Rincão
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Brasil
| | - Renata Da Rosa
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Brasil
| |
Collapse
|
9
|
Kuznetsova V, Grozeva S, Gokhman V. Telomere structure in insects: A review. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Valentina Kuznetsova
- Department of Karyosystematics, Zoological Institute Russian Academy of Sciences St. Petersburg Russia
| | - Snejana Grozeva
- Cytotaxonomy and Evolution Research Group, Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
| | | |
Collapse
|
10
|
Lukhtanov VA, Dantchenko AV. Karyotype of Polyommatus (Agrodiaetus) eriwanensis Forster, 1960 and taxonomic position of P. (A.) interjectus de Lesse, 1960 (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2019; 13:359-366. [PMID: 31762946 PMCID: PMC6863936 DOI: 10.3897/compcytogen.v13i4.46897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
The karyotype of Polyommatus (Agrodiaetus) eriwanensis Forster, 1960 from the type locality ("Eriwan" [Yerevan, Armenia]) and other localities in Armenia was investigated. The number of chromosomal elements (bivalents+ multivalents) observed in male meiosis I was found to vary from 29 to 34. In individuals with n = 34, all observed elements were represented by bivalents. In other specimens, heterozygosity for different number of chromosomal fusions resulted in multivalent formation at MI stage and consequently in a lower number of recognizable chromosomal elements. We show that all karyotype peculiarities of P. (A.) interjectus de Lesse, 1960 (n = 29-32) from Turkey are similar to those in A. eriwanensis. The butterflies of these taxa have allopatric distribution and can be considered as conspecific.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Department of Entomology, St. Petersburg State University, Universitetskaya nab 7/9, St. Petersburg 199034, Russia
| | - Alexander V. Dantchenko
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1/11, Moscow119991, Russia
| |
Collapse
|
11
|
Micolino R, Cristiano MP, Cardoso DC. Population-Based Cytogenetic Banding Analysis and Phylogenetic Relationships of the Neotropical Fungus-Farming Ant Trachymyrmex holmgreni Wheeler, 1925. Cytogenet Genome Res 2019; 159:151-161. [DOI: 10.1159/000503913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2019] [Indexed: 01/05/2023] Open
Abstract
Trachymyrmex is one of the most species-rich genera within fungus-farming ants and presents intraspecific cytogenetic polymorphisms as well as possible cryptic species. This ant genus is currently paraphyletic. Therefore, to unravel systematic and taxonomic misunderstandings, it is necessary to incorporate new information. We aimed to cytogenetically and genetically examine Trachymyrmex holmgreni populations from southern and northern Brazil to identify intraspecific chromosomal variations that support incipient speciation and reveal the species' position in a molecular phylogeny. Our cytogenetic approach did not show population variation in the mapping of both 18S rDNA and the TTAGG(6) motif, presenting instead a pattern characteristic of correlated species. However, the clustered pattern of the microsatellite GA(15) showed significant differences among populations: a well-defined block in each homologue, distinctly irregular signs between homologues, and blocks in 2 pairs of homologues. Our phylogenetic reconstruction yielded unexpected results, grouping representatives of 3 former morphological groups into 1 clade, namely T. urichii, T. papulatus, and T. holmgreni. Previously, it was suggested that northern and southern populations of T. holmgreni may be undergoing incipient speciation, but we can only indicate that the southernmost population differs prominently from the others in its distribution pattern of the microsatellite GA(15). Our study also supports the uniformity of karyotypes and repetitive DNA from both telomeric sequences and ribosomal DNA in Trachymyrmex studied here. In addition, we clarify some phylogenetic uncertainties within the genus and suggest further relevant systematic changes. Finally, additional studies utilizing other probes and additional populations may allow the detection of hidden genetic variation.
Collapse
|
12
|
Lukhtanov VA, Efetov KA, Dantchenko AV. Karyotype reinvestigation does not confirm the presence of two cryptic species and interspecific hybridization in the Polyommatus ( Agrodiaetus) damocles complex in the Crimea (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2019; 13:311-319. [PMID: 31662831 PMCID: PMC6813172 DOI: 10.3897/compcytogen.v13i3.46777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The karyotype of the blue butterflies from the Angarskiy Pass (Crimea), previously attributed to Polyommatus (Agrodiaetus) poseidon (Herrich-Schäffer, 1851), was re-examined. In all 19 studied individuals, we found the haploid chromosome number n = 26, including 7 pairs of relatively large and 19 pairs of relatively small chromosomes. According to the chromosome number and karyotype structure, the studied population does not differ from P. (A.) damocles krymaeus (Sheljuzhko, 1928) from the eastern part of the Crimean Mountains. This result does not confirm the previously formulated hypotheses, according to which (1) two morphologically similar but karyologically different species, P. (A.) poseidon and P. (A.) damocles krymaeus, occur sympatrically in the Crimea and (2) there is hybridization between these taxa on the Angarskiy Pass. Thus, only three species of the subgenus Agrodiaetus Hübner, 1822 have been reliably established for the Crimea: P. (A.) damone pljushtchi Lukhtanov & Budashkin, 1993, P. (A.) damocles krymaeus (Sheljuzhko, 1928) and P. (A.) ripartii budashkini Kolev & de Prins, 1995.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
- Department of Entomology, St. Petersburg State University, Universitetskaya nab 7/9, St. Petersburg 199034, RussiaSt. Petersburg State UniversitySt. PetersburgRussia
| | - Konstantin A. Efetov
- Department of Biological Chemistry and Laboratory of Biotechnology, V. I. Vernadsky Crimean Federal University, Lenin blvd. 5/7, Simferopol 295051, RussiaV. I. Vernadsky Crimean Federal UniversitySimferopolRussia
| | - Alexander V. Dantchenko
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute, Russian Academy of SciencesSt. PetersburgRussia
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1/11, Moscow119991, RussiaZoological Institute, Russian Academy of SciencesSaint PetersburgRussia
| |
Collapse
|
13
|
Menezes RST, Gazoni T, Costa MA. Cytogenetics of warrior wasps (Vespidae:Synoeca) reveals intense evolutionary dynamics of ribosomal DNA clusters and an unprecedented number of microchromosomes in Hymenoptera. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodolpho S T Menezes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras – Universidade de São Paulo (FFCLRP/USP), Ribeirão Preto, SP, Brazil
| | - Thiago Gazoni
- Departamento de Biologia – Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, SP, Brazil
| | - Marco A Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
14
|
Lukhtanov VA. Two types of highly ordered micro- and macrochromosome arrangement in metaphase plates of butterflies (Lepidoptera). COMPARATIVE CYTOGENETICS 2019; 13:19-25. [PMID: 30687457 PMCID: PMC6341045 DOI: 10.3897/compcytogen.v13i1.32614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 05/13/2023]
Abstract
In karyotype of many organisms, chromosomes form two distinct size groups: macrochromosomes and microchromosomes. During cell divisions, the position of the macro- and microchromosomes is often ordered within metaphase plate. In many reptiles, amphibians, birds, insects of the orthopteran family Tettigoniidae and in some plants, a so called "reptilian" type organization is found, with microchromosomes situated in the center of metaphase plate and with macrochromosomes situated at the periphery. An opposite, "lepidopteran" type is known in butterflies and moths (i.e. in the order Lepidoptera) and is characterized by macrochromosomes situated in the center and by microchromosomes situated at the periphery. The anomalous arrangement found in Lepidoptera was previously explained by holocentric organization of their chromosomes. Here I analyse the structure of meiotic metaphase I plates in ithomiine butterfly, Forbestraolivencia (H. Bates, 1862) (Nymphalidae, Danainae, Ithomiini) which has a clear "reptilian" organization, contrary to previous observations in Lepidoptera. In this species large bivalents (i.e. macrochromosomes) form a regular peripheral circle, whereas the minute bivalents (i.e. microchromosomes) occupy the center of this circle. The reasons and possible mechanisms resulting in two drastically different spatial chromosome organization in butterflies are discussed.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, RussiaZoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
- Department of Entomology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, RussiaSt. Petersburg State UniversitySt. PetersburgRussia
| |
Collapse
|
15
|
Lukhtanov VA, Dantchenko AV. A new butterfly species from south Russia revealed through chromosomal and molecular analysis of the Polyommatus (Agrodiaetus) damonides complex (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2017; 11:769-795. [PMID: 29302297 PMCID: PMC5740405 DOI: 10.3897/compcytogen.v11i4.20072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/22/2017] [Indexed: 05/26/2023]
Abstract
Finding a new species is a rare event in easy-to-see and well-studied organisms like butterflies, especially if they inhabit well-explored areas such as the Western Palaearctic. However, even in this region, gaps in taxonomic knowledge still exist and here we report such a discovery. Using a combined analysis of chromosomal and molecular markers we demonstrate that Polyommatus blue populations from Daghestan (South Russia), previously identified as P. aserbeidschanus, represent in fact a new species which is described here as P. australorossicussp. n. We also show that the enigmatic Polyommatus damonides described as a form of Polyommatus damone and later considered as an entity similar to P. poseidon or P. ninae is conspecific with a taxon previously known as P. elbursicus. As a result of our study, we propose several taxonomic changes within the P. damonides species complex and suggest the following new combinations: P. damonides elbursicus Forster, 1956, comb. n. and P. damonides gilanensis Eckweiler, 2002, comb. n.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Department of Entomology, St. Petersburg State University, Universitetskaya nab 7/9, St. Petersburg 199034, Russia
| | - Alexander V. Dantchenko
- Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1/13, Moscow119991, Russia
| |
Collapse
|
16
|
Vershinina AO, Lukhtanov VA. Evolutionary mechanisms of runaway chromosome number change in Agrodiaetus butterflies. Sci Rep 2017; 7:8199. [PMID: 28811556 PMCID: PMC5557896 DOI: 10.1038/s41598-017-08525-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022] Open
Abstract
Despite predictions of the classic, hybrid-sterility model of chromosomal speciation, some organisms demonstrate high rate of karyotype evolution. This rate is especially impressive in Agrodiaetus butterflies that rapidly evolved the greatest chromosome number diversity known in animal kingdom within a single subgenus. Here we analyzed karyotype evolution in Agrodiaetus using phylogenetic comparative methods. We found that chromosome numbers possess a strong phylogenetic signal. This disproves the chromosome megaevolution model that proposes multiple chromosome rearrangements to accumulate independently in each of closely related species. We found that Brownian motion gives a more adequate description of observed trait changes than Ornstein-Uhlenbeck model. This indicates that chromosome numbers evolve via random walk along branches of the phylogeny. We discovered a correlation between karyotype changes and phylogeny branch lengths. This gradual pattern is inconsistent with the hybrid-sterility model which, due to association of major chromosome changes with cladogenetic events, predicts a high degree of punctualism in karyotype evolution. Thus, low underdominace of chromosomal rearrangements and/or prevalence of the recombination-suppression model over the hybrid-sterility model of chromosome speciation are the most common engines of the runaway chromosome number change observed.
Collapse
Affiliation(s)
- Alisa O Vershinina
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St. Petersburg, Russia.
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, 95064, Santa Cruz, CA, USA.
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St. Petersburg, Russia.
- Department of Entomology, St Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia.
| |
Collapse
|
17
|
Warchałowska-Śliwa E, Grzywacz B, Heller KG, Chobanov DP. Comparative analysis of chromosomes in the Palaearctic bush-crickets of tribe Pholidopterini (Orthoptera, Tettigoniinae). COMPARATIVE CYTOGENETICS 2017; 11:309-324. [PMID: 28919967 PMCID: PMC5596980 DOI: 10.3897/compcytogen.v11i2.12070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The present study focused on the evolution of the karyotype in four genera of the tribe Pholidopterini: Eupholidoptera Mařan, 1953, Parapholidoptera Mařan, 1953, Pholidoptera Wesmaël, 1838, Uvarovistia Mařan, 1953. Chromosomes were analyzed using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG) n telomeric probes, and classical techniques, such as C-banding, silver impregnation and fluorochrome DAPI/CMA3 staining. Most species retained the ancestral diploid chromosome number 2n = 31 (male) or 32 (female), while some of the taxa, especially a group of species within genus Pholidoptera, evolved a reduced chromosome number 2n = 29. All species show the same sex determination system X0/XX. In some taxa, a pericentric inversion has changed the morphology of the ancestral acrocentric X chromosome to the biarmed X. The rDNA loci coincided with active NORs and C-band/CG-rich segments. A comparison of the location of the single rDNA/NOR in the genus Pholidoptera suggests that reduced chromosome number results from Robertsonian translocation between two pairs of autosomes, one carrying the rDNA/NOR. The results constitute a step towards better understanding of the chromosomal reorganization and evolution within the tribe Phaneropterini and the whole subfamily Tettigoniinae.
Collapse
Affiliation(s)
- Elżbieta Warchałowska-Śliwa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | - Beata Grzywacz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| | | | - Dragan P. Chobanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Boul., 1000 Sofia, Bulgaria
| |
Collapse
|
18
|
Vishnevskaya MS, Saifitdinova AF, Lukhtanov VA. Karyosystematics and molecular taxonomy of the anomalous blue butterflies (Lepidoptera, Lycaenidae) from the Balkan Peninsula. COMPARATIVE CYTOGENETICS 2016; 10:1-85. [PMID: 28105291 PMCID: PMC5220643 DOI: 10.3897/compcytogen.v10i5.10944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/29/2016] [Indexed: 05/26/2023]
Abstract
The Balkan Peninsula represents one of the hottest biodiversity spots in Europe. However, the invertebrate fauna of this region is still insufficiently investigated, even in respect of such well-studied organisms as Lepidoptera. Here we use a combination of chromosomal, molecular and morphological markers to rearrange the group of so-called anomalous blue butterflies (also known as 'brown complex' of the subgenus Agrodiaetus Hübner, [1822] and as the Polyommatus (Agrodiaetus) admetus (Esper, 1783) species group) and to reveal its cryptic taxonomic structure. We demonstrate that Polyommatus aroaniensis (Brown, 1976) is not as widespread in the Balkans as was previously thought. In fact, it has a dot-like distribution range restricted to the Peloponnese Peninsula in South Greece. Polyommatus orphicus Kolev, 2005 is not as closely related to the Turkish species Polyommatus dantchenkoi (Lukhtanov & Wiemers, 2003) as was supposed earlier. Instead, it is a Balkan endemic represented by two subspecies: Polyommatus orphicus orphicus (Bulgaria) and Polyommatus orphicus eleniae Coutsis & De Prins, 2005 (Northern Greece). Polyommatus ripartii (Freyer, 1830) is represented in the Balkans by an endemic subspecies Polyommatus ripartii pelopi. The traditionally recognized Polyommatus admetus (Esper, 1783) is shown to be a heterogeneous complex and is divided into Polyommatus admetus sensu stricto (the Balkans and west Turkey) and Polyommatus yeranyani (Dantchenko & Lukhtanov, 2005) (east Turkey, Armenia, Azerbaijan and Iran). Polyommatus nephohiptamenos (Brown & Coutsis, 1978) is confirmed to be a species with a dot-like distribution range in Northern Greece. Finally, from Central Greece (Timfristos and Parnassos mountains) we describe Polyommatus timfristos Lukhtanov, Vishnevskaya & Shapoval, sp. n. which differs by its haploid chromosome number (n=38) from the closely related and morphologically similar Polyommatus aroaniensis (n=47-48) and Polyommatus orphicus (n=41-42). We provide chromosomal evidence for three separate south Balkan Pleistocene refugia (Peloponnesse, Central Greece and Northern Greece/South Bulgaria) and stress the biogeographic importance of Central Greece as a place of diversification. Then we argue that the data obtained have direct implications for butterfly karyology, taxonomy, biogeography and conservation.
Collapse
Affiliation(s)
- Maria S Vishnevskaya
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia; Department of Entomology, St Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alsu F Saifitdinova
- Department of Cytology and Histology, St Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Vladimir A Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia; Department of Entomology, St Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
19
|
Pazhenkova EA, Lukhtanov VA. Chromosomal and mitochondrial diversity in Melitaea didyma complex (Lepidoptera, Nymphalidae): eleven deeply diverged DNA barcode groups in one non-monophyletic species? COMPARATIVE CYTOGENETICS 2016; 10:697-717. [PMID: 28123689 PMCID: PMC5240519 DOI: 10.3897/compcytogen.v10i4.11069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/21/2016] [Indexed: 05/31/2023]
Abstract
It is generally accepted that cases of species' polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, and the detected cases reflect misidentifications or/and methodological errors. Here we studied the problem of species' non-monophyly through chromosomal and molecular analysis of butterfly taxa close to Melitaea didyma (Esper, 1779) (Lepidoptera, Nymphalidae). We found absence or low interspecific chromosome number variation and presence of intraspecific variation, therefore we conclude that in this group, chromosome numbers have relatively low value as taxonomic markers. Despite low karyotype variability, the group was found to have unexpectedly high mitochondrial haplotype diversity. These haplotypes were clustered in 23 highly diverged haplogroups. Twelve of these haplogroups are associated with nine traditionally recognized and morphologically distinct species Melitaea chitralensis Moore, 1901, Melitaea deserticola Oberthür, 1909, Melitaea didymoides Eversmann, 1847, Melitaea gina Higgins, 1941, Melitaea interrupta Colenati, 1846, Melitaea latonigena Eversmann, 1847, Melitaea mixta Evans, 1912, Melitaea saxatilis Christoph, 1873 and Melitaea sutschana Staudinger, 1892. The rest of the haplogroups (11 lineages) belong to a well-known west-palaearctic species Melitaea didyma. The last species is particularly unusual in the haplotypes we obtained. First, it is clearly polyphyletic with respect to COI gene. Second, the differentiation in COI gene between these mostly allopatric (but in few cases sympatric) eleven lineages is extremely high (up to 7.4%), i.e. much deeper than the "standard" DNA barcode species threshold (2.7-3%). This level of divergence normally could correspond not even to different species, but to different genera. Despite this divergence, the bearers of these haplogroups were found to be morphologically indistinguishable and, most importantly, to share absolutely the same ecological niches, i.e. demonstrating the pattern which is hardly compatible with hypothesis of multiple cryptic species. Most likely such a profound irregularity in barcodes is caused by reasons other than speciation and represents an extraordinary example of intra-species barcode variability. Given the deep level of genetic differentiation between the lineages, we assume that there was a long period (up to 5.0 My) of allopatric differentiation when the lineages were separated by geographic or/and ecological barriers and evolved in late Pliocene and Pleistocene refugia of north Africa, the Iberian and Balkan Peninsulas, the Middle East and Central Asia. We discuss the refugia-within-refugia concept as a mechanism explaining the presence of additional diverged minor haplogroups within the areas of the major haplogroups. We also provide the first record of Melitaea gina in Azerbaijan and the record of Melitaea didyma turkestanica as a new taxon for Russia and Europe.
Collapse
Affiliation(s)
- Elena A. Pazhenkova
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russias
- Department of Entomology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russias
- Department of Entomology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
20
|
Kanost MR, Arrese EL, Cao X, Chen YR, Chellapilla S, Goldsmith MR, Grosse-Wilde E, Heckel DG, Herndon N, Jiang H, Papanicolaou A, Qu J, Soulages JL, Vogel H, Walters J, Waterhouse RM, Ahn SJ, Almeida FC, An C, Aqrawi P, Bretschneider A, Bryant WB, Bucks S, Chao H, Chevignon G, Christen JM, Clarke DF, Dittmer NT, Ferguson LCF, Garavelou S, Gordon KHJ, Gunaratna RT, Han Y, Hauser F, He Y, Heidel-Fischer H, Hirsh A, Hu Y, Jiang H, Kalra D, Klinner C, König C, Kovar C, Kroll AR, Kuwar SS, Lee SL, Lehman R, Li K, Li Z, Liang H, Lovelace S, Lu Z, Mansfield JH, McCulloch KJ, Mathew T, Morton B, Muzny DM, Neunemann D, Ongeri F, Pauchet Y, Pu LL, Pyrousis I, Rao XJ, Redding A, Roesel C, Sanchez-Gracia A, Schaack S, Shukla A, Tetreau G, Wang Y, Xiong GH, Traut W, Walsh TK, Worley KC, Wu D, Wu W, Wu YQ, Zhang X, Zou Z, Zucker H, Briscoe AD, Burmester T, Clem RJ, Feyereisen R, Grimmelikhuijzen CJP, Hamodrakas SJ, Hansson BS, Huguet E, Jermiin LS, Lan Q, Lehman HK, Lorenzen M, Merzendorfer H, Michalopoulos I, Morton DB, Muthukrishnan S, Oakeshott JG, Palmer W, Park Y, Passarelli AL, Rozas J, Schwartz LM, Smith W, Southgate A, Vilcinskas A, Vogt R, Wang P, Werren J, Yu XQ, Zhou JJ, Brown SJ, Scherer SE, Richards S, Blissard GW. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:118-147. [PMID: 27522922 PMCID: PMC5010457 DOI: 10.1016/j.ibmb.2016.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 05/19/2023]
Abstract
Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| | - Estela L Arrese
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| | - Sanjay Chellapilla
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Marian R Goldsmith
- Biological Sciences Department, University of Rhode Island, Kingston, RI, 02881, USA
| | - Ewald Grosse-Wilde
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Nicolae Herndon
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - James Walters
- Department of Ecology and Evolutionary Biology, Univ. Kansas, Lawrence, KS, 66045, USA
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211, Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA; The Broad Institute of MIT and Harvard, Cambridge, 415 Main Street, MA, 02142, USA
| | - Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Francisca C Almeida
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing, China
| | - Peshtewani Aqrawi
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Anne Bretschneider
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - William B Bryant
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sascha Bucks
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Jayne M Christen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David F Clarke
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Spyridoula Garavelou
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Karl H J Gordon
- CSIRO Health and Biosecurity, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hanna Heidel-Fischer
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ariana Hirsh
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Yingxia Hu
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christian Klinner
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christopher König
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Christie Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Suyog S Kuwar
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Sandy L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rüdiger Lehman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394, Gießen, Germany
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhaofei Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanquan Liang
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Shanna Lovelace
- Department of Biological Sciences, University of Southern Maine, Portland, ME, 04104, USA
| | - Zhiqiang Lu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jennifer H Mansfield
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Kyle J McCulloch
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Tittu Mathew
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Brian Morton
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - David Neunemann
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Fiona Ongeri
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ling-Ling Pu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ioannis Pyrousis
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Amanda Redding
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Charles Roesel
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alejandro Sanchez-Gracia
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR, 97202, USA
| | - Aditi Shukla
- Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY, 10027, USA
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Guang-Hua Xiong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Walther Traut
- Institut fuer Biologie, Universitaet Luebeck, D-23538, Luebeck, Germany
| | - Tom K Walsh
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Di Wu
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Wenbi Wu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yuan-Qing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hannah Zucker
- Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | | | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - René Feyereisen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Cornelis J P Grimmelikhuijzen
- Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-21oo, Copenhagen, Denmark
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse, 8, D-07745, Jena, Germany
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Lars S Jermiin
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Que Lan
- Department of Entomology, University of Wisconsin, Madison, USA
| | - Herman K Lehman
- Biology Department and Neuroscience Program, Hamilton College, Clinton, NY, 13323, USA
| | - Marce Lorenzen
- Dept. Entomology, North Carolina State Univ., Raleigh, NC, 27695, USA
| | - Hans Merzendorfer
- University of Siegen, School of Natural Sciences and Engineering, Institute of Biology - Molecular Biology, Adolf-Reichwein-Strasse. 2, AR-C3010, 57076 Siegen, Germany
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - David B Morton
- Department of Integrative Biosciences, School of Dentistry, BRB421, L595, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - John G Oakeshott
- CSIRO Land and Water, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Will Palmer
- Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | - Wendy Smith
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Agnes Southgate
- Department of Biology, College of Charleston, Charleston, SC, 29424, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Richard Vogt
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, 14456, USA
| | - John Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiao-Qiang Yu
- University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Susan J Brown
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Gary W Blissard
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Maryańska-Nadachowska A, Anokhin BA, Gnezdilov VM, Kuznetsova VG. Karyotype stability in the family Issidae (Hemiptera, Auchenorrhyncha) revealed by chromosome techniques and FISH with telomeric (TTAGG) n and 18S rDNA probes. COMPARATIVE CYTOGENETICS 2016; 10:347-369. [PMID: 27830046 PMCID: PMC5088349 DOI: 10.3897/compcytogen.v10i3.9672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 07/30/2016] [Indexed: 05/31/2023]
Abstract
We report several chromosomal traits in 11 species from 8 genera of the planthopper family Issidae, the tribes Issini, Parahiraciini and Hemisphaeriini. All species present a 2n = 27, X(0) chromosome complement known to be ancestral for the family. The karyotype is conserved in structure and consists of a pair of very large autosomes; the remaining chromosomes gradually decrease in size and the X chromosome is one of the smallest in the complement. For selected species, analyses based on C-, AgNOR- and CMA3-banding techniques were also carried out. By fluorescence in situ hybridization, the (TTAGG) n probe identified telomeres in all species, and the major rDNA loci were detected on the largest pair of autosomes. In most species, ribosomal loci were found in an interstitial position while in two species they were located in telomeric regions suggesting that chromosomal rearrangements involving the rDNA segments occurred in the evolution of the family Issidae. Furthermore, for 8 species the number of testicular follicles is provided for the first time.
Collapse
Affiliation(s)
- Anna Maryańska-Nadachowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 30-016 Kraków, Poland
| | - Boris A. Anokhin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
| | - Vladimir M. Gnezdilov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
| | - Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
| |
Collapse
|
22
|
Hernández-Roldán JL, Dapporto L, Dincă V, Vicente JC, Hornett EA, Šíchová J, Lukhtanov VA, Talavera G, Vila R. Integrative analyses unveil speciation linked to host plant shift inSpialiabutterflies. Mol Ecol 2016; 25:4267-84. [DOI: 10.1111/mec.13756] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 06/25/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Juan L. Hernández-Roldán
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Departamento de Biología (Zoología); Facultad de Ciencias de la Universidad Autónoma de Madrid; C/ Darwin 2 E-28049 Madrid Spain
| | - Leonardo Dapporto
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Department of Biology; University of Florence; Via Madonna del Piano 6 50019 Sesto Fiorentino FI Italy
| | - Vlad Dincă
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Biodiversity Institute of Ontario; University of Guelph; Guelph Ontario Canada N1G 2W1
| | | | - Emily A. Hornett
- Department of Zoology; University of Cambridge; Cambridge CB2 3EJ UK
| | - Jindra Šíchová
- Institute of Entomology; Biology Centre ASCR; 370 05 České Budějovice Czech Republic
| | - Vladimir A. Lukhtanov
- Department of Karyosystematics; Zoological Institute of Russian Academy of Sciences; Universitetskaya nab. 1 199034 St. Petersburg Russia
- Department of Entomology; St. Petersburg State University; Universitetskaya nab. 7/9 199034 St. Petersburg Russia
| | - Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; Cambridge MA 02138 USA
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
| |
Collapse
|
23
|
Lukhtanov VA. The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms. COMPARATIVE CYTOGENETICS 2015; 9:683-90. [PMID: 26753083 PMCID: PMC4698580 DOI: 10.3897/compcytogen.v9i4.5760] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/30/2014] [Indexed: 05/08/2023]
Abstract
The blue butterfly species Polyommatus (Plebicula) atlanticus (Elwes, 1906) (Lepidoptera, Lycaenidae) is known to have a very high haploid number of chromosomes (n= circa 223). However, this approximate count made by Hugo de Lesse 45 years ago was based on analysis of a single meiotic I metaphase plate, not confirmed by study of diploid chromosome set and not documented by microphotographs. Here I demonstrate that (1) Polyommatus atlanticus is a diploid (non-polyploid) species, (2) its meiotic I chromosome complement includes at least 224-226 countable chromosome bodies, and (3) all (or nearly all) chromosome elements in meiotic I karyotype are represented by bivalents. I also provide the first data on the diploid karyotype and estimate the diploid chromosome number as 2n=ca448-452. Thus, Polyommatus atlanticus is confirmed to possess the highest chromosome number among all the non-polyploid eukaryotic organisms.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
- Department of Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
24
|
Kuznetsova VG, Grozeva SM, Hartung V, Anokhin BA. First evidence for (TTAGG)n telomeric sequence and sex chromosome post-reduction in Coleorrhyncha (Insecta, Hemiptera). COMPARATIVE CYTOGENETICS 2015; 9:523-32. [PMID: 26753072 PMCID: PMC4698568 DOI: 10.3897/compcytogen.v9i4.5609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/10/2015] [Indexed: 05/24/2023]
Abstract
Telomeric repeats are general and significant structures of eukaryotic chromosomes. However, nothing is known about the molecular structure of telomeres in the enigmatic hemipteran suborder Coleorrhyncha (moss bugs) commonly considered as the sister group to the suborder Heteroptera (true bugs). The true bugs are known to differ from the rest of the Hemiptera in that they display an inverted sequence of sex chromosome divisions in male meiosis, the so-called sex chromosome post-reduction. To date, there has been no information about meiosis in Coleorrhyncha. Here we report a cytogenetic observation of Peloridium pomponorum, a representative of the single extant coleorrhynchan family Peloridiidae, using the standard chromosome staining and fluorescence in situ hybridization (FISH) with a (TTAGG) n telomeric probe. We show that Peloridium pomponorum displays 2n = 31 (30A + X) in males, the classical insect (TTAGG) n telomere organization and sex chromosome post-reduction during spermatocyte meiosis. The plesiomorphic insect-type (TTAGG) n telomeric sequence is suggested to be preserved in Coleorrhyncha and in a basal heteropteran infraorder Nepomorpha, but absent (lost) in the advanced heteropteran lineages Cimicomorpha and Pentatomomorpha. The telomere structure in other true bug infraorders is currently unknown. We consider here the inverted sequence of sex chromosome divisions as a synapomorphy of the group Coleorrhyncha + Heteroptera.
Collapse
Affiliation(s)
- Valentina G Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| | - Snejana M Grozeva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Blvd Tsar Osvoboditel 1, Sofia 1000, Bulgaria
| | - Viktor Hartung
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany; Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - Boris A Anokhin
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| |
Collapse
|
25
|
Shapoval NA, Lukhtanov VA. Intragenomic variations of multicopy ITS2 marker in Agrodiaetus blue butterflies (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2015; 9:483-97. [PMID: 26753069 PMCID: PMC4698565 DOI: 10.3897/compcytogen.v9i4.5429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/20/2015] [Indexed: 05/31/2023]
Abstract
The eukaryotic ribosomal DNA cluster consists of multiple copies of three genes, 18S, 5. 8S and 28S rRNAs, separated by multiple copies of two internal transcribed spacers, ITS1 and ITS2. It is an important, frequently used marker in both molecular cytogenetic and molecular phylogenetic studies. Despite this, little is known about intragenomic variations within the copies of eukaryotic ribosomal DNA genes and spacers. Here we present data on intraindividual variations of ITS2 spacer in three species of Agrodiaetus Hübner, 1822 blue butterflies revealed by cloning technique. We demonstrate that a distinctly different intragenomic ITS2 pattern exists for every individual analysed. ITS2 sequences of these species show significant intragenomic variation (up to 3.68% divergence), setting them apart from each other on inferred phylogenetic tree. This variation is enough to obscure phylogenetic relationships at the species level.
Collapse
Affiliation(s)
- Nazar A. Shapoval
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Department of Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| | - Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Department of Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| |
Collapse
|
26
|
Lukhtanov VA, Dantchenko AV, Vishnevskaya MS, Saifitdinova AF. Detecting cryptic species in sympatry and allopatry: analysis of hidden diversity inPolyommatus(Agrodiaetus) butterflies (Lepidoptera: Lycaenidae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics; Zoological Institute of Russian Academy of Sciences; Universitetskaya nab. 1 199034 St. Petersburg Russia
- Department of Entomology; St Petersburg State University; Universitetskaya nab. 7/9 199034 St. Petersburg Russia
| | - Alexander V. Dantchenko
- Department of Entomology; St Petersburg State University; Universitetskaya nab. 7/9 199034 St. Petersburg Russia
| | - Maria S. Vishnevskaya
- Department of Entomology; St Petersburg State University; Universitetskaya nab. 7/9 199034 St. Petersburg Russia
| | - Alsu F. Saifitdinova
- Department of Cytology and Histology; St Petersburg State University; Universitetskaya nab. 7/9 199034 St. Petersburg Russia
| |
Collapse
|
27
|
Lukhtanov VA, Tikhonov VV. Chromosomal and molecular evidence for presence of Polyommatus (Agrodiaetus) poseidon (Lepidoptera, Lycaenidae) in Caucasus region. COMPARATIVE CYTOGENETICS 2015; 9:249-55. [PMID: 26140166 PMCID: PMC4488971 DOI: 10.3897/compcytogen.v9i2.5020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/10/2015] [Indexed: 05/31/2023]
Abstract
We show how combination of chromosomal and molecular markers can be applied for proper species identification in Agrodiaetus Hübner, 1822 blue butterflies. Using this approach we provide first evidence for presence of Polyommatus (Agrodiaetus) poseidon (Herrich-Schäffer, [1851]) in Georgia.
Collapse
Affiliation(s)
- Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 St. Petersburg, Russia
- Department of Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | | |
Collapse
|
28
|
Golub NV, Golub VB, Kuznetsova VG. Variability of 18rDNA loci in four lace bug species (Hemiptera, Tingidae) with the same chromosome number. COMPARATIVE CYTOGENETICS 2015; 9:513-22. [PMID: 26753071 PMCID: PMC4698567 DOI: 10.3897/compcytogen.v9i4.5376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/21/2015] [Indexed: 05/21/2023]
Abstract
Male karyotypes of Elasmotropis testacea (Herrich-Schaeffer, 1835), Tingis cardui (Linnaeus, 1758), Tingis crispata (Herrich-Schaeffer, 1838), and Agramma femorale Thomson, 1871 (Heteroptera, Cimicomorpha, Tingidae) were analyzed using conventional chromosome staining and FISH with 18S rDNA and (TTAGG) n telomeric probes. The FISH technique was applied for the first time in the Tingidae. In spite of the fact that all species showed the same chromosome number (2n = 12 + XY), they have significant differences in the number and position of rDNA loci. FISH with the classical insect (TTAGG) n probe produced no signals on chromosomes suggesting telomeres in lace bugs to be of some other molecular composition. Tingidae share absence of the (TTAGG) n telomeric sequence with all so far studied taxa of the advanced true bug infraorders Cimicomorpha and Pentatomomorpha.
Collapse
Affiliation(s)
- Natalia V. Golub
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| | - Viktor B. Golub
- Voronezh State University, Universitetskaya pl. 1, Voronezh, 394006, Russia
| | - Valentina G. Kuznetsova
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| |
Collapse
|