1
|
Johnson TM. Weighing the Cardiovascular Risks of Low-Dose Glucocorticoids in Rheumatoid Arthritis From Real-World Data. Arthritis Rheumatol 2024; 76:1582-1584. [PMID: 38973565 DOI: 10.1002/art.42951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Affiliation(s)
- Tate M Johnson
- University of Nebraska Medical Center and Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha
| |
Collapse
|
2
|
Pappas DA, Reed G, Kane K, Curtis JR, Charles-Schoeman C, Giles JT, Kremer JM. Effect of biologic agents and inflammation on lipid levels and cardiovascular risk in rheumatoid arthritis patients. Semin Arthritis Rheum 2024; 68:152504. [PMID: 38991379 DOI: 10.1016/j.semarthrit.2024.152504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the main cause of mortality in Rheumatoid Arthritis (RA). OBJECTIVE To investigate the effect of biologic disease modifying anti-rheumatic drugs (bDMARDs) on lipids and CVD risk and evaluate associations with changes in systemic inflammation. METHODS Patients with RA initiating a bDMARD were evaluated at baseline, 3 and 6 months later. Longitudinal mixed effects models examined the association of individual biologics with changes in lipid levelsm Reynolds Risk Score (RRS) and Framingham risk score. Mediation by CRP, clinical disease activity index (CDAI) or swollen joint count on lipid changes were modeled using structural equation models. The correlation between CRP changes and LDL changes was estimated. Changes of LDL-C at 6 months among patients with low baseline LDL-C (<90 mg/dl) vs higher baseline LDL-C(90-130, and >130 mg/dl) were compared. The association between LDL-C changes across baseline LDL-C groups and disease activity improvement was evaluated. RESULTS 1698 bDMARD initiations were analyzed. Patients initiating tocilizumab had a significant increase in lipid levels but RRS at 3 and 6 months was similar across all biologics. Framingham risk score increased for patients treated with tocilizumab. Mediator analyses were statistically significant for the effects of CRP on lipid levels. Increases in LDL-C from baseline were independent of clinical response. An association of changes from baseline CRP and LDL-C were observed across all of the bDMARDs studied. CONCLUSION Moderate increases in lipid levels on bDMARD treatment were not associated with an increased CVD risk by RRS regardless of the bDMARD initiated. Changes in CRP were significantly associated with changes in lipids in a mediator analysis.
Collapse
Affiliation(s)
- Dimitrios A Pappas
- Corrona Research Foundation, Albany, NY, United States; Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States; CorEvitas, Waltham, MA, United States.
| | - George Reed
- Corrona Research Foundation, Albany, NY, United States; University of Massachusetts, Worcester, MA, United States
| | - Kevin Kane
- Corrona Research Foundation, Albany, NY, United States; University of Massachusetts, Worcester, MA, United States
| | - Jeffrey R Curtis
- Corrona Research Foundation, Albany, NY, United States; University of Alabama, Birmingham, AL, England
| | | | - Jon T Giles
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Joel M Kremer
- Corrona Research Foundation, Albany, NY, United States
| |
Collapse
|
3
|
Yan J, Yang S, Han L, Ba X, Shen P, Lin W, Li T, Zhang R, Huang Y, Huang Y, Qin K, Wang Y, Tu S, Chen Z. Dyslipidemia in rheumatoid arthritis: the possible mechanisms. Front Immunol 2023; 14:1254753. [PMID: 37954591 PMCID: PMC10634280 DOI: 10.3389/fimmu.2023.1254753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, of which the leading cause of death is cardiovascular disease (CVD). The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) in RA decrease especially under hyperinflammatory conditions. It is conflictive with the increased risk of CVD in RA, which is called "lipid paradox". The systemic inflammation may explain this apparent contradiction. The increased systemic proinflammatory cytokines in RA mainly include interleukin-6(IL-6)、interleukin-1(IL-1)and tumor necrosis factor alpha(TNF-α). The inflammation of RA cause changes in the subcomponents and structure of HDL particles, leading to a weakened anti-atherosclerosis function and promoting LDL oxidation and plaque formation. Dysfunctional HDL can further worsen the abnormalities of LDL metabolism, increasing the risk of cardiovascular disease. However, the specific mechanisms underlying lipid changes in RA and increased CVD risk remain unclear. Therefore, this article comprehensively integrates the latest existing literature to describe the unique lipid profile of RA, explore the mechanisms of lipid changes, and investigate the impact of lipid changes on cardiovascular disease.
Collapse
Affiliation(s)
- Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Yang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ruiyuan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Chang CK, Chiang EPI, Chang KH, Tang KT, Chen PK, Yip HT, Chen CH, Chen DY. The Sizes and Composition of HDL-Cholesterol Are Significantly Associated with Inflammation in Rheumatoid Arthritis Patients. Int J Mol Sci 2023; 24:10645. [PMID: 37445823 DOI: 10.3390/ijms241310645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory disease, carries a significant burden of atherosclerotic cardiovascular diseases (ASCVD). With their heterogeneous composition, high-density lipoprotein (HDL) particles have varied athero-protective properties, and some may even increase ASCVD risk. In this prospective and cross-sectional study, we aimed to examine the relationship between HDL sizes/metabolites and inflammation in RA. Using 1H-NMR-based lipid/metabolomics, differential HDL-related metabolites were identified between RA patients and healthy control (HC) subjects and between RA patients with and without anti-citrullinated peptide antibodies (ACPA). The correlation between the discriminative HDL-related metabolites and C-reactive protein (CRP) was evaluated in RA patients. RA patients demonstrated higher particle number, lipids, cholesterol, cholesterol ester, free cholesterol, and phospholipids in large/very large-sized HDLs. ACPA-positive patients had higher L-HDL-C and L-HDL-CE but lower small-/medium-sized HDL-TG levels than ACPA-negative patients. An inverse correlation was found between CRP levels and small-sized HDLs. Janus kinase inhibitor treatment was associated with increased serum small-sized HDL-related metabolites and decreased CRP levels. We are the first to reveal the significant associations between RA inflammation and HDL sizes/metabolites. A potential link between ACPA positivity and changes in serum levels of HDL-related metabolites was also observed in RA patients.
Collapse
Affiliation(s)
- Ching-Kun Chang
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- Translational Medicine Laboratory, Rheumatology Research Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung 435, Taiwan
- Center for General Education, China Medical University, Taichung 404, Taiwan
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Ku Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- Translational Medicine Laboratory, Rheumatology Research Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Hei-Tung Yip
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- Institute for Biomedical Sciences, Shinshu University, Nagano 390-8621, Japan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- Translational Medicine Laboratory, Rheumatology Research Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
5
|
Giachi A, Cugno M, Gualtierotti R. Disease-modifying anti-rheumatic drugs improve the cardiovascular profile in patients with rheumatoid arthritis. Front Cardiovasc Med 2022; 9:1012661. [PMID: 36352850 PMCID: PMC9637771 DOI: 10.3389/fcvm.2022.1012661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting about 0. 5–1% of the adult population and manifesting as persistent synovitis, systemic inflammation and production of autoantibodies. Patients affected by RA not only experience chronic disease progression, but are also burdened by a 1.5-fold increased cardiovascular (CV) risk, which is comparable to the risk experienced by patients with type 2 diabetes mellitus. RA patients also have a higher incidence and prevalence of coronary artery disease (CAD). Although RA patients frequently present traditional CV risk factors such as insulin resistance and active smoking, previous studies have clarified the pivotal role of chronic inflammation–driven by proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha)–in accelerating the process of atherosclerosis and impairing the coagulation system. Over the last years, a number of studies have shown that disease-modifying anti-rheumatic drugs (DMARDs) reducing the inflammatory state in general improve the CV risk, however some drugs may carry some apparent negative effects. Thus, RA is a model of disease in which targeting inflammation may counteract the progression of atherosclerosis and reduce CV risk. Clinical and experimental evidence indicates that the management of RA patients should be tailored based on the positive and negative effects of DMARDs on CV risk together with the individual traditional CV risk profile. The identification of genetic, biochemical and clinical biomarkers, predictive of evolution and response to treatment, will be the next challenge for a precision approach to reduce the burden of the disease.
Collapse
Affiliation(s)
- Andrea Giachi
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Cugno
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
- *Correspondence: Massimo Cugno
| | - Roberta Gualtierotti
- UOC Medicina Generale Emostasi e Trombosi, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
6
|
Su X, Zhang G, Cheng Y, Wang B. New insights into the emerging effects of inflammatory response on HDL particles structure and function. Mol Biol Rep 2021; 48:5723-5733. [PMID: 34319542 DOI: 10.1007/s11033-021-06553-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
According to the increasing results, it has been well-demonstrated that the chronic inflammatory response, including systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease are associated with an increased risk of atherosclerotic cardiovascular disease. The mechanism whereby inflammatory response up-regulates the risk of cardio-metabolic disorder disease is multifactorial; furthermore, the alterations in high density lipoprotein (HDL) structure and function which occur under the inflammatory response could play an important modulatory function. On the other hand, the serum concentrations of HDL cholesterol (HDL-C) have been shown to be reduced significantly under inflammatory status with remarked alterations in HDL particles. Nevertheless, the potential mechanism whereby the inflammatory response reduces serum HDL-C levels is not simply defined but reduces apolipoprotein A1 production. The alterations in HDL structure mediated by the inflammatory response has been also confirmed to decrease the ability of HDL particle to play an important role in reverse cholesterol transport and protect the LDL particles from oxidation. Recently, it has been shown that under the inflammatory condition, diverse alterations in HDL structure could be observed which lead to changes in HDL function. In the current review, the emerging effects of inflammatory response on HDL particles structure and function are well-summarized to elucidate the potential mechanism whereby different inflammatory status modulates the pathogenic development of dyslipidemia.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
7
|
Klimova NV, Oshchepkova E, Chadaeva I, Sharypova E, Ponomarenko P, Drachkova I, Rasskazov D, Oshchepkov D, Ponomarenko M, Savinkova L, Kolchanov NA, Kozlov V. Disruptive Selection of Human Immunostimulatory and Immunosuppressive Genes Both Provokes and Prevents Rheumatoid Arthritis, Respectively, as a Self-Domestication Syndrome. Front Genet 2021; 12:610774. [PMID: 34239535 PMCID: PMC8259950 DOI: 10.3389/fgene.2021.610774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Using our previously published Web service SNP_TATA_Comparator, we conducted a genome-wide study of single-nucleotide polymorphisms (SNPs) within core promoters of 68 human rheumatoid arthritis (RA)-related genes. Using 603 SNPs within 25 genes clinically associated with RA-comorbid disorders, we predicted 84 and 70 candidate SNP markers for overexpression and underexpression of these genes, respectively, among which 58 and 96 candidate SNP markers, respectively, can relieve and worsen RA as if there is a neutral drift toward susceptibility to RA. Similarly, we predicted natural selection toward susceptibility to RA for 8 immunostimulatory genes (e.g., IL9R) and 10 genes most often associated with RA (e.g., NPY). On the contrary, using 25 immunosuppressive genes, we predicted 70 and 109 candidate SNP markers aggravating and relieving RA, respectively (e.g., IL1R2 and TGFB2), suggesting that natural selection can simultaneously additionally yield resistance to RA. We concluded that disruptive natural selection of human immunostimulatory and immunosuppressive genes is concurrently elevating and reducing the risk of RA, respectively. So, we hypothesize that RA in human could be a self-domestication syndrome referring to evolution patterns in domestic animals. We tested this hypothesis by means of public RNA-Seq data on 1740 differentially expressed genes (DEGs) of pets vs. wild animals (e.g., dogs vs. wolves). The number of DEGs in the domestic animals corresponding to worsened RA condition in humans was significantly larger than that in the related wild animals (10 vs. 3). Moreover, much less DEGs in the domestic animals were accordant to relieved RA condition in humans than those in the wild animals (1 vs. 8 genes). This indicates that the anthropogenic environment, in contrast to a natural one, affects gene expression across the whole genome (e.g., immunostimulatory and immunosuppressive genes) in a manner that likely contributes to RA. The difference in gene numbers is statistically significant as confirmed by binomial distribution (p < 0.01), Pearson's χ2 (p < 0.01), and Fisher's exact test (p < 0.05). This allows us to propose RA as a candidate symptom within a self-domestication syndrome. Such syndrome might be considered as a human's payment with health for the benefits received during evolution.
Collapse
Affiliation(s)
- Natalya V Klimova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Evgeniya Oshchepkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia.,Research Institute of Fundamental and Clinical Immunology (RIFCI SB RAS), Novosibirsk, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology (RIFCI SB RAS), Novosibirsk, Russia
| |
Collapse
|
8
|
Chen W, Wang Q, Zhou B, Zhang L, Zhu H. Lipid Metabolism Profiles in Rheumatic Diseases. Front Pharmacol 2021; 12:643520. [PMID: 33897433 PMCID: PMC8064727 DOI: 10.3389/fphar.2021.643520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatic diseases are a group of chronic autoimmune disorders that involve multiple organs or systems and have high mortality. The mechanisms of these diseases are still ill-defined, and targeted therapeutic strategies are still challenging for physicians. Recent research indicates that cell metabolism plays important roles in the pathogenesis of rheumatic diseases. In this review, we mainly focus on lipid metabolism profiles (dyslipidaemia, fatty acid metabolism) and mechanisms in rheumatic diseases and discuss potential clinical applications based on lipid metabolism profiles.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Qi Wang
- Department of Radiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Zhou
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lihua Zhang
- Department of Rheumatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
| |
Collapse
|
9
|
Ferraz-Amaro I, Delgado-Frías E, Hernández-Hernández V, Sánchez-Pérez H, de Armas-Rillo L, Armas-González E, Machado JD, Diaz-González F. HDL cholesterol efflux capacity and lipid profile in patients with systemic sclerosis. Arthritis Res Ther 2021; 23:62. [PMID: 33622410 PMCID: PMC7901093 DOI: 10.1186/s13075-021-02443-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE It is well established that patients with systemic sclerosis (SSc) have a disrupted lipid profile and an increased cardiovascular risk. Cholesterol efflux capacity (CEC), the ability of high-density lipoprotein (HDL)-cholesterol to accept cholesterol from macrophages, has been linked to cardiovascular events. The aim of this study was to establish whether CEC and lipid profile were impaired in SSc patients with respect to controls and whether these changes were associated with disease-related data. METHODS Cross-sectional study encompassed 188 individuals: 73 SSc patients and 115 controls. CEC, using an in vitro assay, and lipoprotein serum concentrations were assessed in patients and controls. A multivariable analysis was performed to study the differences in CEC between patients and controls, and if SSc-related data could explain such differences. RESULTS The multivariable analysis adjusted for demographic characteristics, cardiovascular risk factors, and lipid-related molecules showed that total cholesterol (beta coefficient: - 22 [95%CI - 37 to - 7], p = 0.004), triglycerides (beta coefficient: 24 [95%CI 2-47], p = 0.033), lipoprotein A (beta coefficient: 22 [95%CI 2-43], p = 0.033), and CEC (beta coefficient: - 6 [95%CI - 10 to - 2]%,p = 0.002) were significantly different between patients and controls. Skin thickness, as assessed by modified Rodnan skin score, was independently associated with a lower CEC (beta coefficient: - 0.21 [95%CI - 0.37 to - 0.05]%, p = 0.011) after multivariable adjustment. CONCLUSION SSc patients show an abnormal lipid profile with respect to controls including CEC. Skin thickness is independent and inversely associated with CEC in SSc patients.
Collapse
Affiliation(s)
- Iván Ferraz-Amaro
- Servicio de Reumatología, Hospital Universitario de Canarias, C/Ofra s/n, 38320, Santa Cruz de Tenerife, Spain
| | - Esmeralda Delgado-Frías
- Servicio de Reumatología, Hospital Universitario de Canarias, C/Ofra s/n, 38320, Santa Cruz de Tenerife, Spain
| | - Vanesa Hernández-Hernández
- Servicio de Reumatología, Hospital Universitario de Canarias, C/Ofra s/n, 38320, Santa Cruz de Tenerife, Spain
| | - Hiurma Sánchez-Pérez
- Servicio de Reumatología, Hospital Universitario de Canarias, C/Ofra s/n, 38320, Santa Cruz de Tenerife, Spain
| | | | - Estefanía Armas-González
- Servicio de Reumatología, Hospital Universitario de Canarias, C/Ofra s/n, 38320, Santa Cruz de Tenerife, Spain
| | - José David Machado
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Federico Diaz-González
- Servicio de Reumatología, Hospital Universitario de Canarias, C/Ofra s/n, 38320, Santa Cruz de Tenerife, Spain.
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Laguna, La Laguna, Spain.
| |
Collapse
|
10
|
Márquez AB, Nazir S, van der Vorst EP. High-Density Lipoprotein Modifications: A Pathological Consequence or Cause of Disease Progression? Biomedicines 2020; 8:biomedicines8120549. [PMID: 33260660 PMCID: PMC7759904 DOI: 10.3390/biomedicines8120549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
High-density lipoprotein (HDL) is well-known for its cardioprotective effects, as it possesses anti-inflammatory, anti-oxidative, anti-thrombotic, and cytoprotective properties. Traditionally, studies and therapeutic approaches have focused on raising HDL cholesterol levels. Recently, it became evident that, not HDL cholesterol, but HDL composition and functionality, is probably a more fruitful target. In disorders, such as chronic kidney disease or cardiovascular diseases, it has been observed that HDL is modified and becomes dysfunctional. There are different modification that can occur, such as serum amyloid, an enrichment and oxidation, carbamylation, and glycation of key proteins. Additionally, the composition of HDL can be affected by changes to enzymes such as cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and phospholipid transfer protein (PLTP) or by modification to other important components. This review will highlight some main modifications to HDL and discuss whether these modifications are purely a consequential result of pathology or are actually involved in the pathology itself and have a causal role. Therefore, HDL composition may present a molecular target for the amelioration of certain diseases, but more information is needed to determine to what extent HDL modifications play a causal role in disease development.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Sumra Nazir
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P.C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-241-80-36914
| |
Collapse
|
11
|
Makkar R, Behl T, Kumar A, Uddin MS, Bungau S. Untying the correlation between apolipoproteins and rheumatoid arthritis. Inflamm Res 2020; 70:19-28. [PMID: 33057973 DOI: 10.1007/s00011-020-01410-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
AIM AND OBJECTIVE The concentration of lipoproteins and apolipoprotein are extremely low in the synovial fluid of any healthy person as compared to the concentrations in plasma. However, in the synovial fluid of any diseased patient the amount of cholesterol and lipids is sharply increased. The current review defines the role of various apolipoproteins and lipoproteins and their constituent subfractions in the synovial fluid embarking its principal role in rheumatoid arthritis. It also explains the need to define synovial fluid lipids, lipoprotein particle subfractions and their constituent apolipoproteins in synovial fluid. MATERIALS AND METHODS Various research and review articles highlighting the role of apolipoproteins and lipoproteins were procured from medical websites mainly Pubmed, Medline, Science Direct, etc., and studied for the writing of the review paper. CONCLUSION Mainly apolipoproteins A-1, B and E are prominently increased in chronic inflammatory joint disorders. Several theories have been proposed to understand the source of increase of lipids and apolipoproteins in synovial fluid of the diseased patients compared to healthy individuals, yet the precise mechanism is still not lucid. Lipoproteins are believed to play both functional role and pathological role in the synovial fluid. The activated T-lymphocytes in patients of RA lead to activation of inflammatory cytokines such as tumor necrosis factor and interleukins which embark to be the principal mechanism for induction of the disease. It can be thus concluded that the apolipoproteins prevent the activation of monocytes by blocking their contact of activation and thus play critical role in management of RA by inhibiting the production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
12
|
England BR, Thiele GM, Anderson DR, Mikuls TR. Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications. BMJ 2018; 361:k1036. [PMID: 29685876 PMCID: PMC6889899 DOI: 10.1136/bmj.k1036] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis is a systemic autoimmune disease characterized by excess morbidity and mortality from cardiovascular disease. Mechanisms linking rheumatoid arthritis and cardiovascular disease include shared inflammatory mediators, post-translational modifications of peptides/proteins and subsequent immune responses, alterations in the composition and function of lipoproteins, increased oxidative stress, and endothelial dysfunction. Despite a growing understanding of these mechanisms and their complex interplay with conventional cardiovascular risk factors, optimal approaches of risk stratification, prevention, and treatment in the context of rheumatoid arthritis remain unknown. A multifaceted approach to reduce the burden posed by cardiovascular disease requires optimal management of traditional risk factors in addition to those intrinsic to rheumatoid arthritis such as increased disease activity. Treatments for rheumatoid arthritis seem to exert differential effects on cardiovascular risk as well as the mechanisms linking these conditions. More research is needed to establish whether preferential rheumatoid arthritis therapies exist in terms of prevention of cardiovascular disease. Ultimately, understanding the unique mechanisms for cardiovascular disease in rheumatoid arthritis will aid in risk stratification and the identification of novel targets for meaningful reduction of cardiovascular risk in this patient population.
Collapse
Affiliation(s)
- Bryant R England
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel R Anderson
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ted R Mikuls
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Werumeus Buning J, Dimova LG, Perton FG, Tietge UJF, van Beek AP, Dullaart RPF. Downregulation of cholesteryl ester transfer protein by glucocorticoids: a randomised study on HDL. Eur J Clin Invest 2017; 47:494-503. [PMID: 28542805 DOI: 10.1111/eci.12770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/20/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND High density lipoprotein (HDL) cholesterol is not decreased in hypercortisolism despite high triglycerides, which may be ascribed to effects on the cholesteryl ester transfer protein (CETP) pathway. We explored if CETP mRNA expression is modulated by glucocorticoid treatment in vitro. Effects of doubling the hydrocortisone (HCT) replacement dose on plasma CETP activity, and HDL characteristics were tested in patients with secondary adrenal insufficiency. MATERIALS AND METHODS Human THP-1 macrophages were incubated with corticosterone in vitro in the presence or absence of a liver X receptor (LXR) agonist, followed by determination of CETP mRNA levels by quantitative real-time PCR. In addition, a randomised double-blind cross-over study was performed in 47 patients with secondary adrenal insufficiency (university medical setting; 10 weeks exposure to a higher HCT dose (0·4-0·6 mg/kg body weight) vs. 10 weeks of a lower HCT dose (0·2-0·3 mg/kg body weight). RESULTS Corticosterone dose dependently decreased CETP mRNA in THP-1 macrophages. Corticosterone also decreased CETP mRNA expression after LXR pretreatment. In patients, CETP activity decreased with doubling of the HCT dose (P = 0·049), coinciding with an increase in HDL cholesterol, apolipoprotein A-I and the HDL cholesterol/apolipoprotein A-I ratio (reflecting HDL size; P < 0·01 for each). The increase in the HDL cholesterol/apolipoprotein A-I ratio was correlated with the decrease in plasma CETP activity (r = -0·442, P = 0·002). CONCLUSION Glucocorticoids downregulate CETP gene expression in a human macrophage cell system. In line, a higher glucocorticoid replacement dose decreases plasma CETP activity in patients, thereby contributing to higher HDL cholesterol and an increase in estimated HDL size.
Collapse
Affiliation(s)
- Jorien Werumeus Buning
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lidya G Dimova
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, Groningen, the Netherlands
| | - Frank G Perton
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Laboratory Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Studies have shown that chronic inflammatory disorders, such as rheumatoid arthritis, systemic lupus erythematosus, and psoriasis are associated with an increased risk of atherosclerotic cardiovascular disease. The mechanism by which inflammation increases cardiovascular disease is likely multifactorial but changes in HDL structure and function that occur during inflammation could play a role. RECENT FINDINGS HDL levels decrease with inflammation and there are marked changes in HDL-associated proteins. Serum amyloid A markedly increases whereas apolipoprotein A-I, lecithin:cholesterol acyltransferase, cholesterol ester transfer protein, paraoxonase 1, and apolipoprotein M decrease. The exact mechanism by which inflammation decreases HDL levels is not defined but decreases in apolipoprotein A-I production, increases in serum amyloid A, increases in endothelial lipase and secretory phospholipase A2 activity, and decreases in lecithin:cholesterol acyltransferase activity could all contribute. The changes in HDL induced by inflammation reduce the ability of HDL to participate in reverse cholesterol transport and protect LDL from oxidation. SUMMARY During inflammation multiple changes in HDL structure occur leading to alterations in HDL function. In the short term, these changes may be beneficial resulting in an increase in cholesterol in peripheral cells to improve host defense and repair but over the long term these changes may increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
15
|
Associations between disease activity, markers of HDL functionality and arterial stiffness in patients with rheumatoid arthritis. Atherosclerosis 2016; 251:438-444. [DOI: 10.1016/j.atherosclerosis.2016.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 02/04/2023]
|
16
|
de Deus Junior RS, Ferraz AL, Oesterreich SA, Schmitz WO, Shinzato MM. Risk factors for cardiovascular disease in rheumatoid arthritis patients from Mato Grosso do Sul. REVISTA BRASILEIRA DE REUMATOLOGIA 2015; 55:493-500. [PMID: 26362702 DOI: 10.1016/j.rbr.2015.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/17/2014] [Accepted: 02/02/2015] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To identify risk factors for cardiovascular disease in patients with Rheumatoid Arthritis (RA). MATERIAL AND METHODS A descriptive cross-sectional study with 71 patients with established RA. The instruments used were: DAS-28, HAQ and SF-36, and the following parameters were determined: the erythrocyte sedimentation rate, capillary blood glucose; total cholesterol (TC) and its fractions, thyroid hormones, antinuclear antibodies (ANA), rheumatoid factor (RF) and antibodies against citrullinated proteins (ACPAs). Patients were classified into groups HAQ ≤ 1 (mild dysfunction) and HAQ > 1 (moderate and severe dysfunction) and, according to the HAQ scores, in groups treated with corticosteroids (CS) and without CS. RESULTS 9 patients were male and 62 female with mean age and duration of disease of 53.45 (± 10.7) and 9.9 (± 8.6), respectively. RF was positive in 52 (76%), ACPAs in 54 (76.1%) and ANA in 12 (16.9%). Thirty-six patients (50.7%) had systemic hypertension, 9 (12.68%) diabetes mellitus, 16 (22.5%) hypothyroidism, 33 (46.5%) dyslipidemia and 8 (11.27%) were smokers. The results of TC >240 were found in 53.8% for group HAQ >1 (26) and in 24.4% for group HAQ ≤ 1 (45) (p=0.020). These groups did not differ as to presence of comorbidities or drug treatment. Triglyceride levels >200 for the group with CS (42.4%) versus without CS (18.42%) were significant (p=0.025). CONCLUSION An association of increased TC and triglycerides with results of HAQ ≤ 1 and with CS use was noted, reinforcing the importance of screening risk factors associated with cardiovascular disease in RA.
Collapse
Affiliation(s)
| | - Andressa Leite Ferraz
- Hospital Universitário de Dourados, Universidade Federal da Grande Dourados, Dourados, MS, Brasil
| | - Silvia Aparecida Oesterreich
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brasil; Universidad de León, León, Espanha
| | - Wanderlei Onofre Schmitz
- Hospital Universitário de Dourados, Universidade Federal da Grande Dourados, Dourados, MS, Brasil; Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Marcia Midori Shinzato
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brasil; Hospital Universitário de Dourados, Universidade Federal da Grande Dourados, Dourados, MS, Brasil; Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
17
|
García-Gómez C, Bianchi M, de la Fuente D, Badimon L, Padró T, Corbella E, Pintó X. Inflammation, lipid metabolism and cardiovascular risk in rheumatoid arthritis: A qualitative relationship? World J Orthop 2014; 5:304-311. [PMID: 25035833 PMCID: PMC4095023 DOI: 10.5312/wjo.v5.i3.304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/26/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023] Open
Abstract
Life expectancy in patients with rheumatoid arthritis (RA) is reduced compared to the general population owing to an increase in cardiovascular diseases (CVD) not fully explained by traditional cardiovascular risk factors. In recent years, interest has been focused on the alterations in lipid metabolism in relation to chronic inflammation as one of the possible mechanisms involved in the pathogenesis of atherosclerosis of RA patients. Research regarding this issue has revealed quantitative alterations in lipoproteins during the acute-phase reaction, and has also demonstrated structural alterations in these lipoproteins which affect their functional abilities. Although many alterations in lipid metabolism have been described in this regard, these structural changes associated with inflammation are particularly important in high-density lipoproteins as they affect their cardioprotective functions. In this respect, excessive oxidation in low-density lipoprotein (LDL) and increased lipoprotein(a) with a predominance of smaller apolipoprotein(a) isoforms has also been reported. This article will discuss proinflammatory high-density lipoproteins (piHDL), oxidized LDL and lipoprotein(a). Elevated concentrations of these lipoproteins with marked pro-atherogenic properties have been observed in RA patients, which could help to explain the increased cardiovascular risk of these patients.
Collapse
|