1
|
Patidar K, Deng JH, Mitchell CS, Ford Versypt AN. Cross-Domain Text Mining of Pathophysiological Processes Associated with Diabetic Kidney Disease. Int J Mol Sci 2024; 25:4503. [PMID: 38674089 PMCID: PMC11050166 DOI: 10.3390/ijms25084503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. This study's goal was to identify the signaling drivers and pathways that modulate glomerular endothelial dysfunction in DKD via artificial intelligence-enabled literature-based discovery. Cross-domain text mining of 33+ million PubMed articles was performed with SemNet 2.0 to identify and rank multi-scalar and multi-factorial pathophysiological concepts related to DKD. A set of identified relevant genes and proteins that regulate different pathological events associated with DKD were analyzed and ranked using normalized mean HeteSim scores. High-ranking genes and proteins intersected three domains-DKD, the immune response, and glomerular endothelial cells. The top 10% of ranked concepts were mapped to the following biological functions: angiogenesis, apoptotic processes, cell adhesion, chemotaxis, growth factor signaling, vascular permeability, the nitric oxide response, oxidative stress, the cytokine response, macrophage signaling, NFκB factor activity, the TLR pathway, glucose metabolism, the inflammatory response, the ERK/MAPK signaling response, the JAK/STAT pathway, the T-cell-mediated response, the WNT/β-catenin pathway, the renin-angiotensin system, and NADPH oxidase activity. High-ranking genes and proteins were used to generate a protein-protein interaction network. The study results prioritized interactions or molecules involved in dysregulated signaling in DKD, which can be further assessed through biochemical network models or experiments.
Collapse
Affiliation(s)
- Krutika Patidar
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jennifer H. Deng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Center for Machine Learning at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
- Institute for Artificial Intelligence and Data Science, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Jiang P, Yao C, Guo DA. Traditional Chinese medicine for the treatment of immune-related nephropathy: A review. Acta Pharm Sin B 2024; 14:38-66. [PMID: 38239236 PMCID: PMC10793104 DOI: 10.1016/j.apsb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 01/22/2024] Open
Abstract
Immune-related nephropathy (IRN) refers to immune-response-mediated glomerulonephritis and is the main cause of end-stage renal failure. The pathogenesis of IRN is not fully understood; therefore, treatment is challenging. Traditional Chinese medicines (TCMs) have potent clinical effects in the treatment of the IRN conditions immunoglobulin A nephropathy, lupus nephropathy, and diabetic nephropathy. The underlying mechanisms mainly include its inhibition of inflammation; improvements to renal interstitial fibrosis, oxidative stress, autophagy, apoptosis; and regulation of immunity. In this review, we summarize the clinical symptoms of the three IRN subtypes and the use of TCM prescriptions, herbs, and bioactive compounds in treating IRN, as well as the potential mechanisms, intending to provide a reference for the future study of TCM as IRN treatments.
Collapse
Affiliation(s)
- Pu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Ghosal S, Sinha B. Assessing the Effects of Modern Renoprotective Agents in Preventing Progression of Renal Composite Outcomes in Patients with Type 2 Diabetes: A Network Meta-analysis. Diabetes Ther 2023; 14:415-424. [PMID: 36566447 PMCID: PMC9943809 DOI: 10.1007/s13300-022-01359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIMS Type 2 diabetes is one of the leading causes of the development and progression of diabetic kidney disease, culminating in end-stage renal disease. Approximately two decades after successful implementation of the renin-angiotensin-aldosterone blocking system, three classes of agents [sodium glucose cotransporter 2 inhibitors (SGLT-2i), glucagon-like peptide 1 receptor agonists, and nonsteroidal mineralocorticoid receptor antagonists] have shown significant potential to confer renoprotection. This network meta-analysis was undertaken to construct a hierarchy based on indirect pairwise comparisons and rankings among and within these three classes of molecules. METHODS A Cochrane library-based web search yielded 16 randomized controlled trials for analysis. Stata/BE 17.0 and RStudio 2022.07.1 Build 554 software were used to conduct a frequentist network meta-analysis. The effect size was assessed based on the odds ratio, and the MDS (multidimensional scaling) rank system was used to identify a hierarchy among reno-protective molecules. RESULTS Regarding the overall data, the SGLT-2i group of agents ranked higher than the other groups in preventing the progression of renal composite events in patients with T2D. Dapagliflozin ranked the highest among individual molecules. CONCLUSIONS The SGLT-2i group of agents, especially dapagliflozin, is best suited to complement metabolic control in preventing the progression of renal composite outcomes.
Collapse
|
4
|
Mansouri E, Orazizadeh M, Mard SA, Gorji AV, Rashno M, Fakhredini F. Therapeutic Effect of Kidney Tubular Cells-Derived Conditioned Medium on the Expression of MicroRNA-377, MicroRNA-29a, Aquapurin-1, Biochemical, and Histopathological Parameters Following Diabetic Nephropathy Injury in Rats. Adv Biomed Res 2022; 11:119. [PMID: 36798914 PMCID: PMC9926036 DOI: 10.4103/abr.abr_375_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a critical complication of diabetes mellitus. This study evaluates whether administration of conditioned medium from kidney tubular cells (KTCs-CM) has the ability to be efficacious as an alternative to cell-based therapy for DN. Materials and Methods CM of rabbit kidney tubular cells (RK13; KTCs) has been collected and after centrifugation, filtered with 0.2 filters. Four groups of rats have been utilized, including control, DN, DN treated with CM, and sham group. After diabetes induction by streptozotocin (50 mg/kg body weight) in rats, 0.8 ml of the CM was injected to each rat three times per day for 3 consecutive days. Then, 24-h urine protein, blood urea nitrogen (BUN), and serum creatinine (Scr) have been measured through detection kits. The histopathological effects of CM on kidneys were evaluated by periodic acid-Schiff staining and the expression of microRNAs (miRNAs) 29a and 377 by using the real-time polymerase chain reaction. The expression of aquapurin-1 (AQP1) protein was also examined by Western blotting. Results Intravenous injections of KTCs-CM significantly reduced the urine volume, protein 24-h, BUN, and Scr, decreased the miRNA-377, and increased miRNA-29a and AQP1 in DN treated with CM rats. Conclusion KTCs-CM may have the potential to prevent kidney injury from diabetes by regulating the microRNAs related to DN and improving the expression of AQP1.
Collapse
Affiliation(s)
- Esrafil Mansouri
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Physiology Research Center, Research Institute for Infectious Diseases of Digestive System, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh Gorji
- Bone Marrow Transplantation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Immunology Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshtesadat Fakhredini
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Address for correspondence: Dr. Fereshtesadat Fakhredini, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. E-mail:
| |
Collapse
|
5
|
Kim HJ, Kim SS, Song SH. Glomerular filtration rate as a kidney outcome of diabetic kidney disease: a focus on new antidiabetic drugs. Korean J Intern Med 2022; 37:502-519. [PMID: 35368179 PMCID: PMC9082447 DOI: 10.3904/kjim.2021.515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/17/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetes has reached epidemic proportions, both in Korea and worldwide and is associated with an increased risk of chronic kidney disease and kidney failure (KF). The natural course of kidney function among people with diabetes (especially type 2 diabetes) may be complex in real-world situations. Strong evidence from observational data and clinical trials has demonstrated a consistent association between decreased estimated glomerular filtration rate (eGFR) and subsequent development of hard renal endpoints (such as KF or renal death). The disadvantage of hard renal endpoints is that they require a long follow-up duration. In addition, there are many patients with diabetes whose renal function declines without the appearance of albuminuria, measurement of the eGFR is emphasized. Many studies have used GFR-related parameters, such as its change, decline, or slope, as clinical endpoints for kidney disease progression. In this respect, understanding the trends in GFR changes could be crucial for developing clinical management strategies for the prevention of diabetic complications. This review focuses on the clinical implication of the eGFR-related parameters that have been used so far in diabetic kidney disease. We also discuss the use of recently developed new antidiabetic drugs for kidney protection, with a focus on the GFR as clinical endpoints.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Division of Nephrology, Department of Internal Medicine, Pusan National University Hospital, Busan,
Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan,
Korea
| | - Sang Soo Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan,
Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Busan,
Korea
| | - Sang Heon Song
- Division of Nephrology, Department of Internal Medicine, Pusan National University Hospital, Busan,
Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan,
Korea
| |
Collapse
|
6
|
Wang M, Chen X, Zhang H, Li L, Xu Y, Lu W, Lu Y. ENSMUST00000147869 regulates proliferation and fibrosis of mesangial cells in diabetic nephropathy by interacting with Hspa9. IUBMB Life 2022; 74:419-432. [PMID: 35103378 DOI: 10.1002/iub.2599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/07/2022]
Abstract
AIMS Our previous study showed that ENSMUST00000147869 was abnormally low expressed in the early stage of diabetic nephropathy (DN). ENSMUST00000147869 could inhibit the fibrosis and proliferation of mouse mesangial cells (MMCs), but the mechanism is still unclear. This study aims to explore the specific mechanism underline ENSMUST00000147869 regulates the proliferation and fibrosis of MMCs in DN. METHODS Nucleocytoplasmic fractionation was applied to define the location of ENSMUST00000147869 in MMCs. RNA-protein pulldown, RNA immunoprecipitation and mass spectrometry were used to identify upregulated Hspa9 directly interacting with ENSMUST00000147869. SiRNA and lentivirus packaging were used to clarify the role of Hspa9 downregulated by ENSMUST00000147869 in promoting proliferation and fibrosis in MMCs. CHX and MG132 were used to clarify the regulatory role of ENSMUST00000147869 to Hspa9. Immunoprecipitation confirmed the binding of Hspa9 and HMGB1. RESULTS HSPA9 was a direct binding protein of ENSMUST00000147869, and ENSMUST00000147869 could inhibit proliferation and fibrosis of MMCs by down-regulating HSPA9 through ubiquitination process. HMGB1 was the downstream binding protein of Hspa9, and ENSMUST00000147869 could inhibit the interaction between Hspa9 and HMGB1. CONCLUSION Our data showed that ENSMUST00000147869 regulates Hspa9 through the ubiquitin proteasome pathway, and inhibits the binding of Hspa9 and HMGB1. ENSMUST00000147869/Hspa9/HMGB1 axis may act as a diagnostic molecular marker and an effective therapeutic target for DN. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xin Chen
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Henglu Zhang
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Lanlan Li
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yang Xu
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Weiping Lu
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Fakhredini F, Mansouri E, Mard SA, Valizadeh Gorji A, Rashno M, Orazizadeh M. Effects of Exosomes Derived from Kidney Tubular Cells on Diabetic Nephropathy in Rats. CELL JOURNAL 2022; 24:28-35. [PMID: 35182062 PMCID: PMC8876258 DOI: 10.22074/cellj.2022.7591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/16/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE One of the severe complications and well-known sources of end stage renal disease (ESRD) from diabetes mellitus is diabetic nephropathy (DN). Exosomes secreted from diverse cells are one of the novel encouraging therapies for chronic renal injuries. In this study, we assess whether extracted exosomes from kidney tubular cells (KTCs) could prevent early stage DN in vivo. MATERIALS AND METHODS In this experimental, exosomes from conditioned medium of rabbit KTCs (RK13) were purified by ultracentrifuge procedures. The exosomes were assessed in terms of morphology and size, and particular biomarkers were evaluated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Western blot, atomic force microscopy (AFM) and Zetasizer Nano analysis. The rats were divided into four groups: DN, control, DN treated with exosomes and sham. First, diabetes was induced in the rats by intraperitoneial (i.p.) administration of streptozotocin (STZ, 50 mg/kg body weight). Then, the exosomes were injected each week into their tail vein for six weeks. We measured 24-hour urine protein, blood urea nitrogen (BUN), and serum creatinine (Scr) levels with detection kits. The histopathological effects of the exosomes on kidneys were evaluated by periodic acid-Schiff (PAS) staining and expressions of miRNA-29a and miRNA-377 by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The KTC-Exos were approximately 50-150 nm and had a spherical morphology. They expressed the CD9 and CD63 specific markers. Intravenous injections of KTC-Exos potentially reduced urine volume (P<0.0001), and 24- hour protein (P<0.01), BUN (P<0.001) and Scr (P<0.0001) levels. There was a decrease in miRNA-377 (P<0.01) and increase in miRNA-29a (P<0.001) in the diabetic rats. KTC-Exos ameliorated the renal histopathology with regulatory changes in microRNAs (miRNA) expressions. CONCLUSION KTC-Exos plays a role in attenuation of kidney injury from diabetes by regulating the miRNAs associated with DN.
Collapse
Affiliation(s)
- Fereshtesadat Fakhredini
- Cell and Molecular Research Centre, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cell and Molecular Research Centre, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Physiology Research Centre, Research Institute for Infectious Diseases of the Digestive System, School of
Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh Gorji
- Department of Bone Marrow Transplantation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Orazizadeh
- Cell and Molecular Research Centre, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,P.O.Box: 61335Department of Anatomical SciencesFaculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
8
|
Chatzis DG, Kolokathis K, Magounaki K, Chatzidakis S, Avramidis K, Leopoulou M, Angelopoulos TP, Doupis J. Changing the Concept: From the Traditional Glucose-centric to the New Cardiorenal-metabolic Approach for the Treatment of Type 2 Diabetes. TOUCHREVIEWS IN ENDOCRINOLOGY 2021; 17:92-101. [PMID: 35118454 PMCID: PMC8676106 DOI: 10.17925/ee.2021.17.2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease with a constantly increasing prevalence worldwide. It is well established that T2DM affects both the macro- and microvasculature, and its presence is associated with a high risk of acute and chronic cardiovascular events. Traditionally, the management of T2DM has been mainly focused on the optimization of blood glucose levels with the use of antidiabetic medications. During recent years, however, an impressive accumulation of evidence has arisen from studies designed to explore the plausible effects of new antidiabetic drugs on cardiovascular outcomes in patients with diabetes. This review article aims to emphasize the findings of these studies and to highlight the substantial role of the newer classes of antidiabetic drugs in treating T2DM in a holistic, cardiorenal-metabolic approach, thus shifting the paradigm from the traditional, simplistic, glucose-lowering approach.
Collapse
Affiliation(s)
| | - Konstantinos Kolokathis
- Department of Internal Medicine and Diabetes, Salamis Naval and Veterans Hospital, Salamis Naval Base, Salamis, Attiki, Greece
| | | | | | - Konstantinos Avramidis
- Department of Internal Medicine and Diabetes, Salamis Naval and Veterans Hospital, Salamis Naval Base, Salamis, Attiki, Greece
| | | | | | - John Doupis
- Department of Internal Medicine and Diabetes, Salamis Naval and Veterans Hospital, Salamis Naval Base, Salamis, Attiki, Greece
- Iatriko Paleou Falirou Medical Center, Athens, Greece
| |
Collapse
|
9
|
Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1497449. [PMID: 34307650 PMCID: PMC8285185 DOI: 10.1155/2021/1497449] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Chronic hyperglycemia and high blood pressure are the main risk factors for the development of DN. In general, screening for microalbuminuria should be performed annually, starting 5 years after diagnosis in type 1 diabetes and at diagnosis and annually thereafter in type 2 diabetes. Standard therapy is blood glucose and blood pressure control using the renin-angiotensin system blockade, targeting A1c < 7%, and <130/80 mmHg. Regression of albuminuria remains an important therapeutic goal. However, there are problems in diagnosis and treatment of nonproteinuric DN (NP-DN), which does not follow the classic pattern of DN. In fact, the prevalence of DN continues to increase, and additional therapy is needed to prevent or ameliorate the condition. In addition to conventional therapies, vitamin D receptor activators, incretin-related drugs, and therapies that target inflammation may also be promising for the prevention of DN progression. This review focuses on the role of inflammation and oxidative stress in the pathogenesis of DN, approaches to diagnosis in classic and NP-DN, and current and emerging therapeutic interventions.
Collapse
|
10
|
Stefanowicz-Rutkowska MM, Matuszewski W, Gontarz-Nowak K, Bandurska-Stankiewicz EM. Is there a relationship between the prevalence of autoimmune thyroid disease and diabetic kidney disease? Open Life Sci 2021; 16:611-619. [PMID: 34183993 PMCID: PMC8218549 DOI: 10.1515/biol-2021-0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/28/2022] Open
Abstract
Autoimmune thyroid disease (AITD) is more common among diabetes mellitus (DM) patients and may impact its microvascular complications. The present study aimed to assess the relationship between AITD and the prevalence of diabetic kidney disease (DKD) in patients with diabetes mellitus type 1 (DM1). Anthropometric parameters, parameters of metabolic control of DM, thyreometabolic status, and the UACR were assessed. DKD was diagnosed if patients' UACR level was ≥30 mg/g or eGFR level was <60 mL/min. This study involved 144 patients with DM1 aged 36.2 ± 11.7 years: 49 men and 95 women. Significant differences in creatinine, eGFR, and UACR levels were found in patients with DKD. fT3 concentration was significantly lower among DKD patients. A significantly higher probability of DKD was found in DM1 patients with lower fT3 levels. Patients with DM1 and AITD had significantly lower creatinine levels than the control group. However, the study did not show any significant relationship between AITD and the occurrence of DKD in patients with DM1. Significantly lower fT3 concentrations in DKD patients may be caused by metabolic disorders in the course of DKD and require further cohort studies in a larger population of patients with DM1 and AITD.
Collapse
Affiliation(s)
- Magdalena Maria Stefanowicz-Rutkowska
- Clinic of Endocrinology, Diabetology and Internal Diseases, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Żołnierska 18 (Wojewódzki Szpital Specjalistyczny w Olsztynie, pok. 32), 10-957 Olsztyn, Poland
| | - Wojciech Matuszewski
- Clinic of Endocrinology, Diabetology and Internal Diseases, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Żołnierska 18 (Wojewódzki Szpital Specjalistyczny w Olsztynie, pok. 32), 10-957 Olsztyn, Poland
| | - Katarzyna Gontarz-Nowak
- Clinic of Endocrinology, Diabetology and Internal Diseases, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Żołnierska 18 (Wojewódzki Szpital Specjalistyczny w Olsztynie, pok. 32), 10-957 Olsztyn, Poland
| | - Elżbieta Maria Bandurska-Stankiewicz
- Clinic of Endocrinology, Diabetology and Internal Diseases, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Żołnierska 18 (Wojewódzki Szpital Specjalistyczny w Olsztynie, pok. 32), 10-957 Olsztyn, Poland
| |
Collapse
|
11
|
The effect of isosorbide-mononitrate on proteinuria in patients with diabetic nephropathy. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.807627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Yun JS, Park YM, Han K, Kim HW, Cha SA, Ahn YB, Ko SH. Severe hypoglycemia and the risk of end stage renal disease in type 2 diabetes. Sci Rep 2021; 11:4305. [PMID: 33619302 PMCID: PMC7900096 DOI: 10.1038/s41598-021-82838-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
We investigated the association between the incidence of severe hypoglycemia and the risk of end-stage renal disease (ESRD) in patients with type 2 diabetes. Baseline and follow-up data for 988,333 participants with type 2 diabetes were retrieved from the National Health Insurance System database. The number of severe hypoglycemia episodes experienced from 2007 to 2009 was determined. The primary outcome was the development of ESRD after the baseline evaluation. Participants were followed from the baseline until death or December 31, 2016, during this period 14,545 participants (1.5%) developed ESRD. In the crude model, compared with those who experienced no severe hypoglycemia, the hazard ratios (95% confidential intervals) for developing ESRD were 4.96 (4.57–5.39), 6.84 (5.62–8.32), and 9.51 (7.14–12.66) in participants who experienced one, two, and three or more episodes of severe hypoglycemia, respectively. Further adjustment for various confounding factors attenuated the association between severe hypoglycemia and ESRD; the significance of the association between severe hypoglycemia and ESRD was maintained. Having three or more severe hypoglycemia episodes was associated with a nearly two-fold increased risk of developing ESRD. Prior episodes of severe hypoglycemia were associated with an increased risk of ESRD among Korean adults with type 2 diabetes.
Collapse
Affiliation(s)
- Jae-Seung Yun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong-Moon Park
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyungdo Han
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyung-Wook Kim
- Division of Nephrology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seon-Ah Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Bae Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
13
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Autophagy in diabetic nephropathy: a review. Int Urol Nephrol 2020; 52:1705-1712. [PMID: 32661628 DOI: 10.1007/s11255-020-02545-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is the leading cause of end stage renal disease. 40% of the patients worldwide will require replacement therapy after 20 years of DM worldwide. Early-stage diabetic nephropathy is characterized by hyperfiltration related to hypeglycemia-induced afferent artery vasodilatation with micro-and macroalbuminuria. Later on, proteinuria with arterial hypertension may appear, culminating in glomerular filtration rate (GFR) decline and end stage renal disease. Forty percent of diabetic patients develop microvascular and macrovascular complications, with increased risk among patients with genetic predisposition, such as Haptoglobin 2-2 phenotype. The most frequent complications in the daily clinical practice are diabetic kidney disease, diabetic retinopathy and vascular disease, such as coronary artery disease and stroke. Various pathways are involved in the pathogenesis of diabetic kidney disease. Chronic systemic inflammation and the inflammatory response, such as increased circulating cytokines (Interleukins), have been recognized as main players in the development and progression of diabetic kidney disease. DM is also associated with increased oxidative stress, and alterations in carbohydrate, lipid and protein metabolism. Overexpression of the renin-angiotensin-aldosterone system (RAAS) in the kidney, the vitamin D-Vitamin D receptor-klotho axis, and autophagy. Differences in the ATG5 protein levels or ATG5 gene expression involved in the autophagy process have been associated with diabetic complications such as diabetic kidney disease. Under normal blood glucose level, autophagy is an important protective mechanism in renal epithelial cells, including podocytes, proximal tubular, mesangial and endothelial cells. Down regulation of the autophagic mechanism, as in hyperglycemic condition, can contribute to the development and progression of diabetic kidney disease.
Collapse
|
15
|
Shi Y, Huang C, Zhao Y, Cao Q, Yi H, Chen X, Pollock C. RIPK3 blockade attenuates tubulointerstitial fibrosis in a mouse model of diabetic nephropathy. Sci Rep 2020; 10:10458. [PMID: 32591618 PMCID: PMC7319952 DOI: 10.1038/s41598-020-67054-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
Receptor-interacting protein kinase-3 (RIPK3) is a multifunctional regulator of cell death and inflammation. RIPK3 controls cellular signalling through the formation of the domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which is recognised to mediate renal fibrogenesis. The role of RIPK3 in diabetic kidney disease (DKD) induced renal fibrosis has not been previously determined. To define the action of RIPK3 in the development of diabetic kidney disease, wild-type (WT), RIPK3 -/- and endothelium-derived nitric oxide synthase (eNOS)-/- mice were induced to develop diabetes mellitus using multiple low doses of streptozotocin and maintained for 24 weeks. RIPK3 activity and NLRP3 expression were upregulated and fibrotic responses were increased in the kidney cortex of WT mice with established diabetic nephropathy compared to control mice. Consistently, mRNA expression of inflammasome components, as well as transforming growth factor beta 1 (TGFβ1), α smooth muscle actin (α-SMA) and collagen deposition were increased in diabetic kidneys of WT mice compared to control mice. However, these markers were normalised or significantly reversed in kidneys of diabetic RIPK3 -/- mice. Renoprotection was also observed using the RIPK3 inhibitor dabrafenib in eNOS-/- diabetic mice as demonstrated by reduced collagen deposition and myofibroblast activation. These results suggest that RIPK3 is associated with the development of renal fibrosis in DKD due to the activation of the NLRP3 inflammasome. Inhibition of RIPK3 results in renoprotection. Thus, RIPK3 may be a potential target for therapeutic intervention in patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Ying Shi
- University of Sydney, Sydney Medical School, Kolling Institute of Medical Research Sydney, Sydney, NSW, 2065, Australia
| | - Chunling Huang
- University of Sydney, Sydney Medical School, Kolling Institute of Medical Research Sydney, Sydney, NSW, 2065, Australia
| | - Yongli Zhao
- The Second Affiliated Hospital of Dalian Medical University, Department of Pediatrics 467 Zhongshan Road, Shahekou District Dalian, Liaoning, CN, 116027, China
| | - Qinghua Cao
- University of Sydney, Sydney Medical School, Kolling Institute of Medical Research Sydney, Sydney, NSW, 2065, Australia
| | - Hao Yi
- University of Sydney, Sydney Medical School, Kolling Institute of Medical Research Sydney, Sydney, NSW, 2065, Australia
| | - Xinming Chen
- University of Sydney, Sydney Medical School, Kolling Institute of Medical Research Sydney, Sydney, NSW, 2065, Australia
| | - Carol Pollock
- University of Sydney, Sydney Medical School, Kolling Institute of Medical Research Sydney, Sydney, NSW, 2065, Australia.
| |
Collapse
|
16
|
Zhang YL, Wang JM, Yin H, Wang SB, He CL, Liu J. DACH1, a novel target of miR-218, participates in the regulation of cell viability, apoptosis, inflammatory response, and epithelial-mesenchymal transition process in renal tubule cells treated by high-glucose. Ren Fail 2020; 42:463-473. [PMID: 32408786 PMCID: PMC7269034 DOI: 10.1080/0886022x.2020.1762647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: This report was designed to assess the functional role of miR-218/dachshund family transcription factor 1 (DACH1) in diabetic kidney disease (DKD) and investigate its possible molecular mechanism.Materials and Methods: From the GEO database, we downloaded different datasets for analyzing the expression of miR-218 and DACH1 in DKD. TargetScan was adopted to predict the binding sites between miR-218 and DACH1, which was further verified by dual-luciferase reporter assays. The renal proximal tubule cells (HK-2) treated with high glucose (HG) were used as an in vitro model. QRT-PCR and western blot were used to determine the expression of DACH1 and other relative factors. Cell counting kit-8 and flow cytometer were applied to detect cell viability and apoptosis. The levels of inflammatory cytokines were determined by an ELISA assay.Results: A prominent raise of miR-218 was observed in DKD through bioinformatics analysis, which was further confirmed in the HG-induced model. DACH1 is a target of miR-218. miR-218 reduced cell viability and induced apoptosis by negatively regulating DACH1. Moreover, upregulating miR-218 in HG models increased the concentrations of pro-inflammatory cytokines TNF-α and IL-1β, reduced the level of anti-inflammatory cytokine IL-10, and promoted the epithelial-mesenchymal transition (EMT) process, which is possibly achieved by targeting DACH1. While downregulating miR-218 showed the opposite results.Conclusion: These data demonstrated that, under an in vitro HG environment, miR-218 suppressed the HK-2 cells proliferation, promoted apoptosis, caused an inflammatory response, and facilitated the EMT process largely by targeting DACH1, providing an insight into the therapeutic intervention of DKD.
Collapse
Affiliation(s)
- Ying-Li Zhang
- Department of Endocrinology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, P. R. China
| | - Jie-Min Wang
- Department of Endocrinology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, P. R. China
| | - Hong Yin
- Department of Endocrinology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, P. R. China
| | - Shou-Bao Wang
- Department of Endocrinology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, P. R. China
| | - Cai-Ling He
- Department of Endocrinology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu, P. R. China
| | - Jing Liu
- Department of Endocrinology, The People's Hospital of Gansu Province, Lanzhou, Gansu, P. R. China
| |
Collapse
|
17
|
Meng X, Ma J, Kang SY, Jung HW, Park YK. Jowiseungki decoction affects diabetic nephropathy in mice through renal injury inhibition as evidenced by network pharmacology and gut microbiota analyses. Chin Med 2020; 15:24. [PMID: 32190104 PMCID: PMC7066842 DOI: 10.1186/s13020-020-00306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Jowiseungki decoction (JSD) is a prescription commonly used for the treatment of diabetic complications or diabetic nephropathy (DN) in traditional medicine clinics. However, the underlying therapeutic mechanisms of JSD are still unclear. Methods Streptozotocin (STZ)-induced DN mice were administered 100 and 500 mg/kg JSD for 4 weeks, and the therapeutic mechanisms and targets of JSD were analyzed by network pharmacology and gut microbiota analyses. Results JSD significantly decreased the increase in food and water intake, urine volume, fasting blood glucose, serum glucose and triglyceride levels, and urinary albumin excretion. JSD administration significantly increased the decrease in insulin secretion and creatinine clearance and reduced the structural damage to the kidney tissues. Moreover, JSD administration significantly inhibited the expression of protein kinase C-alpha (PKC-α), transforming growth factor beta-1 (TGF-β1), α-smooth muscle actin (α-SMA), nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in the kidney tissues of DN mice, while it significantly increased the phosphorylation of insulin receptor substrate 1 (IRS-1), phosphatidylinositol-3-kinase (PI3K), and protein kinase B (Akt). In the network pharmacological analysis, JSD obviously influenced phosphatase binding, protein serine/threonine kinase, and mitogen-activated protein kinase (MAPK)-related signaling pathways. Our data suggest that JSD can improve symptoms in STZ-induced DN mice through the inhibition of kidney dysfunction, in particular, by regulating the PKCα/PI3K/Akt and NF-κB/α-SMA signaling pathways. Gut microbiota analysis can help to discover the pharmaco-mechanisms of the influence of JSD on bacterial diversity and flora structures in DN. Conclusion JSD can improve the symptoms of DN, and the underlying mechanism of this effect is renal protection through the inhibition of fibrosis and inflammation. JSD can also change bacterial diversity and community structures in DN.
Collapse
Affiliation(s)
- Xianglong Meng
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea.,Experimental Teaching Center, College of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619 China
| | - Junnan Ma
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Seok Yong Kang
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Hyo Won Jung
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| | - Yong-Ki Park
- 1Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066 Korea
| |
Collapse
|
18
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
19
|
Permyakova A, Gammal A, Hinden L, Weitman M, Weinstock M, Tam J. A Novel Indoline Derivative Ameliorates Diabesity-Induced Chronic Kidney Disease by Reducing Metabolic Abnormalities. Front Endocrinol (Lausanne) 2020; 11:91. [PMID: 32218769 PMCID: PMC7078689 DOI: 10.3389/fendo.2020.00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Both diabetes and obesity (diabesity) contribute significantly to the development of chronic kidney disease (CKD). In search of new remedies to reverse or arrest the progression of CKD, we examined the therapeutic potential of a novel compound, AN1284, in a mouse model of CKD induced by type 2 diabetes with obesity. Six-week-old BKS Cg-Dock 7m+/+ Leprdb/J mice with type 2 diabetes and obesity were treated with AN1284 (2.5 or 5 mg kg-1 per day) via micro-osmotic pumps implanted subcutaneously for 3 months. Measures included renal, pancreatic, and liver assessment as well as energy utilization. AN1284 improved kidney function in BSK-db/db animals by reducing albumin and creatinine and preventing renal inflammation and morphological changes. The treatment was associated with weight loss, decreased body fat mass, increased utilization of body fat toward energy, preservation of insulin sensitivity and pancreatic β cell mass, and reduction of dyslipidemia, hepatic steatosis, and liver injury. This indoline derivative protected the kidney from the deleterious effects of hyperglycemia by ameliorating the metabolic abnormalities of diabetes. It could have therapeutic potential for preventing CKD in human subjects with diabesity.
Collapse
Affiliation(s)
- Anna Permyakova
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaad Gammal
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Weitman
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Marta Weinstock
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Joseph Tam
| |
Collapse
|
20
|
Mitrofanova A, Sosa MA, Fornoni A. Lipid mediators of insulin signaling in diabetic kidney disease. Am J Physiol Renal Physiol 2019; 317:F1241-F1252. [PMID: 31545927 PMCID: PMC6879940 DOI: 10.1152/ajprenal.00379.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022] Open
Abstract
Diabetic kidney disease (DKD) affects ∼40% of patients with diabetes and is associated with high mortality rates. Among different cellular targets in DKD, podocytes, highly specialized epithelial cells of the glomerular filtration barrier, are injured in the early stages of DKD. Both clinical and experimental data support the role of preserved insulin signaling as a major contributor to podocyte function and survival. However, little is known about the key modulators of podocyte insulin signaling. This review summarizes the novel knowledge that intracellular lipids such as cholesterol and sphingolipids are major determinants of podocyte insulin signaling. In particular, the implications of these lipids on DKD development, progression, and treatment will be addressed.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida
| | - Marie Anne Sosa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
21
|
Ceretta ML, Noordzij M, Luxardo R, De Meester J, Abad Diez JM, Finne P, Heaf JG, Couchoud C, Kramar R, Collart F, Cases A, Palsson R, Reisæter AV, Rydell H, Massy ZA, Jager KJ, Kramer A. Changes in co-morbidity pattern in patients starting renal replacement therapy in Europe-data from the ERA-EDTA Registry. Nephrol Dial Transplant 2019; 33:1794-1804. [PMID: 29361126 DOI: 10.1093/ndt/gfx355] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022] Open
Abstract
Background Patients starting renal replacement therapy (RRT) for end-stage renal disease often present with one or more co-morbidities. This study explored the prevalence of co-morbidities in patients who started RRT in Europe during the period from 2005 to 2014. Methods Using data from patients aged 20 years or older from all 11 national or regional registries providing co-morbidity data to the European Renal Association - European Dialysis and Transplant Association Registry, we examined the prevalence of the following co-morbidities: diabetes mellitus (DM) (primary renal disease and/or co-morbidity), ischaemic heart disease (IHD), congestive heart failure (CHF), peripheral vascular disease (PVD), cerebrovascular disease (CVD) and malignancy. Results Overall, 70% of 7578 patients who initiated RRT in 2014 presented with at least one co-morbidity: 39.0% presented with DM, 25.0% with IHD, 22.3% with CHF, 17.7% with PVD, 16.4% with malignancy and 15.5% with CVD. These percentages differed substantially between countries. Co-morbidities were more common in men than in women, in older patients than in younger patients, and in patients on haemodialysis at Day 91 when compared with patients on peritoneal dialysis. Between 2005 and 2014 the prevalence of DM and malignancy increased over time, whereas the prevalence of IHD and PVD declined. Conclusions More than two-thirds of patients initiating RRT in Europe have at least one co-morbidity. With the rising age at the start of RRT over the last decade, there have been changes in the co-morbidity pattern: the prevalence of cardiovascular co-morbidities decreased, while the prevalence of DM and malignancy increased.
Collapse
Affiliation(s)
- Maria L Ceretta
- Uruguayan Dialysis Registry, Uruguayan Society of Nephrology, Montevideo, Uruguay
| | - Marlies Noordzij
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rosario Luxardo
- Nephrology Service, Hospital Italiano de Buenos Aires, CABA, Buenos Aires, Argentina
| | - Johan De Meester
- Department of Nephrology, Dialysis and Hypertension, Dutch-speaking Belgian Renal Registry (NBVN), Sint-Niklaas, Belgium
| | - Jose M Abad Diez
- Servicio Aragonés de la Salud, Gobierno de Aragón, Zaragoza, Spain
| | - Patrik Finne
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Finnish Registry for Kidney Diseases, Helsinki, Finland
| | - James G Heaf
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark
| | - Cécile Couchoud
- REIN Registry, Agence de la biomédecine, Saint-Denis La Plaine, France
| | | | | | - Aleix Cases
- Nephrology Unit Hospital Clinic, Barcelona, Spain.,Registre de Malalts Renals de Catalunya, Barcelona, Spain
| | - Runolfur Palsson
- Division of Nephrology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Anna V Reisæter
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Helena Rydell
- Swedish Renal Registry, Jönköping, Sweden.,Lund University, Lund, Sweden.,Skane University Hospital, Lund, Sweden
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 1018 team 5, Research Centre in Epidemiology and Population Health (CESP), University of Paris Ouest-Versailles-St Quentin-en-Yveline, Villejuif, France
| | - Kitty J Jager
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Anneke Kramer
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Comparing the Effect of Dipeptidyl-Peptidase 4 Inhibitors and Sulfonylureas on Albuminuria in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Prospective Open-Label Study. J Clin Med 2019; 8:jcm8101715. [PMID: 31627406 PMCID: PMC6832118 DOI: 10.3390/jcm8101715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023] Open
Abstract
Diabetic kidney disease (DKD) leads to substantial morbidity in patients with type 2 diabetes mellitus (T2DM). Evidence suggests that antidiabetic drug dipeptidyl-peptidase 4 (DPP-4) inhibitors may be able to attenuate albuminuria, whereas the influence of sulfonylureas on albuminuria remains unclear. This prospective open-label study investigated the effect of DPP-4 inhibitors and sulfonylureas on urinary albumin excretion, which is a marker of renal microvascular abnormality. A total of 101 participants with newly diagnosed T2DM were enrolled. In addition to metformin therapy, 45 patients were assigned to receive DPP-4 inhibitors and 56 to receive sulfonylureas. Urinary albumin-to-creatinine ratio (ACR) was significantly reduced in recipients of DPP-4 inhibitors after 24 weeks (29.2 µg/mg creatinine vs. 14.9 µg/mg creatinine, P < 0.001), whereas urinary ACR was not significantly changed by sulfonylureas (39.9 µg/mg creatinine vs. 43.2 µg/mg creatinine, P = 0.641). The effect on albuminuria occurred even though both treatment groups had a similar change in serum glycated hemoglobin A1c (-1.87 % vs.-2.40 %, P = 0.250). Therefore, in diabetic patients the addition of DPP-4 inhibitors lowered urinary albumin excretion compared to sulfonylureas, and attenuation of albuminuria may be a consideration when choosing between antidiabetic medications.
Collapse
|
23
|
Lee JY, Yang JW, Han BG, Choi SO, Kim JS. Adiponectin for the treatment of diabetic nephropathy. Korean J Intern Med 2019; 34:480-491. [PMID: 31048658 PMCID: PMC6506734 DOI: 10.3904/kjim.2019.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
The metabolic burden caused by hyperglycemia can result in direct and immediate metabolic injuries, such as oxidative stress and tissue inflammation, in the kidney. Furthermore, chronic hyperglycemia can lead to substantial structural changes such as formation of advanced glycation end-products, glomerular and tubular hypertrophy, and tissue fibrosis. Glomerular hypertrophy renders podocytes vulnerable to increased glomerular filtration, leading to podocyte instability and loss. Thus, prevention of glomerular hypertrophy and attenuation of glomerular hyperfiltration may have therapeutic potential for diabetic nephropathy (DN). Adiponectin is an adipokine that improves insulin sensitivity in obesity-related metabolic disorders, including diabetes, but its efficacy is unknown. Moreover, the recently developed adiponectin receptor agonist, AdipoRon, shows therapeutic potential for DN. In this review, we focus on the role of glomerular hypertrophy in the pathogenesis of DN and discuss the role of adiponectin in its prevention.
Collapse
Affiliation(s)
- Jun Young Lee
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Won Yang
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Byoung Geun Han
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seung Ok Choi
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jae Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Correspondence to Jae Seok Kim, M.D. Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea Tel: +82-33-741-0509 Fax: +82-33-731-5884 E-mail:
| |
Collapse
|
24
|
A/L B Vasanth Rao VR, Tan SH, Candasamy M, Bhattamisra SK. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab Syndr 2019; 13:754-762. [PMID: 30641802 DOI: 10.1016/j.dsx.2018.11.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease and affects a large number of individuals with diabetes. However, the development of specific treatments for DN has not yet been identified. Hence, this review is concisely designed to understand the molecular pathways leading to DN in order to develop suitable therapeutic strategies. Extensive literature search have been carried in regard with the pathogenesis and pathophysiology of DN, drug targets and updates on clinical trials, the consequences associated with DN and the potential biomarkers for diagnosis and prediction of DN are discussed in this review. DN is characterised by microalbuminuria and macroalbuminuria, and morphological changes such as glomerular thickening, interstitial fibrosis, formation of nodular glomerulosclerosis and decreased endothelial cell fenestration. Besides, the involvement of renin-angiotensin-aldosterone system, inflammation and genetic factors are the key pathways in the progression of DN. In regard with drug development drugs targeted to epidermal growth factor, inflammatory cytokines, ACTH receptor and TGFβ1 receptors are in pipeline for clinical trials whereas, several drugs have also failed in phase III and phase IV of clinical trials due to lack of efficacy and severe adverse effect. The research on DN is limited with respect to its pathogenesis and drug development. Thus, a more detailed understanding of the pathogenesis of DN is very essential to progress in the drug development process.
Collapse
Affiliation(s)
- Vikram Rao A/L B Vasanth Rao
- School of Postgraduate Studies, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Sean Hong Tan
- School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, No 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Xue M, Cheng Y, Han F, Chang Y, Yang Y, Li X, Chen L, Lu Y, Sun B, Chen L. Triptolide Attenuates Renal Tubular Epithelial-mesenchymal Transition Via the MiR-188-5p-mediated PI3K/AKT Pathway in Diabetic Kidney Disease. Int J Biol Sci 2018; 14:1545-1557. [PMID: 30263007 PMCID: PMC6158722 DOI: 10.7150/ijbs.24032] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/16/2018] [Indexed: 01/06/2023] Open
Abstract
Triptolide possesses the trait of renal protection. Epithelial-mesenchymal transition (EMT) is closely linked to the pathogenesis of diabetic kidney disease (DKD). MicroRNAs have recently emerged as critical regulators of DKD. However, it is poorly understood whether triptolide alleviates renal EMT by regulating microRNAs in DKD. In this study, we found that triptolide decreased albuminuria, improved the renal structure and reduced renal EMT in rats with DKD. Furthermore, activation of the PI3K/AKT signaling pathway was increased in diabetic rats, which was partly reversed by triptolide. Triptolide also alleviated glucose-induced EMT in HK-2 cells in vitro. PI3K/AKT signaling pathway activation was reduced after triptolide treatment. Moreover, triptolide decreased the increase in miR-188-5p expression stimulated by high glucose levels in HK-2 cells. miR-188-5p inhibited PTEN expression by directly interacting with the PTEN 3'-untranslated region. Additionally, downregulation of miR-188-5p, which imitates the effects of triptolide, attenuated the activation of the PI3K/AKT pathway and HG-induced EMT, whereas miR-188-5p overexpression reversed the effects of triptolide on the PI3K/AKT pathway and EMT. In conclusion, we demonstrated that triptolide ameliorates renal EMT via the PI3K/AKT signaling pathway through the interaction between miR-188-5p and PTEN, indicating that miR-188-5p may be a therapeutic target of triptolide in DKD.
Collapse
Affiliation(s)
- Mei Xue
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Ying Cheng
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Fei Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Yunpeng Chang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Yang Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Xiaoyu Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Li Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Yunhong Lu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| |
Collapse
|
26
|
Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur J Pharmacol 2018; 833:158-164. [PMID: 29883668 DOI: 10.1016/j.ejphar.2018.06.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy is one of the most frequent micro-vascular complications both in type 1 and type 2 diabetic patients and is the leading cause of end-stage renal disease worldwide. Although disparate mechanisms give rise to the development of diabetic nephropathy, prevailing evidence accentuates that hyperglycemia-associated generation of advanced glycation end products (AGEs) plays a central role in the disease pathophysiology. Engagement of the receptor for AGE (RAGE) with its ligands provokes oxidative stress and chronic inflammation in renal tissues, ending up with losses in kidney function. Moreover, RAGE activation evokes the activation of different intracellular signaling pathways like PI3K/Akt, MAPK/ERK, and NF-κB; and therefore, its blockade seems to be an attractive therapeutic target in these group of patients. By recognizing the contribution of AGE-RAGE axis to the pathogenesis of diabetic nephropathy, agents that block AGEs formation have been at the heart of investigations for several years, yielding encouraging improvements in experimental models of diabetic nephropathy. Even so, recent studies have evaluated the effects of specific RAGE inhibition with FPS-ZM1 and RAGE-aptamers as novel therapeutic strategies. Despite all these promising outcomes in experimental models of diabetic nephropathy, no thorough clinical trial have ever examined the end results of AGE-RAGE axis blockade in patients of diabetic nephropathy. As most of the AGE lowering or RAGE inhibiting compounds have emerged to be non-toxic, devising novel clinical trials appears to be inevitable. Here, the current potential treatment options for diabetic nephropathy by AGE-RAGE inhibitory modalities have been reviewed.
Collapse
Affiliation(s)
- Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbani Haghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Golgasht Avenue, POBOX: 14711, 5166614711 Tabriz, Iran.
| | - Hassan Argani
- Urology and Nephrology Research Center, Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Aslani
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|